Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T13:50:07.106Z Has data issue: false hasContentIssue false

Part III - Future Earth and the Earth’s Fluid Environment

Published online by Cambridge University Press:  22 October 2018

Tom Beer
Affiliation:
IUGG Commission on Climatic and Environmental Change (CCEC)
Jianping Li
Affiliation:
Beijing Normal University
Keith Alverson
Affiliation:
UNEP International Environmental Technology Centre
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Global Change and Future Earth
The Geoscience Perspective
, pp. 89 - 176
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adhikari, S. and Ivins, E. R. (2016). Climate-driven polar motion: 2003–2015. Science Advances, 2(4), p.e1501693.Google Scholar
Aitken, A. R. A., Roberts, J. L., van Ommen, T. D., Young, D. A., Golledge, N. R., Greenbaum, J. S., Blankenship, D. D., and Siegert, M. J. (2016). Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature, 533(7603), 385389.CrossRefGoogle ScholarPubMed
Allison, I., Colgan, W., King, M., and Paul, F. (2015). Ice sheets, glaciers and sea-level. In: Haeberli, W. and Whiteman, C. (eds.): Snow and Ice-Related Hazards, Risks and Disasters, pp. 713747, Elsevier, Amsterdam.CrossRefGoogle Scholar
Andersen, M. L., Stenseng, L., Skourup, H., Colgan, W., Khan, S. A., Kristensen, S. S., Andersen, S. B., Box, J. E., Ahlstrøm, A. P., Fettweis, X., and Forsberg, R. (2015). Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth and Planetary Science Letters, 409, 8995.Google Scholar
Arendt, A., Bliss, A., Bolch, T., Cogley, J., Gardner, A., Hagen, J.-O. et al. (2015). Randolph glacier inventory – a dataset of global glacier outlines: Version 5.0. GLIMS Technical Report.Google Scholar
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W. (2014). The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophysical Journal International, 198(1), 537563, doi:10.1093/gji/ggu140.CrossRefGoogle Scholar
Austermann, J., Mitrovica, J. X., Latychev, K., and Milne, G. A. (2013). Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate. Nat. Geosci., 6(7), 553557. http://dx.doi.org/10.1038/ngeo1859.CrossRefGoogle Scholar
Bahr, D. B., Dyurgerov, M., and Meier, M. F. (2009). Sea‐level rise from glaciers and ice caps: a lower bound. Geophysical Research Letters, 36(3).Google Scholar
Bahr, D. B., Meier, M. F., and Peckham, S. D. (1997). The physical basis of glacier volume-area scaling. J. Geophys. Res., 102(B9), 2035520362.CrossRefGoogle Scholar
Barletta, V. R., Sørensen, L. S., and Forsberg, R. (2013). Scatter of mass changes estimates at basin scale for Greenland and Antarctica. The Cryosphere, 7(5), 14111432.Google Scholar
Barrett, P. J. (1996). Antarctic paleoenvironment through Cenozoic times – a review. Terr. Antarct. 3, 103119.Google Scholar
Bentley, M. J. (1999). Volume of Antarctic ice at the Last Glacial Maximum, and its impact on global sea level change. Quaternary Science Reviews, 18(14), 15691595.Google Scholar
Bentley, M. J., Fogwill, C. J., Le Brocq, A. M., Hubbard, A. L., Sugden, D. E., Dunai, T. J., and Freeman, S. P. (2010). Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment: constraints on past ice volume change. Geology, 38(5), 411414.Google Scholar
Bevis, M., Wahr, J., Khan, S., Madsen, F., Brown, A., and Willis, M. et al. (2012). Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change. Proc. Nat. Acad. Sci. USA, 109(30), 1194411948. http://dx.doi.org/10.1073/pnas.1204664109.Google Scholar
Bevis, M., Kendrick, E., Smalley, R., Dalziel, I., Caccamise, D., Sasgen, I., Helsen, M., Taylor, F. W., Zhou, H., Brown, A., Raleigh, D., Willis, M., Wilson, T., and Konfal, S. (2009). Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochemistry Geophysics Geosystems, 10, Q10005, doi:10.1029/2009gc002642.Google Scholar
Bindschadler, R. A., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H., Fastook, J., (2013). Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). Journal of Glaciology, 59(214), 195224.Google Scholar
Bingham, R. G., Ferraccioli, F., King, E. C., Larter, R. D., Pritchard, H. D., Smith, A. M., and Vaughan, D. G. (2012). Inland thinning of West Antarctic Ice Sheet steered along subglacial rifts. Nature, 487(7408), 468471.CrossRefGoogle ScholarPubMed
Boening, C., Lebsock, M., Landerer, F., and Stephens, G. (2012). Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett., 39(21), L21501. http://dx.doi.org/10.1029/ 2012gl053316.Google Scholar
Chen, J. L., Wilson, C. R., and Tapley, B. D. (2006). Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313, 1958–60.Google Scholar
Chen, J. L., Wilson, C. R., and Tapley, B. D. (2011). Interannual variability of Greenland ice losses from satellite gravimetry. J. Geophys. Res., 116, B07406.Google Scholar
Chen, J. L., Wilson, C. R., Ries, J. C., and Tapley, B. D. (2013). Rapid ice melting drives Earth's pole to the east. Geophysical Research Letters, 40(11), 26252630.Google Scholar
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A. et al. (2013). Sea level change. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (eds.): Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M. (2009). The last glacial maximum. Science, 325(5941), 710714.Google Scholar
Clark, P. U., Mitrovica, J. X., Milne, G. A., and Tamisiea, M. E. (2002). Sea-level fingerprinting as a direct test for the source of global meltwater pulse IA. Science, 295(5564), 24382441.Google Scholar
Clark, P. U. and Tarasov, L. (2014). Closing the sea level budget at the Last Glacial Maximum. Proceedings of the National Academy of Sciences, 111(45), 1586115862, doi:10.1073/pnas.1418970111.Google Scholar
Cogley, J. G. (2005). Mass and Energy Balances of Glaciers and Ice Sheets. In: Encyclopedia of Hydrological Sciences. Wiley Online Library, John Wiley & Sons.Google Scholar
Cogley, J. G. (2009). Geodetic and direct mass-balance measurements: comparison and joint analysis. Annals of Glaciology, 50(50), 96100.Google Scholar
Cornford, S. L., Martin, D. F., Payne, A. J., Ng, E. G., Le Brocq, A. M., Gladstone, R. M., Edwards, T. L., Shannon, S. R., Agosta, C., Van Den Broeke, M. R., and Hellmer, H. H. (2015). Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate. The Cryosphere, 9, 15791600.Google Scholar
DeConto, R. M. and Pollard, D. (2003). A coupled climate–ice sheet modeling approach to the early Cenozoic history of the Antarctic ice sheet. Palaeogeography, Palaeoclimatology, Palaeoecology, 198(1), 3952.Google Scholar
DeConto, R. M. and Pollard, D. (2016). Contribution of Antarctica to past and future sea-level rise. Nature, 531(7596), 591597.Google Scholar
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J., Ligtenberg, S., van den Broeke, M., and Moholdt, G. (2013). Calving fluxes and melt rates of Antarctic ice shelves. Nature, 502, 8992.Google Scholar
Deschamps, P., Durand, N., Bard, E., Hamelin, B., Camoin, G., Thomas, A. L., Henderson, G. M., Okuno, J. I., and Yokoyama, Y. (2012). Ice-sheet collapse and sea-level rise at the Bolling warming 14,600 years ago. Nature, 483(7391), 559564.Google Scholar
Domingues, C. M., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S. E., Barker, P. M., and Dunn, J. R. (2008). Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093. http://dx.doi.org/10.1038/nature07080.Google Scholar
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto, R., Horton, B. P., Rahmstorf, S., and Raymo, M. E. (2015). Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science, 349(6244), aaa4019.Google Scholar
Dutton, A. and Lambeck, K. (2012). Ice volume and sea level during the last interglacial. Science, 337(6091), 216219.Google Scholar
Dyurgerov, M. B. and Meier, M. F. (2005). Glaciers and the changing earth system: a 2004 snapshot. Institute of Arctic and Alpine Research, University of Colorado, Boulder.Google Scholar
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and van den Broeke, M. R. (2014). An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41(3), 2013GL059010, doi:10.1002/2013gl059010.Google Scholar
Ewert, H., Groh, A. and Dietrich, R. (2012). Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J. Geodyn., 59–60, 111123.Google Scholar
Fahnestock, M., Scambos, T., Moon, T., Gardner, A., Haran, T., and Klinger, M. (2016). Rapid large-area mapping of ice flow using Landsat 8. Remote Sensing of Environment, 185, 8494.Google Scholar
Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O., Gillet-Chaulet, F., Zwinger, T., Payne, A. J., and Le Brocq, A. M. (2014). Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nature Climate Change, 4(2), 117121.Google Scholar
Fretwell, P. T., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R. et al. (2013). Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 375393.CrossRefGoogle Scholar
Fogwill, C. J., Turney, C. S., Meissner, K. J., Golledge, N. R., Spence, P., Roberts, J. L., England, M. H., Jones, R. T., and Carter, L. (2014). Testing the sensitivity of the East Antarctic ice sheet to southern ocean dynamics: past changes and future implications. Journal of Quaternary Science, 29(1), 9198.Google Scholar
Forsberg, R., Sørensen, L., and Simonsen, S. (2016). Greenland and Antarctica ice sheet mass changes and effects on global sea level. Surv. Geophys., doi:10.1007/s10712-016-9398-7.Google Scholar
Fu, Y., Freymueller, J. T., and Jensen, T. (2012). Seasonal hydrological loading in southern Alaska observed by GPS and GRACE. Geophysical Research Letters, 39(15), L15310, doi:10.1029/2012gl052453.Google Scholar
Gabbi, J., Carenzo, M., Pellicciotti, F., Bauder, A., and Funk, M. (2014). A comparison of empirical and physically based glacier surface melt models for long-term simulations of glacier response. Journal of Glaciology, 60(224), 11401154.Google Scholar
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J. et al. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134), 852857, doi:10.1126/science.1234532.CrossRefGoogle ScholarPubMed
Gasson, E., DeConto, R. M., Pollard, D., and Levy, R. H. (2016). Dynamic Antarctic ice sheet during the early to mid-Miocene. Proceedings of the National Academy of Sciences, 113(13), 34593464.Google Scholar
Giesen, R. H. and Oerlemans, J. (2013). Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise. Climate Dynamics, 41(11–12), 32833300, doi: 10.1007/s00382-013-1743-7.Google Scholar
Golledge, N. R., Fogwill, C. J., Mackintosh, A. N. and Buckley, K. M. (2012). Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing. Proceedings of the National Academy of Sciences, 109(40), 1605216056.Google Scholar
Golledge, N. R., Menviel, L., Carter, L., Fogwill, C. J., England, M. H., Cortese, G., and Levy, R. H. (2014). Antarctic contribution to meltwater pulse 1A from reduced southern Ocean overturning. Nature Communications, 5.Google Scholar
Golledge, N. R., Kowalewski, D. E., Naish, T. R., Levy, R. H., Fogwill, C. J., and Gasson, E. G. (2015). The multi-millennial Antarctic commitment to future sea-level rise. Nature, 526(7573), 421425.Google Scholar
Gomez, N., Mitrovica, J. X., Huybers, P. and Clark, P. U. (2010). Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nature Geosci., 3(12), 850853, doi:10.1038/ngeo1012.Google Scholar
Gomez, N., Pollard, D., and Mitrovica, J. X. (2013). A 3-D coupled ice sheet – sea level model applied to Antarctica through the last 40 ky. Earth and Planetary Science Letters, 384, 8899, doi:10.1016/j.epsl.2013.09.042.Google Scholar
Greenbaum, J. S., Blankenship, D. D., Young, D. A., Richter, T. G., Roberts, J. L., Aitken, A. R. A., Legresy, B., Schroeder, D. M., Warner, R. C., van Ommen, T. D., and Siegert, M. J. (2015). Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nature Geoscience, 8(4), 294298.Google Scholar
Gregoire, L. J., Payne, A. J., and Valdes, P. J. (2012). Deglacial rapid sea level rises caused by ice‐sheet saddle collapses. Nature, 487, 219222, doi:10.1038/nature11257.Google Scholar
Gregory, J. M., and Oerlemans, J. (1998). Simulated future sea-level rise due to glacier melt based on regionally and seasonally resolved temperature changes. Nature, 391(6666), 474476.Google Scholar
Grinsted, A. (2013). An estimate of global glacier volume. The Cryosphere, 7(1), 141151, doi:10.5194/tc-7-141-2013.Google Scholar
Haeberli, W. and Linsbauer, A. (2013). Global glacier volumes and sea level – small but systematic effects of ice below the surface of the ocean and of new local lakes on land. Brief communication. The Cryosphere, 7, 817821.Google Scholar
Hanna, E. H., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins, E. R., Nicholls, R. J., Ritz, C., Smith, B., Tulaczyk, S., Whitehouse, P. L., and Zwally, H. J. (2013). Ice-sheet mass balance and climate change. Nature, 498, 5159. http://dx.doi.org/10.1038/nature12238.Google Scholar
Harig, C. and Simons, F. J. (2015). Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains. Earth and Planetary Science Letters, 415, 134141.Google Scholar
Harig, C. and Simons, F. J. (2016). Ice mass loss in Greenland, the Gulf of Alaska, and the Canadian Archipelago: seasonal cycles and decadal trends. Geophysical Research Letters, 43(7), 31503159, doi:10.1002/2016GL067759.Google Scholar
