Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T20:21:19.931Z Has data issue: false hasContentIssue false

5 - Morphological differentiation of Gorilla subspecies

Published online by Cambridge University Press:  11 August 2009

Steven R. Leigh
Affiliation:
Department of Anthropology, University of Illinois–Urbana, Urbana, IL 61801, U.S.A.
John H. Relethford
Affiliation:
Department of Anthropology, State University of New York College at Oneonta, Oneonta, NY 13820, U.S.A.
Paul B. Park
Affiliation:
Department of Anthropology, University of Illinois–Urbana, Urbana, IL 61801, U.S.A.
Lyle W. Konigsberg
Affiliation:
Department of Anthropology, University of Tennessee, Knoxville, TN 37996, U.S.A.
Andrea B. Taylor
Affiliation:
Duke University, North Carolina
Michele L. Goldsmith
Affiliation:
Tufts University, Massachusetts
Get access

Summary

Introduction

Classic analyses of gorilla systematics by Coolidge (1929) and Groves (1970) form a vital foundation for virtually all contemporary studies of gorillas (see also important morphological studies by Albrecht et al., this volume; Groves, this volume; Haddow and Ross, 1951; Vogel, 1961; Sarmiento et al., 1996; Stumpf et al., 1998, this volume). Investigations of Gorilla subspecies diversity also inform many other fields such as paleoanthropology (cf. Albrecht et al., this volume; Lieberman et al., 1988). Despite a good understanding of variation within this species, theoretical advances and new analytical techniques point to a need to reassess our current understanding of gorilla variation. Measures of subspecific variation have important implications for studies of microevolution, ecomorphology, population dynamics, and evolutionary history. Concomitantly, increasing pressures on wild populations underscore the need for a clearer understanding of the structure of subspecific variability in a conservation context (Suter and Oates, 2000).

Therefore, the goal of this analysis is to investigate morphological diversity in gorillas through new measures of variation below the species level. More specifically, this analysis evaluates overall levels of variation within the Gorilla species through application of Wright's Fst to craniometric data (Wright, 1951; 1969; Relethford, 1994). This approach, typically used to measure genetic microdifferentiation, calibrates the degree to which subdivision within populations or species departs from a quantitative expectation of no substructure.

