Book contents
- Global Strength of Ships
- Reviews
- Global Strength of Ships
- Copyright page
- Dedication
- Contents
- Preface
- Abbreviations
- 1 Ship Structures and Structural Design Practice
- 2 The Evolution of Ship Structures from Antiquity to the Present Day
- 3 Sea Loads on Ship Structures
- 4 Primary Loading of Ship Structures
- 5 Hull Structure, Mechanical Equipment and Cargo-Related Loads
- 6 Linear Response to Primary Loading
- 7 Nonlinear Response to Primary Loading
- 8 Hull Girder Vibration
- 9 Probabilistic Modelling of Primary Loading and Hull Girder Response
- 10 Design of Hull Girder for Strength
- 11 Aspects of Uncertainty
- 12 Ship Structural Reliability Theory and Applications
- 13 Hull Girder Strength Assessment Using the Finite Element Method
- 14 Optimum Design of Ship Structures
- Book part
- Index
- References
13 - Hull Girder Strength Assessment Using the Finite Element Method
Published online by Cambridge University Press: 20 March 2025
- Global Strength of Ships
- Reviews
- Global Strength of Ships
- Copyright page
- Dedication
- Contents
- Preface
- Abbreviations
- 1 Ship Structures and Structural Design Practice
- 2 The Evolution of Ship Structures from Antiquity to the Present Day
- 3 Sea Loads on Ship Structures
- 4 Primary Loading of Ship Structures
- 5 Hull Structure, Mechanical Equipment and Cargo-Related Loads
- 6 Linear Response to Primary Loading
- 7 Nonlinear Response to Primary Loading
- 8 Hull Girder Vibration
- 9 Probabilistic Modelling of Primary Loading and Hull Girder Response
- 10 Design of Hull Girder for Strength
- 11 Aspects of Uncertainty
- 12 Ship Structural Reliability Theory and Applications
- 13 Hull Girder Strength Assessment Using the Finite Element Method
- 14 Optimum Design of Ship Structures
- Book part
- Index
- References
Summary
In this chapter the use of the finite element method in hull girder analysis and design is described. Quasi-static and vibration analysis of the hull girder are considered. The use of approximate simplified quasi-static analysis and of linear elastic finite element analysis using both 2D and 3D models are discussed. The implementation of FE models to the residual and ultimate strength is described and various approaches compared. FE models used in vibration response are considered and the matrix equations of dynamic equilibrium given. Free vibration and forced vibration response are discussed and vibration modes resulting from main engine excitation described. Rule requirements for the implementation of the FEM are discussed. The rational design of the hull girder using a classification society approach is described. Finite element codes used in ship structural analysis and design are mentioned and their capabilities compared. Two case studies are described in detail. The first of these concerns the use of nonlinear elasto-plastic analysis to determine the ultimate strength of a bulk carrier in the alternate hold loading condition. The second study presents a comparison of the dynamic response of single and double-skin bulk carriers involved in a collision incident.
Keywords
- Type
- Chapter
- Information
- Global Strength of ShipsAnalysis and Design using Mathematical Methods, pp. 628 - 671Publisher: Cambridge University PressPrint publication year: 2025