Heeszel, D. S., Wiens, D. A., Anandakrishnan, S., Aster, R. C., Dalziel, I. W. D., Huerta, A. D., Nyblade, A. A., Wilson, T. J., and Winberry, J. P. (2016). Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities. Journal of Geophysical Research: Solid Earth, doi:10.1002/2015JB012616.Google Scholar
Helm, V., Humbert, A., and Miller, H. (2014). Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere, 8(4), 15391559.Google Scholar
Hirabayashi, Y., Doll, P., and Kanae, S. (2010). Global-scale modeling of glacier mass balances for water resources assessments: Glacier mass changes between 1948 and 2006. Journal of Hydrology, 390(3–4), 245256, doi:10.1016/j.jhydrol.2010.07.001.Google Scholar
Hock, R., de Woul, M., Radic, V., and Dyurgerov, M. (2009). Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophysical Research Letters, 36, L07501 doi:10.1029/2008gl037020.Google Scholar
Holland, P. R., Jenkins, A., and Holland, D. M. (2008). The response of ice shelf basal melting to variations in ocean temperature. J. Clim., 21(11), 25582572.Google Scholar
Holmlund, P., Jansson, P., and Pettersson, R. (2005). A re-analysis of the 58 year mass-balance record of Storglaciaren, Sweden. Annals of Glaciology, 42(1), 389394, doi:10.3189/172756405781812547.Google Scholar
Howat, I. M., Ahn, Y., Joughin, I., van den Broeke, M. R., Lenaerts, J. T. M., and Smith, B. (2011). Mass balance of Greenland’s three largest outlet glaciers, 2000–2010. Geophys. Res. Lett., 38, L12501. http://dx.doi.org/10.1029/2011gl047565.Google Scholar
Hughes, T. 1973. Is the West Antarctic ice sheet disintegrating? Journal of Geophysical Research, 78, 78847910.Google Scholar
Hurkmans, R. T. W. L., Bamber, J. L., Davis, C. H., Joughin, I. R., Khvorostovsky, K. S., Smith, B. S., and Schoen, N. (2014). Time-evolving mass loss of the Greenland ice sheet from satellite altimetry. The Cryosphere, 8, 1725–40.Google Scholar
Huss, M. and Farinotti, D. (2012). Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research: Earth Surface, 117(F4), F04010 doi:10.1029/2012jf002523.Google Scholar
Huss, M. and Hock, R. (2015). A new model for global glacier change and sea-level rise. Frontiers in Earth Science, 3, 54.Google Scholar
Huss, M., Jouvet, G., Farinotti, D., and Bauder, A. (2010). Future high-mountain hydrology: a new parameterization of glacier retreat. Hydrology and Earth System Sciences, 14(5), 815829.Google Scholar
IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.). Cambridge University Press, Cambridge.Google Scholar
IPCC (2007). Climate Change 2007: The Physical Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.). Cambridge University Press, Cambridge.Google Scholar
IPCC (2013). Climate Change 2013: The Physical Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (eds.). Cambridge University Press, Cambridge.Google Scholar
Ivins, E. R., James, T. S., Wahr, J., Schrama, E. J. O., Landerer, F., and Simon, K. (2013). Antarctic contribution to sea-level rise observed by GRACE with improved GIA correction. J. Geophys. Res., 118. http://dx.doi.org/10.1002/jgrb.50208.Google Scholar
Johannessen, O. M., Khvorostovsky, K., Miles, M. W., and Bobylev, L. P. (2005). Recent ice-sheet growth in the interior of Greenland. Science, 310, 10131016.Google Scholar
Jones, R. S., Mackintosh, A. N., Norton, K. P., Golledge, N. R., Fogwill, C. J., Kubik, P. W., Christl, M., and Greenwood, S. L. (2015). Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability. Nature Communications, 6.Google Scholar
Joughin, I., Smith, B. E., and Medley, B. (2014). Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science, 344(6185), 735738.Google Scholar
Kapnick, S. B., Delworth, T. L., Ashfaq, M., Malyshev, S., and Milly, P. C. D. (2014). Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nature Geoscience, 7, 834840, doi:10.1038/ngeo2269.Google Scholar
Kaser, G., Cogley, J. G., Dyurgerov, M. B., Meier, M. F., and Ohmura, A. (2006). Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophysical Research Letters, 33(19).Google Scholar
Khan, S. A., Kjaer, K. H., Bevis, M., Bamber, J. L., Wahr, J., Kjeldsen, K. K., Bjork, A. A., Korsgaard, N. J., Stearns, L. A., van den Broeke, M. R., Liu, L., Larsen, N. K., and Muresan, I. S. (2014). Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Clim. Change, 4(4), 292299, doi:10.1038/nclimate2161.CrossRefGoogle Scholar
Khan, S. A., Aschwanden, A., Bjørk, A., Wahr, J., Kjeldsen, K. K., and Kjær, K. H. (2015). Greenland ice sheet mass balance: a review. Reports on Progress in Physics, 78(4): 046801.Google Scholar
Khan, S. A., Sasgen, I., Bevis, M., van Dam, T., Bamber, J. L., Wahr, J., Willis, M., Kjær, K. H., Wouters, B., Helm, V., Csatho, B., Fleming, K., Bjørk, A. A., Aschwanden, A., Knudsen, P., and Munneke, P. K. (2016). Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet. Science Advances, 2(9), doi:10.1126/sciadv.1600931.Google Scholar
Khazendar, A., Schodlok, M. P., Fenty, I., Ligtenberg, S. R. M., Rignot, E., and Van den Broeke, M. R. (2013). Observed thinning of Totten Glacier is linked to coastal polynya variability. Nature Communications, 4.Google Scholar
Kjeldsen, K. K., Korsgaard, N. J., Bjørk, A. A., Khan, S. A., Funder, S., Larsen, N. K., Bamber, J. L., Colgan, W., van den Broeke, M., Siggaard-Andersen, M. L., and Nuth, C. (2015). Spatial and temporal distribution of mass loss from the Greenland ice sheet since AD 1900. Nature, 528(7582), 396400.Google Scholar
King, M. A., Bingham, R. J., Moore, P., Whitehouse, P. L., Bentley, M. J., and Milne, G. A. (2012). Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature, 491(7425), 586589.Google Scholar
King, M. A., Whitehouse, P. L., and van der Wal, W. (2016). Incomplete separability of Antarctic plate rotation from glacial isostatic adjustment deformation within geodetic observations. Geophysical Journal International, 204(1), 324330, doi:10.1093/gji/ggv461.Google Scholar
Konrad, H., Sasgen, I., Pollard, D., and Klemann, V. (2015). Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. Earth and Planetary Science Letters, 432, 254264, doi: http://dx.doi.org/10.1016/j.epsl.2015.10.008.Google Scholar
Konrad, H., Gilbert, L., Cornford, S., Payne, A., Hogg, A., Muir, A., and Shepherd, A. (2016). Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica. Geophysical Research Letters, doi:10.1002/2016GL070733.Google Scholar
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer, M. (2013). A probabilistic assessment of sea level variations within the last interglacial stage. Geophys. J. Int., 193, 711716.Google Scholar
Krabill, W., Hanna, E., Huybrechts, P., Abdalati, W., Cappelen, J., Csatho, B., Frederick, E., Manizade, S., Martin, C., Sonntag, J., and Swift, R. (2004). Greenland ice sheet: increased coastal thinning. Geophysical Research Letters, 31, L24402.Google Scholar
Lambeck, K., Yokoyama, Y., and Purcell, T. (2002). Into and out of the last glacial maximum: sea-level change during oxygen isotope stages 3 and 2. Quat. Sci. Rev., 21(1), 343360.Google Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M. (2014). Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences, 111(43), 1529615303.Google Scholar
Lemke, P., Ren, J., Alley, R. B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R. H., and Zhang, T. (2007). Observations: changes in snow, ice and frozen ground. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.), Climate Change 2007: The Physical Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 337383 Cambridge University Press, Cambridge.Google Scholar
Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard, E., and Munneke, P. Kuipers (2012). A new, high resolution surface mass balance map of Antarctica (1979–2010) based on regional climate modeling. Geophys. Res. Lett., 39(1–5), L04501.Google Scholar
Lisiecki, L. E. and Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1).Google Scholar
Liu, J., Milne, G. A., Kopp, R. E., Clark, P. U., and Shennan, I. (2016). Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A. Nature Geoscience, 9(2), 130134.Google Scholar
Loriaux, T. and Casassa, G. (2013). Evolution of glacial lakes from the Northern Patagonian Icefield and terrestrial water storage in a sea-level rise context. Global Planet. Change, 102, 3340.Google Scholar
Luthcke, S. B., Zwally, H. J., Abdalati, W., Rowlands, D. D., Ray, R. D., Nerem, R. S., Lemoine, F. G., McCarthy, J. J., and Chinn, D. S. (2006). Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314, 12861289.Google Scholar
Luthcke, S. B., Sabaka, T. J., Loomis, B. D., Arendt, A. A., McCarthy, J. J., and Camp, J. (2013). Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology, 59(216), 613631.Google Scholar
Mackintosh, A., Golledge, N., Domack, E., Dunbar, R., Leventer, A., White, D., Pollard, D., DeConto, R., Fink, D., Zwartz, D., and Gore, D. (2011). Retreat of the East Antarctic ice sheet during the last glacial termination. Nature Geoscience, 4(3), 195202.CrossRefGoogle Scholar
Mackintosh, A., Anderson, B., Lorrey, A., Renwick, J., Frei, P., and Dean, S. (2017). Regional cooling caused recent New Zealand glacier advances in a period of global warming. Nature Communications, doi:10.1038/ncomms1420.Google Scholar
Martín Español, A., Mangion, A. Zammit, Clarke, P. J., Flament, T., Helm, V., King, M. A., Luthcke, S. B., Petrie, E., Rémy, F., Schön, N., and Wouters, B. (2016a). Spatial and temporal Antarctic ice sheet mass trends, glacio isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. Journal of Geophysical Research: Earth Surface, 121(2), 182200, doi:10.1002/2015JF003550.CrossRefGoogle ScholarPubMed
Martín-Español, A., King, M. A., Zammit-Mangion, A., Andrews, S. B., Moore, P., and Bamber, J. L. (2016b). An assessment of forward and inverse GIA solutions for Antarctica. Journal of Geophysical Research: Solid Earth, 121(9), 69476965, doi:10.1002/2016jb013154.Google Scholar
Marzeion, B., Cogley, J. G., Richter, K., and Parkes, D. (2014). Attribution of global glacier mass loss to anthropogenic and natural causes. Science, 345, 919921, doi:10.1126/science.1254702.Google Scholar
Marzeion, B., Champollion, N., Haeberli, W., Langley, K., Leclercq, P., and Paul, F. (2017). Observation-based estimates of global glacier mass change and its contribution to sea-level change. Surveys in Geophysics, 1–26.Google Scholar
Marzeion, B., Jarosch, A., and Hofer, M. (2012). Past and future sea-level change from the surface mass balance of glaciers. The Cryosphere, 6(6), 12951322.CrossRefGoogle Scholar
Marzeion, B., Leclercq, P. W., Cogley, J. G., and Jarosch, A. H. (2015). Brief communication: global reconstructions of glacier mass change during the 20th century are consistent. The Cryosphere, 9(6), 23992404.Google Scholar
McMillan, M., Shepherd, A., Sundal, A., Briggs, K., Muir, A., Ridout, A., Hogg, A., and Wingham, D. (2014). Increased ice losses from Antarctica detected by CryoSat‐2. Geophysical Research Letters, 41(11), 38993905.Google Scholar
Meier, M. F. (1984). Contribution of small glaciers to global sea level. Science, 226(4681), 14181421, doi: 10.1126/science.226.4681.1418.Google Scholar
Meier, M. F., Dyurgerov, M. B., Rick, U. K., O'Neel, S., Pfeffer, W. T., Anderson, R. S. et al. (2007). Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317(5841), 10641067.Google Scholar
Mengel, M. and Levermann, A. (2014). Ice plug prevents irreversible discharge from East Antarctica. Nat. Clim. Change, 4(6), 451455.Google Scholar
Mercer, J. (1978). West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature, 271, 321325.Google Scholar
Mernild, S. H., Lipscomb, W. H., Bahr, D. B., Radic, V., and Zemp, M. (2013). Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties. The Cryosphere 7(5), 15651577, doi: 10.5194/tc-7-1565-2013.Google Scholar
Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H. and Larour, E. (2014). Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nature Geoscience, 7(6).Google Scholar
Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., Wilson, T., and Carter, L. (2009). Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458(7236), 322328.Google Scholar
Neckel, N., Kropacek, J., Bolch, T., and Hochschild, V. (2014). Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett., 9. http://dx.doi.org/10.1088/1748-9326/9/1/014009.Google Scholar
Nick, F. M., Vieli, A., Howat, I. M., and Joughin, I. (2009). Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci., 2, 110114.Google Scholar
Nield, G. A., Barletta, V. R., Bordoni, A., King, M. A., Whitehouse, P. L., Clarke, P. J., Domack, E., Scambos, T. A., and Berthier, E. (2014). Rapid bedrock uplift in the Antarctic peninsula explained by viscoelastic response to recent ice unloading. Earth and Planetary Science Letters, 397, 3241.Google Scholar
Ohmura, A. (2004). Cryosphere during the twentieth century. The State of the Planet: Frontiers and Challenges in Geophysics, American Geophysical Union, Geophysical Monograph 150, 239–257.Google Scholar
Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O., Hindmarsh, R. et al. (2013). Grounding-line migration in plan-view marine ice models: results of the ice2sea MISMIP3d intercomparison. J. Glaciol., 59, 410422.Google Scholar