Type
Chapter
Information
Gorilla Biology
A Multidisciplinary Perspective
, pp. 104 - 131
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, G. H. and Miller, J. M. A. (1993). Geographic variation in primates: A review with implications for interpreting fossils. In Species, Species Concepts, and Primate Evolution, eds. W. H. Kimbel and L. B. Martin, pp. 123–162. New York: Plenum PressCrossRef
Barbujani, G., Magagni, A., Minch, E., and Cavalli-Sforza, L. L. (1997). An apportionment of human DNA diversity. Proceedings of the National Academy of Sciences U.S.A., 94, 4516–4519CrossRefGoogle ScholarPubMed
Braga, J. (1995a). Définition de certains caractères discrets crâniens chez Pongo, Gorilla, et Pan: Perspectives taxonomiques et phylogénétiques. PhD thesis, University of Bordeaux, France
Braga, J. (1995 b). Variation squelettique et mesure de divergence chez les chimpanzés: Contribution des caractères discrets. Comptes Rendus de l'Académie des Sciences de Paris, series II, 320, 1025–1030Google Scholar
Braga, J. (1995 c). Study of two osseous discrete traits in the occipitocervical region of lowland gorillas. Folia Primatologica, 64, 37–43CrossRefGoogle ScholarPubMed
Cheverud, J. M. (1981). Variation in highly and lowly heritable morphological traits among social groups of rhesus macaques (Macaca mulatta) on Cayo Santiago. Evolution, 35, 75–83Google ScholarPubMed
Coolidge, H. J. (1929). A revision of the genus Gorilla. Memoirs of the Museum of Comparative Zoology, Harvard, 50, 291–381Google Scholar
Cope, D. A. (1993). Measures of dental variation as indicators of multiple taxa in samples of sympatric Cercopithecus species. In Species, Species Concepts, and Primate Evolution, eds. W. H. Kimbel and L. B. Martin, pp. 211–238. New York: Plenum PressCrossRef
Darroch, J. N. and Mosimann, J. E. (1985). Canonical and principal components of shape. Biometrika, 72, 241–252CrossRefGoogle Scholar
Diamond, J. (1994). Race without color. Discovery, 15(11), 82–89Google Scholar
Donnelly, S. M., Konigsberg, L. W., and Stringer, C. B. (1998). Interpretation of population structure when group structure is unknown. American Journal of Physical Anthropology, Supplement 26, 106Google Scholar
Doran, D. M. and McNeilage, A. (1998). Gorilla ecology and behavior. Evolutionary Anthropology, 6, 120–1313.0.CO;2-H>CrossRefGoogle Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford, U.K.: Clarendon PressCrossRef
Futuyma, D. (1987). On the role of species in anagenesis. American Naturalist, 130, 465–473CrossRefGoogle Scholar
Futuyma, D. (1992). History and evolutionary process. In History and Evolution, eds. M. H. Nitecki and D. V. Nitecki, pp. 103–129. Stony Brook, NY: SUNY Press
Gagneaux, P., Wills, C., Gerloff, U., Tautz, D., Morin, P. A., Boesch, C., Fruth, B, Hohmann, G., Ryder, O. A., and Woodruff, D. S. (1999). Mitochondrial sequences show diverse evolutionary histories of African hominoids. Proceedings of the National Academy of Sciences U.S.A., 96, 5077–5082CrossRefGoogle Scholar
Garner, K. J. and Ryder, O. A. (1996). Mitochondrial DNA diversity in gorillas. Molecular Phylogenetics and Evolution, 6, 39–48CrossRefGoogle ScholarPubMed
Gelvin, B. R., Albrecht, G. H., and Miller, J. M. A. (1997). The hierarchy of craniometric variation among gorillas. American Journal of Physical Anthropology, Supplement 24, 117Google Scholar
Gould, S. J. and Eldredge, N. (1993). Punctuated equilibrium comes of age. Nature, 366, 223–227CrossRefGoogle ScholarPubMed
Groves, C. P. (1966). Variation in the skulls of gorillas with particular reference to ecology. PhD thesis, University of London
Groves, C. P. (1967). Ecology and taxonomy of the gorilla. Nature, 213, 890–893CrossRefGoogle ScholarPubMed
Groves, C. P. (1970). Population systematics of the gorilla. Journal of the Zoological Society of London, 161, 287–300CrossRefGoogle Scholar