Pattyn, F. and Durand, G. (2013). Why marine ice sheet model predictions may diverge in estimating future sea level rise. Geophysical Research Letters, 40(16), 43164320.Google Scholar
Peltier, W. (2004). Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111.Google Scholar
Pfeffer, W. T., Arendt, A., Bliss, A., Bolch, T., Cogley, J., Gardner, A., Hagen, J., Hock, R., Kaser, G., Kienholz, C., Miles, E., Moholdt, G., Mölg, N., Paul, F., Radic, V., Rastner, P., Raup, B., Rich, J., and Sharp, M. J. (2014). The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol., 60(221), 537551.Google Scholar
Pollard, D. and DeConto, R. M. (2009). Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458(7236), 329332.Google Scholar
Pollard, D., DeConto, R. M., and Alley, R. B. (2015). Potential Antarctic ice sheet retreat driven by hydrofracturing and ice cliff failure. Earth and Planetary Science Letters, 412, 112121.Google Scholar
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R. and Padman, L. (2012). Antarctic ice loss driven by ice-shelf melt. Nature, 484, 502505.Google Scholar
Radic, V., Bliss, A., Beedlow, A. C., Hock, R., Miles, E., and Cogley, J. G. (2014). Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics, 42(1–2), 3758, doi:10.1007/s00382-013-1719-7.Google Scholar
Radic, V. and Hock, R. (2011). Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geoscience, 4(2), 9194, doi:10.1038/Ngeo1052.Google Scholar
Radic, V. and Hock, R. (2014). Glaciers in the Earth's hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales. Surveys in Geophysics, 35(3), 813837, doi:10.1007/s10712-013-9262-y.Google Scholar
Ramillien, G., Lombard, A., Cazenave, A., Ivins, E. R., Llubes, M., Remy, F., and Biancale, R. (2006). Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob. Planet. Change, 53, 198208.Google Scholar
Raper, S. C., and Braithwaite, R. (2006). Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature, 439(7074), 311313, doi: 10.1038/nature04448.Google Scholar
Raper, S. C. B., Brown, O., and Braithwaite, R. J. (2000). A geometric glacier model for sea-level change calculations. Journal of Glaciology, 46(154), 357368, doi: 10.3189/172756500781833034.Google Scholar
Reager, J. T., Gardner, A. S., Famiglietti, J. S., Wiese, D. N., Eicker, A., and Lo, M. H. (2016). A decade of sea level rise slowed by climate-driven hydrology. Science, 351(6274), 699703, doi:10.1126/science.aad8386.Google Scholar
RGI Consortium (2017). Randolph Glacier Inventory – a Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado. Digital Media, doi: https://doi.org/10.7265/N5-RGI-60.Google Scholar
Richter, A., Ivins, E., Lange, H., Mendoza, L., Schröder, L., Hormaechea, J. L., Casassa, G., Marderwald, E., Fritsche, M., Perdomo, R., and Horwath, M. (2016). Crustal deformation across the Southern Patagonian Icefield observed by GNSS. Earth and Planetary Science Letters, 452, 206215.Google Scholar
Richter, A., Horwath, M., and Dietrich, R. (2016). Comment on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015). Journal of Glaciology, 62(233), 604606, doi:10.1017/jog.2016.60.Google Scholar
Rignot, E., Mouginot, J., and Scheuchl, B. (2011a). Ice flow of the Antarctic ice sheet. Science 333, 14271430.Google Scholar
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts, J. (2011b). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38, L05503.Google Scholar
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B. (2013). Ice shelf melting around Antarctica. Science, 341(6143), 266270. http://dx.doi.org/10.1126/science.1235798.Google Scholar
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B. (2014). Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters, 41(10), 35023509.Google Scholar
Rintoul, S. R., Silvano, A., Pena-Molino, B., van Wijk, E., Rosenberg, M., Greenbaum, J. S., and Blankenship, D. D. (2016). Ocean heat drives rapid basal melt of the Totten Ice Shelf. Science Advances, 2(12), p. e1601610.Google Scholar
Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., and Hindmarsh, R. C. (2015). Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature, 528(7580), 115118.Google Scholar
Riva, R., Bamber, J., Lavallée, D., and Wouters, B. (2010). Sea-level fingerprint of continental water and ice mass change from GRACE. Geophys. Res. Lett., 37, L19605. http://dx.doi.org/10.1029/ 2010GL044770.Google Scholar
Roe, G., Baker, M., and Herla, F. (2017). Centennial glacier retreat as categorical evidence of regional climate change. Nature Geoscience,10, 95, doi:10.1038/NGEO2863.Google Scholar
Rosenau, R., Scheinert, M., and Dietrich, R. (2015). A processing system to monitor Greenland outlet glacier velocity variations at decadal and seasonal time scales utilizing the Landsat imagery. Remote Sensing of Environment, 169, 119. https://doi.org/10.1016/j.rse.2015.07.012.Google Scholar
Sabadini, R., Yuen, D. A., and Boschi, E. (1982). Polar wandering and the forced responses of a rotating, multilayered, viscoelastic planet. Journal of Geophysical Research: Solid Earth, 87(B4), 28852903, doi:10.1029/JB087iB04p02885.Google Scholar
Sasgen, I., van den Broeke, M., Bamber, J. L., Rignot, E., Sørensen, L. S., Wouters, B., Martinec, Z., Velicogna, I., and Simonsen, S. B. (2012). Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett., 333–334, 293303.Google Scholar
Sasgen, I., Konrad, H., Ivins, E. R., Van den Broeke, M. R., Bamber, J. L., Martinec, Z., and Klemann, V. (2013). Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. The Cryosphere, 7, 14991512.Google Scholar
Scambos, T. and Shuman, C. (2016). Comment on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015). Journal of Glaciology, 62(233), 599603, doi:10.1017/jog.2016.59.Google Scholar
Schoof, C. (2007). Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of Geophysical Research: Earth Surface, 112(F3).Google Scholar
Schoof, C. (2011). Marine ice sheet dynamics. Part 2. A Stokes flow contact problem. Journal of Fluid Mechanics, 679, 122155.Google Scholar
Schrama, E. J. O. and Wouters, B. (2011). Revisiting Greenland ice sheet mass loss observed by GRACE. J. Geophys. Res., 116, B02407. http://dx.doi.org/10.1029/2009JB006847.Google Scholar
Schrama, E. J., Wouters, B., and Rietbroek, R. (2014). A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. Journal of Geophysical Research: Solid Earth, 119(7), 60486066.Google Scholar
Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S. et al. (2012). A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189.Google Scholar
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I. et al. (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 556, 219222.Google Scholar
Siemes, C., Ditmar, P., Riva, R. E. M., Slobbe, D. C., Liu, X. L., and Farahani, H. H. (2013). Estimation of mass change trends in the Earth’s system on the basis of GRACE satellite data, with application to Greenland. J. Geod., 87, 6987.Google Scholar
Slangen, A. B. A., Katsman, C. A., van de Wal, R. S. W., Vermeersen, L. L. A., and Riva, R. E. M. (2012). Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Climate Dynamics, 38(5–6), 11911209, doi:10.1007/s00382-011-1057-6.Google Scholar
Slangen, A. B. and Lenaerts, J. T. (2016). The sea level response to ice sheet freshwater forcing in the Community Earth System Model. Environmental Research Letters, 11(10), 104002.Google Scholar
Slobbe, D. C., Ditmar, P., and Lindenbergh, R. C. (2009). Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data. Geophys. J. Int., 176, 95106.Google Scholar
Sørensen, L. S., Simonsen, S. B., Nielsen, K., Lucas-Picher, P., Spada, G., Adalgeirsdottir, G., Forsberg, R. and Hvidberg, C. S. (2011). Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density. The Cryosphere, 5, 173186.Google Scholar
Stanford, J. D., Hemingway, R., Rohling, E. J., Challenor, P. G., Medina-Elizalde, M., and Lester, A. J. (2010). Sea-level probability for the last deglaciation: a statistical analysis of far-field records. Global Planet. Change, 79(3), 193203. http://dx.doi.org/10.1016/j.gloplacha.2010.11.002.Google Scholar
Sutterley, T. C., Velicogna, I., Rignot, E., Mouginot, J., Flament, T., van den Broeke, M. R., van Wessem, J. M., and Reijmer, C. H. (2014). Mass loss of the Amundsen Sea embayment of West Antarctica from four independent techniques. Geophysical Research Letters, 41(23), 84218428, doi:10.1002/2014GL061940.Google Scholar
Tamisiea, M. E. and Mitrovica, J. X. (2011). The moving boundaries of sea level change: understanding the origins of geographic variability. Oceanography, 24(2), 2439, doi:10.5670/ oceanog.2011.25.Google Scholar
Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An Overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485498, doi:10.1175/Bams-D-11-00094.1.Google Scholar
Tedesco, M., Box, J. E., Cappelen, J., Fausto, R. S., Fettweis, X., Mote, T., Smeets, C. J. P. P., van As, D., Velicogna, I., van de Wal, R. S. W., and Wahr, J. (2016). Greenland ice sheet [in Arctic Report Card 2016], http://www.arctic.noaa.gov/Report-Card.Google Scholar
Thomas, I. D., King, M. A., Bentley, M. J., Whitehouse, P. L., Penna, N. T., Williams, S. D. P., Riva, R. E. M., Lavallee, D. A., Clarke, P. J., King, E. C., Hindmarsh, R. C. A., and Koivula, H. (2011). Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophysical Research Letters, 38, L22302, doi:10.1029/2011GL049277.Google Scholar
Thomas, R. H. (1979). The dynamics of marine ice sheets. Journal of Glaciology, 24, 167177.Google Scholar
Thomas, R. H., Frederick, E., Krabill, W., Manizade, S., and Martin, C. (2006). Progressive increase in ice loss from Greenland. Geophys. Res. Lett., 33, L10503.Google Scholar
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de Berg, W. et al. (2009). Partitioning recent Greenland mass loss. Science, 326. http://dx.doi.org/10.1126 /science.1178176.Google Scholar
van de Wal, W., Whitehouse, P. L., and Schrama, E. J. O. (2015). Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica. Earth and Planetary Science Letters, 414, 134143, doi:10.1016/j.epsl.2015.01.001.Google Scholar
van de Wal, R.S.W., and Wild, M. (2001). Modelling the response of glaciers to climate change by applying volume-area scaling in combination with a high resolution GCM. Climate Dynamics, 18(3–4), 359366.CrossRefGoogle Scholar
Vaughan, D.G., Comiso, J.C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and Zhang, T. (2013). Observations: Cryosphere. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (eds.). Cambridge and New York: Cambridge University Press, pp. 317382, doi:10.1017/CBO9781107415324.012.Google Scholar
Velicogna, I., 2009. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett., 36, L19503.Google Scholar
Velicogna, I. and Wahr, J. (2006). Acceleration of Greenland ice mass loss in spring 2004. Nature, 443, 328331.Google Scholar
Velicogna, I. and Wahr, J. (2013). Time‐variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophysical Research Letters, 40(12), 30553063.Google Scholar
Velicogna, I., Sutterley, T. C., and van den Broeke, M. R. (2014). Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters, 41(22), 81308137, doi:10.1002/2014GL061052.Google Scholar
Vieli, A. and Nick, F. M. (2011). Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: issues and implications. Surv. Geophys., 32, 437458.Google Scholar
Wahr, J., Khan, S. A., van Dam, T., Liu, L., van Angelen, J. H., van den Broeke, M. R., and Meertens, C. M. (2013). The use of GPS horizontals for loading studies, with applications to northern California and southeast Greenland. Journal of Geophysical Research: Solid Earth, doi:10.1002/jgrb.50104.Google Scholar
Weber, M. E., Clark, P. U., Kuhn, G., Timmermann, A., Sprenk, D., Gladstone, R., Zhang, X., Lohmann, G., Menviel, L., Chikamoto, M.O., and Friedrich, T. (2014). Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature, 510(7503), 134.Google Scholar
Whitehouse, P. L., Bentley, M. J., Milne, G. A., King, M. A., and Thomas, I. D. (2012). A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys. J. Int., 190, 14641482.Google Scholar
Williams, S. D., Moore, P., King, M. A., and Whitehouse, P. L. (2014). Revisiting GRACE Antarctic ice mass trends and accelerations considering autocorrelation. Earth and Planetary Science Letters, 385, 1221.Google Scholar
Wouters, B., Chambers, D., and Schrama, E. J. O. (2008). GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett., 35, L20501.Google Scholar
Wouters, B., Bamber, J. L., van den Broeke, M. R., Lenaerts, J. T. M., and Sasgen, I. (2013). Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci., 6(8), 613616. http://dx.doi.org/10.1038/ngeo1874.Google Scholar
Wouters, B., Martin-Español, A., Helm, V., Flament, T., van Wessem, J. M., Ligtenberg, S. R. M., van den Broeke, M. R., and Bamber, J. L. (2015). Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science, 348(6237), 899903, doi:10.1126/science.aaa5727.Google Scholar
Xu, Z., Schrama, E. J. O., van de Wal, W., van den Broeke, M., and Enderlin, E. M. (2016). Improved GRACE regional mass balance estimates of the Greenland ice sheet cross-validated with the input–output method. The Cryosphere, 10(2), 895912, doi:10.5194/tc-10-895-2016.Google Scholar