Groves, C. P. (1971). Distribution and place of origin of the gorilla. Man, 6, 44–51CrossRefGoogle Scholar
Groves, C. P., Westwood, C., and Shea, B. T. (1992). Unfinished business: Mahalanobis and a clockwork orang. Journal of Human Evolution, 22, 327–340CrossRefGoogle Scholar
Haddow, A. J. and Ross, R. W. (1951). A critical review of Coolidge's measurements of gorilla skulls. Proceedings of the Zoological Society of London, 121, 43–45CrossRefGoogle Scholar
Harpending, H. and Jenkins, T. (1973). Genetic distance among southern African populations. In Methods and Theories of Anthropological Genetics, eds. M. H. Crawford and P. L. Workman, pp. 177–200. Albuquerque, NM: University of New Mexico Press
Hauser, G. and De Stefano, G. F. (1989). Epigenetic Variants of the Human Skull. Stuttgart, Germany: Schweitzerbartsche Verlagsbuchhandlung
Jensen-Seaman, M. I. and Kidd, K. K. (2001). Mitochondrial DNA variation and biogeography of eastern gorillas. Molecular Ecology, 10, 2241–2247CrossRefGoogle ScholarPubMed
Jolly, C. J. (1993). Species, subspecies, and baboon systematics. In Species, Species Concepts, and Primate Evolution, eds. W. H. Kimbel and L. B. Martin, pp. 67–108. New York: Plenum PressCrossRef
Kaessmann, H., Wiebe, V., and Paabo, S. (1999). Extensive nuclear DNA sequence diversity among chimpanzees. Science, 286, 1159–1162CrossRefGoogle ScholarPubMed
Kimbel, W. H. (1991). Species, species concepts, and hominid evolution. Journal of Human Evolution, 20, 355–372CrossRefGoogle Scholar
Kimbel, W. H. and Martin, L. B. (1993). Species and speciation: Conceptual issues and their relevance for primate evolutionary biology. In Species, Species Concepts, and Primate Evolution, ed. W. H. Kimbel and L. B. Martin, pp. 539–554. New York: Plenum PressCrossRef
Kimura, M (1968). Evolutionary rate at the molecular level. Nature, 217, 624–626CrossRefGoogle ScholarPubMed
Konigsberg, L. W. (1990 a). Analysis of prehistoric biological variation under a model of isolation by geographic and temporal distance. Human Biology, 62, 49–70Google Scholar
Konigsberg, L. W. (1990 b). Temporal aspects of biological distance: Serial correlation and trend in a prehistoric skeletal lineage. American Journal of Physical Anthropology, 82, 45–52CrossRefGoogle Scholar
Konigsberg, L. W., Kohn, L. A. P., and Cheverud, J. M. (1993). Cranial deformation and nonmetric trait variation. American Journal of Physical Anthropology, 90, 35–48CrossRefGoogle ScholarPubMed
Lande, R. (1981). Models of speciation by sexual selection on polygenic characters. Proceedings of the National Academy of Sciences U.S.A., 78, 3721–3725CrossRefGoogle Scholar
Leigh, S. R. and Konigsberg, L. W. (1996). Intraspecific discrete trait polymorphism in African apes: Implications for variation in the fossil record. American Journal of Physical Anthropology, Supplement 22, 147Google Scholar
Leigh, S. R. and Shea, B. T. (1995). Ontogeny and the evolution of adult body size dimorphism in apes. American Journal of Primatology, 36, 37–60CrossRefGoogle Scholar
Lewontin, R. C. (1972). The apportionment of human diversity. Evolutionary Biology, 6, 381–398Google Scholar
Lieberman, D. E., Pilbeam, D. R., and Wood, B. A. (1988). A probabilistic approach to the problem of sexual dimorphism in Homo habilis: A comparison of KNM-ER 1470 and KNM-ER 1813. Journal of Human Evolution, 17, 503–511CrossRefGoogle Scholar
Lockwood, C. A. (1999). Homoplasy and adaptation in the atelid postcranium. American Journal of Physical Anthropology, 108, 459–4823.0.CO;2-R>CrossRefGoogle ScholarPubMed
Lockwood, C. A. and Fleagle, J. G. (1999). The recognition and evaluation of homoplasy in primate and human evolution. Yearbook of Physical Anthropology, 42, 189–2323.0.CO;2-3>CrossRefGoogle Scholar