Zemp, M., Frey, H., Gartner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F. et al. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), 745762, doi:10.3189/2015JoG15J017.Google Scholar
Zemp, M., Hoelzle, M., and Haeberli, W. (2009). Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Annals of Glaciology, 50(50), 101111.Google Scholar
Zwally, H. J., Giovinetto, M. B., Li, J., Cornejo, H. G., Beckley, M. A., Brenner, A. C., Saba, J. L., and Yi, D. (2005). Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51, 509527.Google Scholar
Zwally, H. J., Li, J., Brenner, A. C., Beckley, M., Cornejo, H. G., Dimarzio, J., Giovinetto, M. B., Neumann, T. A., Robbins, J., Saba, J. L., Yi, D., and Wang, W. (2011). Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002. J. Glaciol., 57, 88102.Google Scholar
Zwally, H. J., Li, J., Robbins, J. W., Saba, J. L., Yi, D., and Brenner, A. C. (2015). Mass gains of the Antarctic ice sheet exceed losses. Journal of Glaciology, 61(230), 10191036.Google Scholar
Zwally, H. J., Li, J., Robbins, J. W., Saba, J. L., Yi, D., and Brenner, A. C. (2016a). Response to Comment by T. Scambos and C. Shuman (2016) on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015). Journal of Glaciology, 62(235), 990992, doi:10.1017/jog.2016.91.Google Scholar
Zwally, H. J., Li, J., Robbins, J. W., Saba, J. L., Yi, D., and Brenner, A. C. (2016b). Response to Comment by A. Richter, M. Horwarth, R. Dietrich (2016) on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015). Journal of Glaciology, 62(235): 993995, doi:10.1017/jog.2016.92.Google Scholar

References

Beinart, W. (1984). Soil erosion, conservationism and ideas about development: a southern African exploration, 1900–1960. J. Southn. Afr. Stud. 11(1), 5283.Google Scholar
Brown, A. G., Tooth, S., Chiverrell, R. C., Rose, J., Thomas, D. S. G., Wainwright, J., Bullard, J. E., Thorndycraft, V. R., Aalto, R., and Downs, P. (2013). The Anthropocene: is there a geomorphological case? Earth Surf. Process Landf. 38, 431434. doi: 10.1002/esp.3368.Google Scholar
Brown, A. G., Tooth, S., Bullard, J. E., Thomas, D. S. G., Chiverell, R. C., Plater, A. J., Murton, J., Thorndycraft, V. R., Tarolli, P., Rose, J., Wainwright, J., Downs, P., and Aalto, R. (2017). The geomorphology of the Anthropocene: emergence, status and implications. Earth Surf. Process Landf. doi: 10.1002/esp.3943.Google Scholar
Castree, N. (2015a). Geography and global change science: relationships necessary, absent, and possible. Geogr. Res. 53(1), 115. doi: 10.1111/1745–5871.12100.Google Scholar
Castree, N. (2015b). Geographers and the discourse of an earth transformed: influencing the intellectual weather or changing the intellectual climate? Geogr. Res. 53(1), 244254. doi: 10.1111/1745–5871.12125.Google Scholar
Connelly-Boutin, L., and Smit, B. (2016). Climate change, food security, and livelihoods in sub-Saharan Africa. Reg. Environ. Change. 16, 385399. doi: 10.1007/s10113–015–0761-x.Google Scholar
Cook, B. R., and Babayannis, A. (2015). Co-producing (a fearful) Anthropocene. Geogr. Res. 53(3), 270279. doi: 10.1111/1745–5871.12126.Google Scholar
Cook, B. R., Rickards, L. A., and Rutherford, I. (2015). Geographies of the Anthropocene. Geogr. Res. 53(3), 231243. doi: 10.1111/1745–5871.12127.Google Scholar
Crutzen, P. J. (2002). Geology of mankind. Nature, 413, 23.Google Scholar
Crutzen, P. J., and Stoermer, E. F. (2000). The ‘Anthropocene’. IGBP Newsletter 41, 1718.Google Scholar
Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F. R., Gaughan, A. E., Blondel, V. D., and Tatem, A. J. (2014). Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. 111(45), 1588815893. doi: 10.1073/pnas.1408439111.Google Scholar
Goudie, A. S. (1986). The integration of human and physical geography. Trans. Inst. Br. Geogr. 11(4), 454458.Google Scholar
Goudie, A. S. (2016). The integration of human and physical geography revisited. Canadian Geographer. doi: 10.1111/cag.12315.Google Scholar
Goudie, A. S., and Viles, H. (2016). Geomorphology and the Anthropocene. Cambridge University Press.Google Scholar
Govorushko, S. (2016). Human Impact on the Environment: An Illustrated Atlas. Springer.Google Scholar
Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., Steffen, W., Glaser, G., Kanie, N., and Noble-Hamilton, I. (2014). Policy: sustainable development goals for people and planet. Nature 495, 305307. doi:10.1038/495305a.Google Scholar
Head, L. (2015). The Anthropoceneans. Geogr. Res. 53(3), 313320. doi: 10.1111/1745–5871.12124.Google Scholar
Jen, C. H., Lei, H. F., Chyi, S. J., and Hsueh, M. Y. (2016). The impact of Typhoon Morakot in 2009 on landslides, debris flows and population in the Chishan River catchment, Taiwan. In: Meadows, M. E., and Lin, J.-C. (Eds.). Geomorphology and Society. Springer, 5982.Google Scholar
Karan, P. P. and Suganuma, U. (Eds.) (2016). Japan After 3/11: Global Perspectives on the Earthquake, Tsunami and Fukushima Meltdown. Kentucky University Press.Google Scholar
Lambin, E. F., Gibbs, H. K., Ferreira, L., Grau, R., Mayaux, P., Meyfroidt, P., Morton, D. C., Rudel, T. K., Gaspari, I., and Munger, J. (2013). Estimating the world’s potentially available cropland using a bottom-up approach. Glob. Env. Ch. 23, 892901. doi: 10.1016/j.gloenvcha.2013.05.005.Google Scholar
Lave, R., Wilson, M. W., Barron, E. S., Biermann, C., Carey, M. A., Duvall, C. S., Johnson, L., Lane, K. M., McClintock, N., Munroe, D., Pain, R., Proctor, J., Rhoads, B. L., Robertson, M. M., Rossi, J., Sayre, N. F., Simon, G., Tadaki, M., and van Dyke, C. (2014). Intervention: critical physical geography. Canadian Geographer 58(1), 110. doi: 10.1111/cag.12061.Google Scholar
Leighly, J. (1976). Carl Ortwin Sauer, 1889–1975. Geographers Biobibliographical Studies 2, 99108.Google Scholar
Lewin, J., and Macklin, M. G. (2014). Marking time in geomorphology: should we try to formalise an Anthropocene definition? Earth Surf. Process Landf. 39, 133137. doi: 10.1002/esp.3484Google Scholar
Lin, J.-C. (2016). Geomorphological responses in a dynamic environment: how landforms interact with human activities in Japan. In: Meadows, M. E., and Lin, J.-C. (Eds.). Geomorphology and Society. Springer, 4358.Google Scholar
Meadows, M. E. (2003). Soil erosion in the Swartland, Western Cape Province, South Africa: implications of past and present policy and practice. Env. Sci. Policy 6, 1728. doi: 10.1016/S1462–9011(02)00122–3.Google Scholar
Meadows, M. E. (2013). William John Talbot. Geographers’ Biobibliographical Studies 32, 124136.Google Scholar
Meadows, M. E., and Lin, J.-C. (Eds.). (2016). Geomorphology and Society. Springer.Google Scholar
Meyer, W. B. (1996). Human Impact on the Earth. Cambridge University Press.Google Scholar
Montz, B. E., and Tobin, G. A. (2011). Natural hazards: an evolving tradition in applied geography. Applied Geography 31(1), 14. doi: 10.1016/j.apgeog.2010.06.005.Google Scholar
Pawson, E. (2015). What sort of geographical education for the Anthropocene? Geogr. Res. 53(1), 306312. doi: 10.1111/1745–5871.12122.Google Scholar
Qian, J., Peng, Y., Luo, C., Wu, C., and Du, Q. (2016). Urban land expansion and sustainable land policy in Shenzhen: a case study of China’s rapid urbanization. Sustainability 8. doi:10.3390/su8010016.Google Scholar
Rickards, L. A. (2015). Metaphor and the Anthropocene: presenting humans as a geological force. Geogr. Res. 53(3), 280287. doi: 10.1111/1745–5871.12128.Google Scholar
Robinson, J., Scott., A. J., and Talyor, P. J. (2016). Working, Housing: Urbanizing: The International Year of Global Understanding – IYGU. Springer.Google Scholar
Shackleton, S., Ziervogel, G., Sallu, S., Gill, T., and Tschakert, P. (2015). Why is socially-just climate change adaptation so challenging? A review of barriers identified from empirical cases. WIREs Clim. Change, 2015. doi 10.1002/wcc.335.Google Scholar
Sharpe, C. (2009). Past-president’s address: is geography (the discipline) sustainable without geography (the subject). Canadian Geographer 53(2), 123138. doi: 10.1111/j.1541–0064.2009.00249.x.Google Scholar
Shen, S.-M. (2016). Delineation of historical fluvial territories and the implications for flood mitigation, with reference to four selected reaches in Taiwan. In: Meadows, M. E., and Lin, J.-C. (Eds.). Geomorphology and Society. Springer, 83102.Google Scholar
Su, S.-J. (2016). The political ecology of land subsidence: a case study of the solar energy-farming scheme, Pingtung County, Taiwan. In: Meadows, M. E., and Lin, J.-C. (Eds.). Geomorphology and Society. Springer, 103124.Google Scholar
Talbot, W. J. (1944). Swartland and Sandveld. Oxford University Press.Google Scholar
Thomas, W. L. (1955). Man’s Role in Changing the Face of the Earth. Chicago University Press.Google Scholar
Turner, B. L. II, Clark, W. C., Kates, R. W., Richards, J. F., Matthews, J. T., and Meyer, W. B. (Eds.) (1990). The Earth as Transformed by Human Action: Global and Regional Changes in the Biosphere over the Past 300 Years. Cambridge University Press.Google Scholar
United Nations (2015). Sendai Framework for Disaster Risk Reduction 2015–2030. United Nations.Google Scholar
Werlen, B. W. (2015). From local to global sustainability: transdisciplinary integrated research in the digital age. In: Werlen, B. W. (Ed.). Global Sustainability. Springer: 316.Google Scholar
Williams, R. (2016) The sky is the limit: reconstructing physical geography from an aerial perspective. Journal of Geography in Higher Education, 41(1), 134146. doi: 10.1080/03098265.2016.1241986.Google Scholar
Yoshino, M. (2014). Impact of tsunamis on human life and society. Global Environmental Research 18, 38.Google Scholar

References

Azevedo, L. B., van Zelm, R., Leuven, R. S., Hendriks, A. J. and Huijbregts, M. A. (2015). Combined ecological risks of nitrogen and phosphorus in European freshwaters. Environmental Pollution, 200, 8592.Google Scholar
Beer, T. (2003). Environmental risk and sustainability. In Risk Science and Sustainability. Springer, Dordrecht pp. 3961.Google Scholar
German Advisory Council on the Environment (2015) NITROGEN: Strategies for resolving an urgent environmental problem. German Advisory Council on the Environment (SRU).Google Scholar
German Advisory Council on the Environment. (2015). Biodiversity and human health need ambitious reduction commitments: A German perspective on the new draft NEC Directive with regards to ammonia and nitrogen oxides. Partial translation of the Special Report “Nitrogen: Strategies for resolving an urgent environmental problem”. German Advisory Council on the Environment (SRU).Google Scholar
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. and Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10), 636639.Google Scholar
European Commission. (2014). Water Framework Directive. Official Journal of the European Union, Commission Directive 2014/101/EU, Amending Directive 2000/60/EC. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32014L0101.Google Scholar
European Environment Agency. (2012). European waters-current status and future challenges, Synthesis. ISSN 1725–9177, EEA Report No 9/2012.Google Scholar
Faustman, E. M. and Omenn, G. S. (2013) Risk assessment. In Casarett and Doull’s Toxicology: The Basic Science of Poisons, 8th Edition, Klaassen, C. (ed.), New York: McGraw-Hill.Google Scholar
Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D’agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E. and Fujita, R. (2008). A global map of human impact on marine ecosystems. Science, 319(5865), 948952.Google Scholar
IANAS. (2015). Urban Water Challenges in the Americas. A perspective from the Academies of Sciences. Inter-American Network of Academies of Sciences.Google Scholar
IARC. (1987). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Supplement 7. The Agency. International Agency for Research on Cancer.Google Scholar
ICSU. (2014). Future Earth 2025 Vision, Future Earth Research for Global Sustainability, Paris, France. International Council for Science.Google Scholar
Navoni, J. A., De Pietri, D., Garcia, S. and Villaamil Lepori, E. C. (2012). Riesgo sanitario de la población vulnerable expuesta al arsénico en la provincia de Buenos Aires, Argentina. Revista Panamericana de Salud Pública, 31(1), 18.Google Scholar
Laetz, C. A., Baldwin, D. H., Collier, T. K., Hebert, V., Stark, J. D. and Scholz, N. L. (2009). The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific salmon. Environmental Health Perspectives, 117(3), 348.Google Scholar
López-Doval, J. C., Montagner, C. C., de Alburquerque, A. F., Moschini-Carlos, V., Umbuzeiro, G. and Pompêo, M. (2017). Nutrients, emerging pollutants and pesticides in a tropical urban reservoir: Spatial distributions and risk assessment. Science of The Total Environment, 575, 13071324.Google Scholar
McClintock, T. R., Chen, Y., Bundschuh, J., Oliver, J. T., Navoni, J., Olmos, V., Lepori, E. V., Ahsan, H. and Parvez, F. (2012). Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Science of the Total Environment, 429, 7691.Google Scholar
Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E. M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A. and Wilkening, J. (2008). The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC bioinformatics, 9(1), 386.Google Scholar
Port, J. A., Cullen, A. C., Wallace, J. C., Smith, M. N. and Faustman, E. M. (2014). Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environmental Health Perspectives (Online), 122(3), 222.Google Scholar
Port, J. A., Wallace, J. C., Griffith, W. C. and Faustman, E. M. (2012). Metagenomic profiling of microbial composition and antibiotic resistance determinants in Puget Sound. PLoS One, 7(10), e48000.Google Scholar
Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg, K. B., Williamson, S., Yooseph, S., Wu, D., Eisen, J. A., Hoffman, J. M., Remington, K. and Beeson, K. (2007). The Sorcerer II global ocean sampling expedition: Northwest Atlantic through eastern tropical Pacific. PLoS Biol, 5(3), e77.Google Scholar
Schaap, M., Wichink Kruit, R., Hendriks, C., Kranenburg, R., Segers, A., Builtjes, P., Banzhaf, S. and Scheuschner, T. (2014). Ermittlung und Bewertung der Einträge von versauernden und eutrophierenden Luftschadstoffen in terrestrische Ökosysteme. Abschlussbericht zum F&E-Vorhaben: Umweltbundesamt, Dessau-Roßlau.Google Scholar
Schiesari, L., Waichman, A., Brock, T., Adams, C. and Grillitsch, B. (2013). Pesticide use and biodiversity conservation in the Amazonian agricultural frontier. Phil. Trans. R. Soc. B, 368(1619), 20120378.Google Scholar
Umbuzeiro, G. D. A., Heringa, M. and Zeiger, E. (2017). In vitro genotoxicity testing: Significance and use in environmental monitoring, in In vitro Environmental Toxicology - Concepts, Application and Assessment, Reifferscheid, G. and Buchinger, S., Editors. Springer International: Cham, Switzerland. p. 5980.Google Scholar
UNICEF (2015). Progress on Sanitation and Drinking Water 2015 Update and MDG Assessments. UNICEF and World Health Organization: Geneva.Google Scholar
UNU. (2013). Water Security and the Global Water Agenda- A UN Analytical Brief, UNESCAP, United Nations University, INWEH: Ontario.Google Scholar
Waichman, A. V., Eve, E. and da Silva Nina, N. C. (2007). Do farmers understand the information displayed on pesticide product labels? A key question to reduce pesticides exposure and risk of poisoning in the Brazilian Amazon. Crop Protection, 26(4), 576583.Google Scholar
Wallace, J. C., Port, J. A., Smith, M. N. and Faustman, E. M. (2017). FARME DB: A functional antibiotic resistance element database. Database, (1).Google Scholar
WHO and Inter-Organization Programme for the Sound Management of Chemicals. (2009). Principles for modelling dose-response for the risk assessment of chemicals (Vol. 239). World Health Organization: Geneva.Google Scholar
WHO and IARC. (2007). Smokeless tobacco and some tobacco-specific N-Nitrosamines. Vol 89. World Health Organization and International Agency for Research on Cancer: Geneva.Google Scholar
WHO and UNICEF. (2015). Progress on sanitation and drinking water–2015 update and MDG assessment. World Health Organization: Geneva.Google Scholar
WHO. (2000). Joint IPCS/OECD Project on the Harmonization of Chemical Hazard/Risk Assessment Terminology (Harmonization Project). World Health Organization: Geneva.Google Scholar
WHO. (2011). Guidelines for Drinking-water Quality, 4th Edition. World Health Organization: Geneva.Google Scholar

References

Ba, J., Keenlyside, N. S., Park, W., Latif, M., Hawkins, E., and Ding, H. (2013). A mechanism for Atlantic multidecadal variability in the Kiel Climate Model. Clim. Dyn., 41, 21332144.Google Scholar
Balmaseda, M. A., Trenberth, K. E., and Källén, E. (2013). Distinctive climate signals in reanalysis of global ocean heat content, Geophys. Res. Lett., 40, doi:10.1002/grl.50382.Google Scholar
Chen, X. Y., and Tung, K. K. (2014). Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345(6199), 897903.Google Scholar
Cohen, J., and Barlow, M.. (2005). The NAO, the AO, and global warming: How closely related? J. Clim., 18, 44984513.Google Scholar
Cook, E. R., D’Arrigo, R. D., and Briffa, K. R.. (1998). A reconstruction of the North Atlantic Oscillation using tree-ring chronologies from North America and Europe. Holocene, 8, 917.Google Scholar
Czaja, A., and Frankignoul, C.. (2002). Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J. Clim., 15, 606623.Google Scholar
Danabasoglu, G., Yeager, S. G., Kwon, Y.-O., Tribbia, J. J., Phillips, A. S., and Hurrell, J. W.. (2012). Variability of the Atlantic Meridional Overturning Circulation in CCSM4. J. Clim., 25, 51535172.Google Scholar
Delworth, T. L., and Greatbatch, R. J.. (2000). Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Clim., 13, 14811495.Google Scholar
Delworth, T. L., and Mann, M. E.. (2000). Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn., 16, 661676.Google Scholar
Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.. (2010). Sea surface temperature variability: Patterns and mechanisms. Annual Review of Marine Science, 2, 115143.Google Scholar
Dieppois, B., Durand, A., Fournier, M., and Massei, N.. (2013). Links between multidecadal and interdecadal climatic oscillations in the North Atlantic and regional climate variability of northern France and England since the 17th century. J. Geophys. Res. Atmos., 118, 43594372.Google Scholar
Drbohlav, J., and Jin, F. F.. (1998). Interdecadal variability in a zonally averaged ocean model: An adjustment oscillator. J. Phys. Oceanogr., 28, 12521270.Google Scholar
Eden, C., and Jung, T.. (2001). North Atlantic interdecadal variability: Oceanic response to the North Atlantic oscillation (1865–1997). J. Clim., 14, 676691.Google Scholar
Enfield, D. B., Mestas-Nunez, A. M., and Trimble, P. J.. (2001). The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett., 28, 20772080.Google Scholar
England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A.. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus, Nature Climate Change, doi:10.1038/nclimate2106.Google Scholar
Feldstein, S. B. (2000). The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Clim., 13, 44304440.Google Scholar
Fyfe, J. C., Meehl, G. A., England, M. H. et al. (2016). Making sense of the early-2000s warming slowdown. Nat. Clim. Chang., 6, 224228.Google Scholar
Gent, P. R. et al. (2011). The Community Climate System Model Version 4. J. Clim., 24, 49734991.Google Scholar
Gong, D. Y., Wang, S. W., and Zhu, J. H.. (2001). East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 20732076.Google Scholar
Greatbatch, R. J., and Zhang, S.. (1995). An Interdecadal Oscillation in an Idealized Ocean-Basin Forced by Constant Heat-Flux. J. Clim., 8, 8191.Google Scholar
Hasselmann, K. (1976). Stochastic climate models. 1. Theory. Tellus, 28, 473485.Google Scholar
Haywood, J. M., Jones, A., and Jones, G. S. (2014). The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos. Sci. Lett., 15 (2), 9296, doi:10.1002/asl2.471.Google Scholar
Hausfather, Z., Cowtan, K., Clarke, D. C., Jacobs, P., Richardson, M., and Rohde, R.. (2017). Assessing recent warming using instrumentally homogeneous sea surface temperature records. Science Advances, 3, e1601207.Google Scholar
Huang, B., Zhu, J., and Yang, H.. (2014). Mechanisms of Atlantic Meridional Overturning Circulation (AMOC) variability in a coupled ocean-atmosphere GCM. Adv. Atmos. Sci., 31, 241251.Google Scholar
Huang, R. X., and Chou, R. L.. (1994). Parameter sensitivity study of the saline circulation. Clim. Dyn., 9, 391409.Google Scholar
Hurrell, J. W. (1995). Decadal Trends in the North-Atlantic Oscillation – Regional Temperatures and Precipitation. Science, 269, 676679.Google Scholar
Hurrell, J. W. (1996). Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett., 23, 665668.Google Scholar
Karl, T. R. et al. (2015). Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, doi:10.1126/science.aaa5632.Google Scholar
Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E.. (2005). A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.Google Scholar
Kosaka, Y., and XIE, S.-P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501: 403407.Google Scholar
Kucharski, F., Molteni, F., and Yoo, J. H.. (2006). SST forcing of decadal Indian Monsoon rainfall variability. Geophys. Res. Lett., 33, L03709, doi:10.1029/2005GL025371.Google Scholar
Kucharski, F., Molteni, F., King, M. P., Farneti, R., Kang, I. S., and Feudale, L.. (2013). On the Need of Intermediate Complexity General Circulation Models A “SPEEDY” Example. Bull. Am. Meteorol. Soc., 94, 2530.Google Scholar
Kucharski, F., Bracco, A., Yoo, J. H., Tompkins, A. M., Feudale, L., Ruti, P., and Dell’Aquila, A.. (2009) A Gill-Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Q. J. Roy. Meteorol. Soc., 135, 569579.Google Scholar
Latif, M., Collins, M., Pohlmann, H., and Keenlyside, N.. (2006a). A review of predictability studies of Atlantic sector climate on decadal time scales. J. Clim., 19, 59715987.Google Scholar
Latif, M. et al. (2006b). Is the thermohaline circulation changing? J. Clim., 19, 46314637.Google Scholar
Lean, J. L., and Rind, D. H.. (2008). How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett., 35, L18701, doi:10.1029/2008GL034864.Google Scholar
Li, J. P., and Wang, J. X. L.. (2003). A new North Atlantic Oscillation index and its variability. Adv. Atmos. Sci., 20, 661676.Google Scholar
Li, J. P. (2005). Coupled air-sea oscillations and climate variations in China. In: Qin, D. (Eds.), Climate and Environmental Evolution in China, Vol. 1. Beijing: China Meteorological Press, pp. 324333.Google Scholar
Li, J. P., Sun, C., and Jin, F. F.. (2013a). A: NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett., 40, 54975502.Google Scholar
Li, J. P., Ren, R. C., Qi, Y., Wang, F., Lu, R., Zhang, P., Jiang, Z., Duan, W., Yu, F., and Yang, Y.. (2013b). B: Progress in air–land–sea interactions in Asia and their role in global and Asian climate change. Chinese J. Atmos. Sci., 37(2), 518538.Google Scholar
Li, S., and Bates, G. T.. (2007). Influence of the Atlantic Multidecadal Oscillation on the winter climate of East China. Adv. Atmos. Sci., 24, 126135.Google Scholar
Lu, R. Y., Dong, B. W., and Ding, H.. (2006). Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys. Res. Lett., 33.Google Scholar
Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. and Trenberth, K. E.. (2011). Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Climate Change, 1, 360364, doi: 10.1038/NCLIMATE1229Google Scholar
Meinshausen, M., Smith, S. J., Calvin, K. et al. (2011).The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Climatic Change, 109, 213. doi:10.1007/s10584-011-0156-z.Google Scholar
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D..(2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set, J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.Google Scholar
Newman, M. (2013). An empirical benchmark for decadal forecasts of global surface temperature anomalies. J. Climate, 26, 52605269.Google Scholar
Olsen, J., Anderson, N. J., and Knudsen, M. F.. (2012). Variability of the North Atlantic Oscillation over the past 5,200 years. Nat. Geosci., 5, 808812.Google Scholar
Park, W., and Latif, M.. (2010). Pacific and Atlantic multidecadal variability in the Kiel Climate Model. Geophys. Res. Lett., 37, L24701, doi:10.1029/2006GL027655.Google Scholar
Schlesinger, M. E., and Ramankutty, N.. (1994). An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726.Google Scholar
Solomon, S. et al. (2010). Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223.Google Scholar
Stocker, T. F. et al. (2013). Climate change 2013: The physical science basis - Summary for policymakers, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F. et al., Cambridge and New York: Cambridge University Press, pp. 2–29.Google Scholar
Sun, C., and Li, J. P.. (2012). Analysis of anomalously low surface air temperature in Northern Hemisphere during 2009/2010 winter. Climatic Environ. Res., 17, 259273.Google Scholar
Sun, C., Li, J. P., and Jin, F.-F.. (2015). A: A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Clim. Dyn., 45, doi:10.1007/s00382-014-2459-z.Google Scholar
Sun, C., Li, J. P., and Zhao, S.. (2015). B: Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci Rep, 5, 16853.Google Scholar
Sun, C., Li, J., Ding, R. Q., and Jin, Z.. (2016). Cold season Africa–Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability. Clim Dyn, Online, doi:10.1007/s00382-016-3309-y.Google Scholar
Sutton, R. T., and Hodson, D. L. R.. (2005). Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118.Google Scholar
Taws, S. L., Marsh, R., Wells, N. C., and Hirschi, J.. (2011). Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO. Geophys. Res. Lett., 38, L20601, doi:10.1029/2011GL048978Google Scholar
Thompson, D. W. J., Wallace, J. M., and Hegerl, G. C.. (2000). Annular modes in the extratropical circulation. Part II: Trends. J. Clim., 13, 10181036.Google Scholar
Ting, M. F., Kushnir, Y., Seager, R., and Li, C. H.. (2009). Forced and internal twentieth-century SST trends in the North Atlantic. J. Clim., 22, 14691481.Google Scholar
Torrence, C., and Compo, G. P.. (1998). A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc., 79, 6178.Google Scholar