Lockwood, C. A., Richmond, B. G., Jungers, W. L., and Kimbel, W. H. (1996). Randomization procedures and sexual dimorphism in Australopithecus afarensis. Journal of Human Evolution, 31, 537–548CrossRefGoogle Scholar
Manly, B. F. J. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology, 2nd edn. New York: Chapman & Hall
Matschie, P. (1904). Bemerkungen über die Gattung Gorilla. Sitzungsberichte des Gesellschaft naturforschender Freunde, Berlin, 1904, 45–53Google Scholar
Matschie, P. (1905). Merkurdige Gorilla-Schadel aus Kamerun. Sitzungsberichte des Gesellschaft naturforschender Freunde, Berlin, 1905, 277–283Google Scholar
Miller, J. M. A. (2000). Craniofacial variation in Homo habilis: An analysis of the evidence for multiple species. American Journal of Physical Anthropology, 112, 103–1283.0.CO;2-6>CrossRefGoogle ScholarPubMed
Morin, P. A., Moore, J. J., Chakraborty, R., Lin, L, Goodall, J., and Woodruff, D. S. (1994). Kin selection, social structure, gene flow, and evolution of chimpanzees. Science, 265, 1193–1201CrossRefGoogle ScholarPubMed
Oates, J. (1996). African Primates. Gland, Switzerland: International Union for Conservation of Nature (IUCN)
Plavcan, J. M. and Schaik, C. P. (1992). Intrasexual competition and canine dimorphism in anthropoid primates. American Journal of Physical Anthropology, 87, 461–478CrossRefGoogle ScholarPubMed
Polly, P. D. (1998). Variability in mammalian dentitions: Size-related bias in the coefficient of variation. Biological Journal of the Linnean Society, 64, 83–99CrossRefGoogle Scholar
Relethford, J. H. (1994). Craniometric variation among modern human populations. American Journal of Physical Anthropology, 95, 53–62CrossRefGoogle ScholarPubMed
Relethford, J. H. and Blangero, J. (1990). Detection of differential gene flow from patterns of quantitative variation. Human Biology, 62, 5–25Google ScholarPubMed
Relethford, J. H. and Harpending, H. C. (1994). Craniometric variation, genetic theory, and modern human origins. American Journal of Physical Anthropology, 95, 249–270CrossRefGoogle ScholarPubMed
Relethford, J. H. and Jorde, L. B. (1999). Genetic evidence for larger African population size during recent human evolution. American Journal of Physical Anthropology, 108, 251–2603.0.CO;2-H>CrossRefGoogle ScholarPubMed
Relethford, J. H., Crawford, M. H., and Blangero, J. (1997). Genetic drift and gene flow in post-famine Ireland. Human Biology, 69, 443–65Google ScholarPubMed
Rothschild, W. (1905). Notes on anthropoid apes. Proceedings of the Zoological Society of London, 2, 413–440Google Scholar
Rothschild, W. (1906). Further notes on anthropoid apes. Proceedings of the Zoological Society of London, 2, 465–468Google Scholar
Ruvolo, M., Pan, D., Zehr, S., Goldberg, T., Disotell, T. R., and Dornum, M. (1994). Gene trees and hominoid phylogeny. Proceedings of the National Academy of Sciences U.S.A., 91, 8900–8904CrossRefGoogle ScholarPubMed
Saltonstall, K., Amato, G., and Powell, J. (1998). Mitochondrial DNA variability in Grauer's gorillas of Kahuzi-Biega National Park. Journal of Heredity, 89, 129–135CrossRefGoogle ScholarPubMed
Sarmiento, E. E., Butynski, T. M., and Kalina, J. (1996). Gorillas of the Bwindi-Impenetrable Forest and Virunga Volcanoes: Taxonomic implications of morphological and ecological differences. American Journal of Primatology, 40, 1–213.0.CO;2-1>CrossRefGoogle Scholar
Schultz, A. H. (1934). Some distinguishing characters of the Mountain Gorilla. Journal of Mammology, 15, 51–61CrossRefGoogle Scholar
Seaman, M. I., Saltonstall, K., and Kidd, K. K. (1998). Mitochondrial DNA diversity and biogeography of Eastern gorillas. American Journal of Physical Anthropology, Supplement 26, 199Google Scholar
Seaman, M. I., Deinard, A. S., and Kidd, K. K. (2000). African ape nuclear phylogeography. American Journal of Physical Anthropology, Supplement 30, 276Google Scholar