Trenberth, K. E., and Fasullo, J. T..(2013). An apparent hiatus in global warming? Earth’s Future, 1, 1932, doi:10.1002/2013EF000165.Google Scholar
Visbeck, M., Cullen, H., Krahmann, G., and Naik, N.. (1998). An ocean model’s response to North Atlantic Oscillation-like wind forcing. Geophys. Res. Lett., 25, 45214524.Google Scholar
Visbeck, M., Chassignet, E. P., Curry, R., Delworth, T., Dickson, B., and Krahmann, G.. (2003). The ocean’s response to North Atlantic Oscillation variability, in The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr. Ser., vol. 134, pp. 113145, , Washington, DC: AGU.Google Scholar
Von Storch, H., Bruns, T., Fischerbruns, I., and Hasselmann, K.. (1988). Principal oscillation pattern-analysis of the 30-day to 60-day oscillation in General-Circulation Model Equatorial Troposphere. J. Geophys. Res. Atmos., 93, 1102211036.Google Scholar
Walker, G. T., and Bliss, E. W.. (1932). World Weather V, Mem. Quart. J. Roy. Meteor. Soc., 4, 5384.Google Scholar
Wang, C., Liu, H., and Lee, S.-K.. (2010). The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere. Atmos. Sci. Lett., 11, 161168.Google Scholar
Watanabe, M., Kamae, Y., Yoshimori, M., Oka, A., Sato, M., Ishii, M., Mochizuki, T., and Kimoto, M.. (2013). Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett., 40, 31753179, doi: 10.1002/grl.50541.Google Scholar
Wu, P. L., and Gordon, C.. (2002). Oceanic influence on North Atlantic climate variability. J. Clim.., 15, 19111925.Google Scholar
Wu, Z. W., Wang, B., Li, J. P., and Jin, F.-F.. (2009). An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi:10.1029/2009JD011733.Google Scholar
Zanchettin, D., Bothe, O., Müller, W., Bader, J., and Jungclaus, J. H.. (2013). Different flavors of the Atlantic Multidecadal Variability. Clim. Dyn., 42, doi:10.1007/s00382-013-1669-0.Google Scholar
Zhang, R. (2008). Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20705, doi:10.1029/2008GL035463.Google Scholar
Zhang, R., and Delworth, T. L.. (2006). Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.Google Scholar
Zhang, R., Delworth, T. L., and Held, I. M.. (2007). Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys. Res. Lett., 34, L02709, doi:10.1029/2006GL028683.Google Scholar
Zhang, R., and Coauthors, . (2013). Have aerosols caused the Observed Atlantic Multidecadal Variability? J. Atmos. Sci., 70, 11351144.Google Scholar

References

Ablain, M., Cazenave, A., Valladeau, G., and Guinehut, S. (2009). A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Science 5(2), 193201.Google Scholar
Ablain, M. et al. (2015). Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative Project, Ocean Sciences, 11, 20292071.Google Scholar
Ablain, M., Legeais, J. F., Prandi, P., Fenoglio-Marc, L., Marcos, M., Benveniste, J. and Cazenave, A. (2017). Altimetry-based sea level, global and regional, Surveys in Geophysics, 38, 731, doi:10.1007/s10712–016–9389–8.Google Scholar
Abraham, J. P., Baringer, M., Bindoff, N. L., Boyer, T., Cheng, L. J., Church, J. A., Conroy, J. L., Domingues, C. M., Fasullo, J. T., Gilson, J., Goni, G., Good, S. A., Gorman, J. M., Gouretski, V., Ishii, M., Johnson, G. C., Kizu, S., Lyman, J. M., Macdonald, A. M., Minkowycz, W. J., Moffitt, S. E., Palmer, M. D., Piola, A. R., Reseghetti, F., Schuckmann, K., Trenberth, K. E., Velicogna, I., and Willis, J. K. (2013). A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change, Rev. Geophys., 51, 450483, doi:10.1002/rog.20022.Google Scholar
Alley, K. E. et al. (2016). Impacts of warm water on Antarctic ice shelf stability through basal channel formation, Nature Geosciences, 9, 290294.Google Scholar
Bamber, J. and Riva, R. (2010). The sea level fingerprint of recent ice mass fluxes, Cryosphere, 4, 621627.Google Scholar
Becker, M., Karpytchev, M., and Lennartz-Sassinek, S. (2014). Long-term sea level trends: Natural or anthropogenic? Geophys. Res. Lett., 5571–5580, doi: 10.1002/2014GL061027.Google Scholar
Biancamaria, S., Cazenave, A., Mognard, N., LLovel, W., and Frappart, F. (2011). Satellite-based high latitudes snow volume trend, variability and contribution to sea level over 1989/2006, Global and Planet. Change, 75, 99107, doi:10.1016/j.gloplacha2010.10.011.Google Scholar
Bilbao, R. A. F., Gregory, J. M., and Bouttes, N. (2015). Analysis of the regional patter of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs, Clim Dyn., 45, 26472666.Google Scholar
Bindoff, N., Willebrand, J., Artale, V., Cazenave, A., Gregory, J., Gulev, S., Hanawa, K., Le Quéré, C., Levitus, S., Nojiri, Y., Shum, C. K., Talley, L., Unnikrishnan, A. (2007). Observations: Oceanic Climate and Sea Level. In: Climate change 2007: The physical Science Basis. Contribution of Working Group I to the Fourth Assessment report of the Intergouvernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L. (eds.)]. Cambridge University Press, Cambridge, UK, and New York, USA.Google Scholar
Boening, C., Willis, J. K., Landerer, F. W., and Nerem, R. S. (2012). The 2011 La Nina: So strong, the oceans fell, Geophys. Res. Lett., 39, L19602, doi:10.1029/2012GL053055.Google Scholar
Carson, M., Kohl, A., Stammer, D., Slangen, A. B., Katsman, C. S., van de Wahl, R. S., Church, J. and White, N. J. (2016). Coastal sea level changes, observed and projected during the 20th and 21st century, Climatic Change, 134, 269281.Google Scholar
Cazenave, A., Dieng, H., Meyssignac, B., von Schuckmann, K., Decharme, B., and Berthier, E. (2014). The rate of sea level rise, Nature Climate Change, 4, doi:10.1038/NCLIMATE2159.Google Scholar
Cazenave, A., and Le Cozannet, G. (2014). Sea level rise and coastal impacts, Earth’s Future, 2(2), 1534, doi:10.1002/2013EF000188.Google Scholar
Chambers, D. P., Wahr, J. M., Tamisiea, M., and Nerem, R. S. (2010). Ocean mass from GRACE and glacial isostatic adjustment. Journal of Geophysical Research, 115, B11415.Google Scholar
Chambers, D. P., Cazenave, A., Champollion, N., Dieng, H. B., Llovel, W., Forsberg, R., von Schuckmann, K., and Wada, Y. (2017). Evaluation of the Global Mean Sea Level Budget between 1993 and 2014. Surv. Geophys, 38, 309327, doi:10.1007/s10712-016-9381-3.Google Scholar
Chao, BF, Wu, Y. H., and Li, Y. S. (2008.) Impact of artificial reservoir water impoundment on global sea level. Science 320:212–14, doi:10.1126/science.115458.Google Scholar
Chen, J. L., Wilson, C. R., and Tapley, B. D. (2013). Contribution of ice sheet and mountain glacier melt to recent sea level rise, Nature Geoscience, 6, 549552.Google Scholar
Church, J. A., and White, N. J. (2011). Sea-Level Rise from the Late 19th to the Early 21st Century, Surveys in Geophysics, 32, 585602, doi:10.1007/s10712-011-9119-1.Google Scholar
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S. (2013). Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M.. Cambridge University Press, Cambridge and New York.Google Scholar
Cipollini, P., Calafat, F. M., Jevrejeva, S., Melet, A., and Prandi, P. (2017). Monitoring sea level in the coastal zone with satellite altimetry and tide gauges, Surveys in Geophysics, 38, 3357.Google Scholar
Clark, P. U. et al. (2015). Recent progress in understanding and projecting regional and global mean sea level, Curr. Clim. Change, doi/10.1007/s40641–015-0024–4.Google Scholar
Clark, P. U. et al. (2016). Consequences of twenty-first-century policy for multi millenial climate and sea level change, Nature Climate Change, 6, 360369.Google Scholar
Cogley, J. C. (2009). Geodetic and direct mass balance measurements: Comparison and joint analysis, Annals of Glaciology, 2009(50), 96100.Google Scholar
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T. Friedlingstein, P., Gao, X. Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M. (2013): Long-Term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.. Cambridge University Press, Cambridge and New York.Google Scholar
De Conto, R. M., and Pollard, D. (2016). Contribution of Antarctica to past and future sea-level rise, Nature, 531, 591.Google Scholar
Dieng, H. B., Palanisamy, H., Cazenave, A., Meyssignac, B. and von Schuckmann, K. (2015a). The sea level budget since 2003: Inference on the deep ocean heat content. Surv. Geophys., 36, 209229, doi:10.1007/s10712-015-9314-6.Google Scholar
Dieng, H. B., Cazenave, A., von Shuckmann, K., Ablain, M., and Meyssignac, B. (2015b). Sea level budget over 2005–2013: Missing contributions and data errors. Ocean Science, 11, 789802, doi:10.5194/os-11-789-2015.Google Scholar
Dieng, H., Champollion, N., Cazenave, A., Wada, Y., Schrama, E. and Meyssignac, B. (2015c), Total land water storage change over 2003–2013 estimated from a global mass budget approach, Environmental Research Letters, 10, 124010, doi:10.1088/1748-9326/10/12/124010.Google Scholar
Dieng, H., Cazenave, A., Meyssignac, B. and Ablain, M. (2017). New estimate of the current rate of sea level rise from a sea level budget approach, Geophys. Res. Lett., 44, doi:10.1002/2017GL073308.Google Scholar
Domingues, C. et al. (2008). Improved estimates of upper ocean warming and multidecadal sea level rise. Nature 453:10901093, doi:10.1038/nature07080.Google Scholar
Ericson, J. P. (2006). Effective sea-level rise and deltas: Causes of change and human dimension implications, Global and Planetary Change, 50(1–2), 6382.Google Scholar
Fasullo, J. T., Boening, C., Landerer, F. W., and Nerem, R. S. (2013). Australia’s unique influence on global mean sea level in 2010–2011, Geophys. Res. Lett., 40(16), 43684373, doi:10.1002/grl.50834.Google Scholar
Fitzgerald, D. M. et al. (2008). Coastal impacts of sea level rise, Annual Rev. Earth Planet. Sci., 36, 601647.Google Scholar
Forsberg, R., Sorensen, L., and Simonsen, S. (2017), Greenland and Antarctica ice sheet mass changes and effects on global sea level, Surveys in Geophysics, 38, 89103.Google Scholar
Gardner, A. S. et al. (2013). A reconciled estimate of glacier contributions to sea level rise, 2003–2009, Science, 340, 852857.Google Scholar
GCOS, 2011. Systematic Observation Requirements for Satellite-Based Data Products for Climate (2011 Update) – Supplemental details to the satellite-based component of the “Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update)”. GCOS-154 (WMO, December 2011).Google Scholar
Gleckler, P. J., Santer, B. D., Domingues, C., Pierce, D., W., Barnett, T. P., Church, J. A., Taylor, K. E., AchutaRao, K. M., Boyer, T. P., and Caldwell, P. M. (2012). Human-induced global ocean warming on multidecadal time scales, Nature Climate Change, doi:10.1038/NCLIMATE1553.Google Scholar
Hamlington, B. D., Strassburg, M. W., Leben, R. R., Han, W., Nerem, R. S. and Kim, K. Y. (2014). Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean, Nature Climate Change, doi:10.1038/NCLIMATE2307.Google Scholar
Hamlington, B. D., and Thompson, P. R. (2015), Considerations for estimating the 20th century trend in global mean sea level. Geophys. Res. Lett., 42, 41024109, doi: 10.1002/2015GL064177.Google Scholar
Hanna, E. et al. (2013), Ice-sheet mass balance and climate change, Nature, 498, 5159, doi:10.1038/nature12238.Google Scholar
Hay, C. C. et al. (2015). Probabilistic reanalysis of twentieth-century sea level rise, Nature, 517(7535), 481.Google Scholar
Horton, B. et al. (2014). Expert assessment of sea level rise by AD 2100 and AD 2300, Quat Sci Rev., 84, 16.Google Scholar
Ishii, M. and Kimoto, M. (2009). Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65(3), 287299, doi:10.1007/s10872-009-0027-7.Google Scholar
Jackson, L. P., and Jevrejeva, S. (2016). A probabilistic approach to 21st century regional sea level projections using RCP and high-end scenarios, Global Planet. Change, 146, 179189.Google Scholar
Jacob, T., Wahr, J., Pfeffer, W. T., and Svenson, S. (2012). Recent contribution of glaciers and ice caps to sea level rise, Nature, 482, 514518.Google Scholar
Jevrejeva, S., Grinsted, A., Moore, J. C., and Holgate, S. (2006). Non linear trends and multiyear cycles in sea level records, J. Geophys. Res., C09012, doi:1.1029/2005JC003229, 2006.Google Scholar
Jevrejeva, S. et al. (2014a). Trends and acceleration in global and regional sea levels since 1807, Global Planet. Change, 113, 1122.Google Scholar
Jevrejeva, S. et al. (2014b). Upper limit for sea level projections by 2100, Environ. Res. Lett., 9(10), 19.Google Scholar
Johnson, G. C., Palmer, M. D., Smith, D. M., and Willis, J. K. (2010). Robust warming of the global upper ocean, Nature, 465, 334337, doi:10.1038/nature09043.Google Scholar
Kaser, G, Cogley, J. G., Dyurgerov, M. B., Meier, M. F., and Ohmura, A. (2006). Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004, Geophys. Res. Lett, 33, L19501, doi:10.1029/2006GL027511.Google Scholar
Kemp, A. C., Horton, B., Donnelly, J. P., Mann, M. E., Vermeer, M., and Rahmstorf, S. (2011). Climate related sea level variations over the past two millennia, PNAS, doi/10.1073/pnas.1015619108.Google Scholar
Konikow, L. F. (2011). Contribution of global groundwater depletion since 1900 to sea level rise, Geophys. Res. Lett., 38, L17401, doi:10.1029/2011GL048604.Google Scholar
Kopp, R. E., et al. (2014). Probabilistic 21st and 22nd century sea level projections at a global network of tide gauge sites, Earth’s Future, 2, 383406.Google Scholar
Lambeck, K. et al. (2010). Paleoenvironmental Records, Geophysical Modelling and Reconstruction of Sea Level Trends and Variability on Centennial and Longer Time Scales, In: Understanding Sea Level Rise and Variability, edited by Church, J. A. et al. Wiley-Blackwell, Oxford, UK.Google Scholar
Leclercq, P. W., Oerlemans, J., Cogley, J. G. (2011). Estimating the glacier contribution to sea-level rise for the period 1800–2005. Surv Geophys 32:519535.Google Scholar
Leuliette, E. W., and Willis, J. K. (2011). Balancing the sea level budget. Oceanography, 24, 122129.Google Scholar
Levermann, A., Clark, P. U., Marzeion, B., Milne, G. A., Pollard, D., Radic, V., and Robinson, A. (2013). The multimillenial sea level commitment of global warming, PNAS, 110(3), 1374513750.Google Scholar
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S., and Zweng, M. M. (2012). World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett, 39, L10603, doi:10.1019/2012GL051106.Google Scholar
Llovel, W., Becker, M., Cazenave, A., Jevrejeva, S., Alkama, R., Decharme, B., Douville, H., Ablain, M., and Beckley, B. (2011). Terrestrial waters and sea level variations on interannual time scale, Global Planet. Change, 75, 7682, doi:10.1016/j.gloplacha.2010.10.008.Google Scholar
Llovel, W., Willis, J. K., Landerer, F. and Fukumori, I. (2014). Deep ocean contribution to sea level and energy budget not detectable over the past decade Nat. Clim. Change, 4 1031–5.Google Scholar
Lyman, J. M., Godd, S. A., Gouretski, V. V., Ishii, M., Johnson, G. C., Palmer, M. D., Smith, D. M., and Willis, J. K. (2010), Robust warming of the global upper ocean, Nature, 465:334337, doi:10.1038/nature09043.Google Scholar
Lyman, J. M. and Johnson, G. C. (2014). Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice, Journal of Climate, 1945–1957, doi:10.1175/JCLIM-D-12-00752.1.Google Scholar
Marcos, M. and Amores, A. (2014). Quantifying anthropogenic and natural contributions to thermosteric sea level rise, Geophys. Res. Lett., doi: 10.1002/2014GL059766.Google Scholar
Marcos, M., Marzeion, B., Dangendorf, S., Slangen, A. B., Palanisamy, H., and Fenoglio-Marc, L., (2017). Internal variability versus anthropogenic forcing on sea level and its components, Surveys in Geophysics, 38, 329347.Google Scholar
Marzeion, B., Leclercq, P. W., Cogley, J. G., and Jarosch, A. H. (2015), Brief communication: Global reconstructions of glacier mass change during the 20th century are consistent. Cryosphere, 9, 23992404, doi:10.5194/tc-9-2399-2015.Google Scholar
Marzeion, B., Champollion, N., Haeberli, W., Langley, K., Leclercq, P., and Paul, F. (2017). Observation-based estimates of global glacier mass change and its contribution to sea level change, Surveys in Geophysics, 38, 105129.Google Scholar
Merrifield, M. A., and Maltrud, M. E. (2011). Regional sea level trends due to Pacific trade wind intensification, Geophys. Res. Lett., 38, L21605, doi:10.1029/2011GL049576.Google Scholar
Meyssignac, B., Salas-Melia, D., Becker, M., Llovel, W. and Cazenave, A. (2012). Spatial trend patterns in observed sea level: Internal variability and/or anthropogenic signature? Climate of the Past, 8, 787802, doi:10.5194/cp-8-787-2012.Google Scholar
Meehl, G. A. et al. (2007). Global climate projections, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Solomon, S. et al., Cambridge University Press, Cambridge.Google Scholar
Milne, G. A., Gehrels, W. R., Hughes, C. W., and Tamisiea, M. E. (2009). Identifying the causes of sea-level change, Nature Geoscience, 2(7), doi:10.1038/ngeo544.Google Scholar
Milly, P. C. D., Cazenave, A., Famiglietti, J. S., Gornitz, V., Laval, K., Lettenmaier, D. P., Sahagian, D. L., Wahr, J. M., and Wilson, C. R. (2010). Terrestrial Water-Storage Contributions to Sea-Level Rise and Variability, in Understanding Sea-Level Rise and Variability, edited by Church, J. A., Woodworth, P. L., Aarup, T., and Wilson, W. S., Wiley-Blackwell, Oxford, UK. pp. 226255, doi:10.1002/9781444323276.ch8.Google Scholar
Nerem, R. S., Chambers, D. P., Choe, C., and Mitchum, G. T. (2010). Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar. Geodesy, 33(1), 435446.Google Scholar
Nicholls, R. J. et al. (2007), Coastal systems and low-lying areas, in Climate Change 2007: Impacts, Adaptation and Vulnerability. Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007), edited by Parry, M. L. et al., Cambridge University Press, Cambridge. pp. 315356.Google Scholar
Nicholls, R. J. (2010). Impacts of and Responses to Sea Level Rise, In Understanding Sea Level Rise and Variability, edited by Church, J. A., Woodworth, P. L., Aarup, T., and Wilson, W. S., Wiley-Blackwell, Oxford, UK.Google Scholar
Nicholls, R. J. and Cazenave, A. (2010). Sea level change and the impacts in coastal zones. Science 328, 15171520, doi:10.1126/science.1185782.Google Scholar
Palanisamy, H. Cazenave, A., Delcroix, T. and Meyssignac, B. (2015a). Spatial trend patterns in Pacific Ocean sea level during the altimetry era: The contribution of thermocline depth change and internal climate variability, Ocean Dynamics, doi:10.1007/s10236–014–0805–7.Google Scholar
Palanisamy, H., Meyssignac, B., Cazenave, A., and Delcroix, T. (2015b). Is the anthropogenic sea level fingerprint already detectable in the Pacific Ocean? Environmental Research Letters, 10, 124010, doi:10.1088/1748-9326/10/12/124010.Google Scholar
Passeri, D. L. et al. (2015). The dynamic effects of sea level rise on low-gradient coastal landscapes: A review, Earth’s Future, 3(6), 159181.Google Scholar
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., and Padman, L. (2012). Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505.Google Scholar
Ray, R. D., and Douglas, B. C. (2011). Experiments in reconstructing twentieth-century sea levels. Prog. Oceanogr., 91, 496515, doi:10.1016/j.pocean.2011.07.021.Google Scholar
Reager, J. T., Gardner, A. S., Famiglietti, J. S., Wiese, D. N., Eicker, A., and Lo, M.-H. (2016). A decade of sea level rise slowed by climate-driven hydrology, Science, 351, 699703.Google Scholar
Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., Gulev, S., Johnson, G. C., Josey, S. A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L. D., and Wang, F. (2013). Observations: Oceans. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M.. Cambridge University Press, Cambridge and New York.Google Scholar
Roemmich, D., Gould, W. J., and Gilson, J. (2012). 135 years of global ocean warming between the Challenger expedition and the Argo Programme, Nature Climate Change, 2(6), 425428, doi:10.1038/nclimate1461.Google Scholar
Peltier, W. R. (2004). Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences 32: 111149.Google Scholar
Purkey, S. and Johnson, G. C. (2010). Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budget. J Clim, 23:63366351.Google Scholar
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts, J. (2011). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise, Geophysical Research Letters, 38, doi:10.1029/2011gl046583.Google Scholar
Ritz, C. et al. (2015). Potential sea-level rise from Antarctic ice-sheet instability constrained by observations, Nature, 528, 115.Google Scholar
Robinson, A. et al. (2012). Multistability and critical thresholds of the Greenland ice sheet, Nature Climate Change, 1–4, doi:10.1038/NCLIMATE 1449.Google Scholar
Schrama, E J O, Wouters, B and Rietbroek, R. (2014). A mascon approach to assess ice shett and glacier mass balance and their uncertainties from GRACE data J. Geophys. Res. Solid Earth, 119, 60486066.Google Scholar
Shepherd, A. et al. (2012), A Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338(6111), doi:10.1126/science.1228102.Google Scholar
Slangen, A. B., Church, J. A., Zhang, X. and Monselesan, D. (2014a). Detection and attribution of global mean thermosteric sea level change, Geophys. Res. Lett., doi: 10.1002/2014GL061356.Google Scholar
Slangen, A. B. A., Carson, M., Katsman, C. A., van de Wal, R. S. W., Kohl, A., Vermeersen, L. L. A., and Stammer, D. (2014b). Projecting twenty-first century regional sea-level changes. Clim. Change, 124, 317332, doi:10.1007/s10584-014-1080-9.Google Scholar
Slangen, A. B. A., Aldoff, F., Jevrejeva, S., Leclercq, P. W., Marzeion, B., Wada, Y. and Winkelmann, R. (2017). A review of recent updates of sea level projections at global and regional scales, Surveys in Geophysics, 38, 385406.Google Scholar
Steffen, K. et al. (2010). Cryospheric Contributions to Sea Level Rise and Variability. In: Understanding Sea Level Rise and Variability, edited by Church, J., Woodworth, P. L., Aarup, T., and Wilson, S.. Blackwell, Oxford, UK.Google Scholar
Stocker, T. F. et al. (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F. et al. Cambridge University Press, Cambridge and New York.Google Scholar
Spada, G. (2017). Glacial isostatic adjustment and contemporary sea level rise: An overview, Surveys in Geophysics, 38, 153185Google Scholar
Stammer, D., Cazenave, A., Ponte, R. M., and Tamisiea, M. E. (2013). Causes for contemporary regional sea level changes, Annual Review of Marine Science, edited by Carlson, C. A. and Giovannoni, S. J., 5, 2146, doi:10.1146/annurev-marine-121211-172406.Google Scholar
Tamisiea, M. E. (2011). Ongoing glacial isostatic contributions to observations of sea level change, Geophysical Journal International, 186(3), 10361044, doi:10.1111/j.1365-246X.2011.05116.x.Google Scholar
Tamisiea, M. E. and Mitrovica, J. X. (2011). The moving boundaries of sea level change: Understanding the origins of geographic variability. Oceanography, 24(2), 2439.Google Scholar
Timmermann, A., McGregor, S., and Jin, F.-F. (2010). Wind effects on past and future regional sea level trends in the southern Indo-Pacific, Journal of Climate, 23(16), doi:10.1175/2010jcli3519.1.Google Scholar
Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and Zhang, T. (2013): Observations: Cryosphere. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.. Cambridge University Press, Cambridge and New York. pp. 317382, doi:10.1017/CBO9781107415324.012.Google Scholar
Velicogna, I., Sutterley, T. C., and van den Broeke, M. R. (2014). Regional acceleration in ice mass loss from Greenland and Antarctica using grace time variable gravity data Geophys. Res. Lett. 41, 81308137.Google Scholar
Velicogna, I., and Wahr, J. (2013). Time-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data, Geophysical Research Letters, 40(12), 30553063, doi:10.1002/grl.50527.Google Scholar
Von Schuckmann, K., and Le Traon, P. Y. (2011), How well can we derive Global Ocean Indicators from Argo data? Ocean Science, 7(6), 783791, doi:10.5194/os-7-783-2011.Google Scholar
von Schukmann, K. et al. (2016). Earth’s energy imbalance: An imperative for monitoring, Nature Climate Change, 26, 138144.Google Scholar
Wada, Y., van Beek, L. P. H., Weiland, F. C. S., Chao, B. F., Wu, Y. H., and Bierkens, M. F. P. (2012). Past and future contribution of global groundwater depletion to sea-level rise. Geophysical Research Letters, 39, L09402.Google Scholar
Watson, C. S., White, N. J., Church, J. A., King, M. A., Burgette, R. J., and Legresy, B. (2015), Unabated global mean sea level over the satellite altimeter era, Nature Climate Change, doi:10.1038/NCLIMATE2635.Google Scholar
Wada, Y., Lo, M.-H., Yeh, P. J. F., Reager, J. T., Famiglietti, J. S., Wu, R.-J., and Tseng, Y.-H. (2016). Fate of water pumped from underground and contributions to sea level rise, Nature Climate Change, doi:10.1038/NCLIMATE3001.Google Scholar
Wada, Y., Reager, J. T., Chao, B. F., Wang, J., Lo, M. H., Song, C., Li, Y., and Gardner, A. S. (2017). Recent changes in land water storage and its contribution to sea level variations, Surveys in Geophysics, 38, 131151.Google Scholar
Woppelmann, G., Letetrel, C., Santamaria, A., Bouin, M. N., Collilieux, X., Altamimi, Z., Williams, S. D. P., and Miguez, B. M. (2009). Rates of sea-level change over the past century in a geocentric reference frame. Geophys. Res. Lett., 36, doi:10.1029/2009gl038720.Google Scholar
Wöppelmann, G., and Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variability, Rev. Geophys., 54, doi:10.1002/2015RG000502.Google Scholar
Woodworth, P. L., and Player, R. (2003). The permanent service for mean sea level: An update to the 21st century, Journal of Coastal Research, 19(2), 287295.Google Scholar
Zhang, X., and Church, J. A. (2012). Sea level trends, interannual and decadal variability in the Pacific Ocean, Geophys. Res. Lett., 39, doi:10.1029/2012GL053240.Google Scholar
Zwally, H. J., and Giovinetto, M. B. (2011). Overview and Assessment of Antarctic Ice-Sheet Mass Balance Estimates: 1992–2009, Surveys in Geophysics, 32(4–5), 351376, doi:10.1007/s10712-011-9123-5.Google Scholar

References

Adkins, J. F. (2013). The role of deep ocean circulation in setting glacial climates. Paleoceanography, 28, 539561.Google Scholar
Alley, R. B., and Clark, P. U. (1999). The deglaciation of the Northern Hemisphere: a global perspective. Annu. Rev. Earth Planet. Sci., 27, 149182.Google Scholar