Shea, B. T. (1981). Relative growth of the limbs and trunk in African apes. American Journal of Physical Anthropology, 56, 179–202CrossRefGoogle ScholarPubMed
Shea, B. T. (1983). Allometry and heterochrony in the evolution of African ape craniodental form. Folia Primatologica, 40, 32–68CrossRefGoogle Scholar
Shea, B. T. and Coolidge, H. J. (1988). Craniometric differentiation and systematics in the genus Pan. Journal of Human Evolution, 17, 671–686CrossRefGoogle Scholar
Shea, B. T., Leigh, S. R., and Groves, C. P. (1993). Multivariate craniometric variation in chimpanzees: Implications for species identification. In Species, Species Concepts, and Primate Evolution, eds. W. H. Kimbel and L. B. Martin, pp. 265–296. New York: Plenum PressCrossRef
Smith, H. M., Chiszar, D., and Montanucci, R. R. (1997). Subspecies and classification. Herpetological Review, 28, 13–16Google Scholar
Stumpf, R. M., Fleagle, J. G., Jungers, W. L., Oates, J. F., and Groves, C. P. (1998). Morphological distinctiveness of Nigerian gorilla crania. American Journal of Physical Anthropology, Supplement 26, 213Google Scholar
Suter, J. and Oates, J. F. (2000). Sanctuary in Nigeria for possible fourth subspecies of gorilla. Oryx, 34, 71Google Scholar
Tattersall, I. (1993). Speciation and morphological differentiation in the genus Lemur. In Species, Species Concepts, and Primate Evolution, eds. W. H. Kimbel and L. B. Martin, pp. 163–176. New York: Plenum PressCrossRef
Taylor, A. B. (1997 a). Relative growth, ontogeny, and sexual dimorphism in Gorilla (Gorilla gorilla gorilla and G. g. beringei): Evolutionary and ecological considerations. American Journal of Primatology, 43, 1–313.0.CO;2-0>CrossRefGoogle Scholar
Taylor, A. B. (1997 b). Scapula form and biomechanics in gorillas. Journal of Human Evolution, 33, 529–553CrossRefGoogle ScholarPubMed
Taylor, A. B. (2002). Masticatory form and function in the African apes. American Journal of Physical Anthropology, 117, 133–157CrossRefGoogle ScholarPubMed
Templeton, A. R. (1994). Biodiversity at the molecular genetic level: Experiences from disparate macroorganisms. Proceedings of the Royal Society of London, Series B, 345, 59–64CrossRefGoogle ScholarPubMed
Templeton, A. R. (1999). Human races: A genetic and evolutionary perspective. American Anthropologist, 100, 632–650CrossRefGoogle Scholar
Tutin, C. E. G. & Fernandez, M. (1985). Foods consumed by sympatric populations of Gorilla gorilla gorilla and Pan troglodytes troglodytes in Gabon: Some preliminary data. International Journal of Primatology, 6, 27–43CrossRefGoogle Scholar
Uchida, A. (1996). What we don't know about great ape variation. Trends in Ecology and Evolution, 11, 163–168CrossRefGoogle ScholarPubMed
Uchida, A. (1998). Variation in tooth morphology of Gorilla gorilla. Journal of Human Evolution, 34, 55–70CrossRefGoogle ScholarPubMed
Valen, L. (1990). Age changes vs. natural selection in human skeletal traits, and statistics for their study. International Journal of Anthropology, 5, 281–282CrossRefGoogle Scholar
Vogel, C. (1961). Zur systematischen Untergliederung der Gattung Gorilla anhand von Untersuchungen der Mandibel. Zeitschrift für Säugetieren, 26, 1–12Google Scholar
Watts, D. S. (1996). Comparative socioecology of gorillas. In Great Ape Societies, eds. W. C. McGrew, L. F. Marchant, and T. Nishida, pp. 16–28. Cambridge, U.K.: Cambridge University Press
Williams-Blangero, S. and Blangero, J. (1989). Anthropometric variation and the genetic structure of the Jirels of Nepal. Human Biology, 61, 1–12Google ScholarPubMed
Wright, S. (1951). The genetical structure of populations. Annals of Eugenics, 15, 323–354CrossRefGoogle ScholarPubMed
Wright, S. (1969). Evolution and the Genetics of Populations, vol. 2, The Theory of Gene Frequencies. Chicago, IL: University of Chicago Press

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×