Bamber, J. et al. (2012). Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett., 39, L19501, doi: 10.1029/2012GL052552.Google Scholar
Bard, E. (2002). Climate shock: abrupt climate changes over millennial time scales. Physics Today, 55 (December), 3238.Google Scholar
Bard, E., and Frank, M. (2006). Climate change and solar variability: what’s new under the sun? Earth planet. Sci. Lett., 248, 114.Google Scholar
Beal, L. M., and Elipot, S. (2016). Decadal changes in the Agulhas Current. Nature, 540, 570573.Google Scholar
Bender, M. L. (2013). Paleoclimate. Princeton University Press, Princeton, NJ.Google Scholar
Bindoff, N. L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J., Gulev, S., Hanawa, K., Le Quéré, C., Levitus, S., Nojiri, Y., Shum, S. K., Talley, L. D. and Unnikrishnan, A. (2007). Observations: Oceanic Climate Change and Sea Level. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K. B., Tignor, M. and Miller, H. L. Cambridge University Press, Cambridge.Google Scholar
Birchfield, G. E., Wang, H., and Rich, J. J. (1994). Century/millennium internal climate variability: an ocean-atmosphere-continental icesheet model. J. Geophys. Res., 99, 1245912470.Google Scholar
Bond, G. C., and Lotti, C. (1995). Iceberg discharges into the North Atlantic on millennial time scales during the last glacial. Science, 267, 10051010.Google Scholar
Bond, G. et al. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 21302136.Google Scholar
Broecker, W. S., Peteet, D. M., and Rind, D. (1985). Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 315, 2126.Google Scholar
Broecker, W. S. et al. (1990). A salt oscillator in the glacial North Atlantic? 1. The concept. Paleoceanography, 5, 469477.Google Scholar
Bryden, H. L., and Imawaki, S. (2001). Ocean heat transport. In Ocean Circulation and Climate, edited by Siedler, G., Church, J., and Gould, J. Academic Press, Amsterdam, 455474.Google Scholar
Calov, R., Ganopolski, A., Petoukhov, V., and Claussen, M. (2002). Large-scale instabilities of the Laurentide Ice Sheet simulated in a fully coupled climate-system model. Geophys. Res. Lett., 29 (24), 69.169.4, doi:10.1029/2002GL016078.Google Scholar
Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N., and Scott, J. D. (2012). Enhanced upper ocean stratification with climate change in the CMIP3 models, J. Geophys. Res., 117, C04031, doi:10.1029/2011JC007409.Google Scholar
Chidichimo, M. P., Donohue, K. A., Watts, D. R., and Tracey, K. L. (2014). Baroclinic Transport Time Series of the Antarctic Circumpolar Current Measured in Drake Passage, J. Phys. Oceanogr., 44: 18291853, doi:10.1175/JPO-D-13-071.1.Google Scholar
Clement, A. C., and Peterson, L. C. (2008). Mechanisms of abrupt climate change of the last glacial period. Rev. Geophys., 46, RG4002, doi:10.1029/2006RG000204.Google Scholar
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J. and Wehner, M. (2013): Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M. Cambridge University Press, Cambridge.Google Scholar
Cubasch, U., and Meehl, G. A. (2001). Projections for future climate change. Climate Change 2001: The Scientific Basis, edited by Houghton, J. T. et al. Cambridge University Press, Cambridge, 525582.Google Scholar
Curry, W. B., and Oppo, D. W. (2005). Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography, 20, PA1017, doi:10.1029/2004PA001021.Google Scholar
Dansgaard, W. et al. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218220.Google Scholar
DeConto, R. M., and Pollard, D. (2016). Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597.Google Scholar
Delworth, T. L., and Mann, M. E. (2000). Observed and Simulated Multidecadal Variability in the Northern Hemisphere, Clim. Dyn., 16, 661676.Google Scholar
Dijkstra, H. A. (2007). Characterization of the multiple equilibria regime in a global ocean model. Tellus, A, 59 (5), 695705, doi:10.1111/J.1600-0870.2007.00267.xGoogle Scholar
Duplessy, J. et al. (1988). Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography, 3, 343360.Google Scholar
Durack, P. J., Wijffels, S. E., and Matear, R. J. (2012). Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458.Google Scholar
Fanning, A. F., and Weaver, A. J. (1997). Temporal-geographical meltwater influences on the North Atlantic conveyor: implications for the Younger Dryas. Paleoceanography, 12, 307320.Google Scholar
EPICA Community Members (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195198Google Scholar
Flückiger, J., Knutti, R., and White, W. C. (2006). Oceanic processes as potential trigger and amplifying mechanisms for Heinrich events. Paleoceanography, 21, PA2014, doi:10.1029/2005PA001204.Google Scholar
Ganopolski, A., and Rahmstorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409, 153158.Google Scholar
Ganopolski, A., and Rahmstorf, S. (2002). Abrupt glacial climate changes due to stochastic resonance. Phys. Rev. Lett., 88, 038501–1-038501–4.Google Scholar
Gruber, N., Gloor, M., Mikaloff Fletcher, S. E., Doney, S. C., Dutkiewicz, S., Follows, M. J., Gerber, M., Jacobson, A. R., Joos, F., Lindsay, K., Menemenlis, D., Mouchet, A., Muller, S. A., Sarmiento, J. L. and Takahashi, T. (2009). Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem. Cycles, 23, GB1005, doi:10.1029/2008GB003349.Google Scholar
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M. and Zhai, P. M. (2013). Observations: Atmosphere and Surface. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M. Cambridge University Press, Cambridge.Google Scholar
Hawkins, E., Smith, R., Allison, L., Gregory, J., Woollings, T., Pohlmann, H., and de Cuevas, B. (2011). Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys. Res. Lett., 38, L16699.Google Scholar
He, F. (2011). Simulating transient climatic evolution of the last deglacial cycle with CCSM3. Unpublished Ph.D. thesis, University of Wisconsin, Madison, WI 53706.Google Scholar
He, F. et al. (2013). Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature, 494, 8185.Google Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res., 29, 143152.Google Scholar
Hemming, S. R. (2004). Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys., 42 (1), RG1005, doi:10.1029/2003RG000128.Google Scholar
IPCC (2013). Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. Cambridge University Press, Cambridge.Google Scholar
Jackson, L. C., Peterson, K. A., Roberts, C. D., and Wood, R. A. (2016). Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening, Nature Geoscience, 9, 518522, doi:10.1038/ngeo2715.Google Scholar
Kageyama, M., Paul, A., Roche, D. M., and Van Meerbeeck, C. J. (2010). Modelling glacial climatic millennial-scale variability related to changes in the Atlantic overturning circulation: a review. Quat. Sci. Rev., 29, 29312956.Google Scholar
Kageyama, M. et al. (2013). Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study. Clim. Past, 9, 935953.Google Scholar
Levang, S. J., and Schmitt, R. W. (2015). Centennial changes of the global water cycle in CMIP5 Models, J. Phys. Oceanography, 45, 64896502.Google Scholar
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S., and Zweng, M. M. (2012). World ocean heat content and thermosteric sea level change (0–2000m) 1955–2010. Geophys. Res. Lett., 39, L10603.Google Scholar
Liu, Z. et al. (2009). Transient simulation of the last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325, 310314.Google Scholar
Lynch-Stieglitz, J. et al. (2007). Atlantic meridional overturning circulation during the Last Glacial Maximum. Science, 316, 6669.Google Scholar
Mamayev, O. I. (1975). Temperature-Salinity Analysis of World Ocean Waters. Elsevier, New York.Google Scholar
Manabe, S., and Stouffer, R. (1997). Coupled ocean-atmosphere model response to freshwater input: comparison to Younger Dryas event. Paleoceanography, 12, 321336.Google Scholar
Marshall, S. J., and Clarke, G. K. C. (1997a). A continuum mixture model of ice stream thermomechanics in the Laurentide Ice Sheet 1. Theory. J. Geophys. Res., 102 (B9), 2059920613.Google Scholar
Marshall, S. J., and Clarke, G. K. C. (1997b). A continuum mixture model of ice stream thermomechanics in the Laurentide Ice Sheet 2. Application to the Hudson Strait ice stream. J. Geophys. Res., 102 (B9), 2061520637.Google Scholar
Marson, J. M., Wainer, I., Mata, M. M. and Liu, Z. (2014). The impacts of deglacial meltwater forcing on the South Atlantic Ocean deep circulation since the Last Glacial Maximum. Clim. Past, 10, 17231734.Google Scholar
Marson, J. M., Mysak, L. A., Mata, M. M., and Wainer, I. (2015). Evolution of the deep Atlantic water masses since the last glacial maximum based on a transient run of NCAR CCSM3. Clim. Dyn., doi:10.1007/s00382-015-2876-7.Google Scholar
McManus, J. F. et al. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834837.Google Scholar
Meinen, C. S., Baringer, M. O., and Garcia, R. F. (2010). Florida Current transport variability: an analysis of annual and longer-period signals. Deep-Sea Res. Pt. I, 57, 835846.Google Scholar
Menviel, L. et al. (2014). Atlantic-Pacific seesaw and its role in outgassing CO2 during Heinrich events. Paleoceanography, 29, 5870.Google Scholar
Nikurashin, M., and Vallis, G. (2012). A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667.Google Scholar
Oka, A., Hasumi, H., and Abe-Ouchi, A. (2012). The thermal threshold of the Atlantic meridional overturning circulation and its control by wind stress forcing during glacial climate. Geophys. Res. Lett., 39, L09709, doi:10.1029/2012GL051421.Google Scholar
Papa, B. D., Mysak, L. A., and Wang, Z. (2006). Intermittent ice sheet discharge events in northeastern North America during the last glacial period. Clim. Dyn., 26, 201216.Google Scholar
Peltier, W. R., and Vettoretti, G. (2014). Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: a “kicked” salt oscillator in the Atlantic. Geophys. Res. Lett., 41, doi:10.1002/2014GL061413.Google Scholar
Purkey, S. G., and Johnson, G. C. (2010). Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim., 23, 63366351.Google Scholar
Rahmstorf, S. (1996). On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn., 12, 799811.Google Scholar
Rahmstorf, S. (2002). Ocean circulation and climate during the past 120,000 years. Nature, 419, 207214.Google Scholar
Rahmstorf, S., and Alley, R. B. (2002). Stochastic resonance in glacial climate. Eos, 83, 129135.Google Scholar
Rahmstorf, S. et al. (2005). Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett., 32, L23605, doi:10.1029/2005GL023655.Google Scholar
Rahmstorf, S. et al. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475480.Google Scholar
Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., Gulev, S., Johnson, G. C., Josey, S. A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L. D., and Wang, F. (2013). Observations: Ocean. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. Cambridge University Press, Cambridge.Google Scholar
Roberts, C. D., Jackson, L., and McNeall, D. (2014). Is the 2004–2012 reduction of the Atlantic meridional overturning circulation significant? Geophys. Res. Lett., 41 (9), 32043210, doi: 10.1002/2014GL059473.Google Scholar
Ruddiman, W. R. (2008). Earth’s Climate: Past and Future, 2nd edition. W. H. Freeman, New York.Google Scholar
Saenko, O. A., Fyfe, J. C., and England, M. H. (2005). On the response of the oceanic wind-driven circulation to atmospheric CO2 increase. Clim. Dyn., 25, 415426.Google Scholar
Sarnthein, M. et al. (1994). Changes in east Atlantic deepwater circulation over the last 30,000 years: eight time slice reconstructions. Paleoceanography, 9, 209267.Google Scholar
Schneider von Deimling, T., Ganopolski, A., Held, H., and Rahmstorf, S. (2006). How cold was the last glacial maximum? Geophys. Res. Lett., 33, L14709, doi:10.1029/2006GL026484.Google Scholar
Siedler, G., Church, J., and Gould, J. (editors) (2001). Ocean Circulation and Climate. Academic Press, Amsterdam.Google Scholar
Smeed, D. A., McCarthy, G., Cunningham, S. A., Frajka-Williams, E., Rayner, D., Johns, W. E., Meinen, C., Baringer, M. O., Moat, M. I., Duchez, A., and Bryden, H. L. (2014). Observed decline of the Atlantic Meridional Overturning Circulation 2004 to 2012, Ocean Science, 10, 2938.Google Scholar
Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230.Google Scholar
Stouffer, R. J., Seidov, D., and Haupt, B. J. (2007). Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean. J. Climate, 20, 436448.Google Scholar
Talley, L. D., Pickard, G., and Emery, W. J. (2011). Descriptive Physical Oceanography: An Introduction. Academic Press, Amsterdam.Google Scholar
Valdes, P. (2011). Built for stability. Nature Geoscience, 4, 414416, doi:10.1038/ngeo1200.Google Scholar
Van Geel, B. et al. (1999). The role of solar forcing upon climate change. Quat. Sci. Rev., 18, 331338.Google Scholar
Van Meerbeeck, C. J., Roche, D. M., and Renssen, H. (2011). Assessing the sensitivity of the North Atlantic Ocean circulation to freshwater perturbation in various glacial climate states. Clim. Dyn., 37, 19091927.Google Scholar
Voelker, A. H. et al. (2002). Global distribution of centennial-scale records for marine isotope stage (MIS) 3. Quat. Sci. Rev., 21, 11851214.Google Scholar
Wang, Z., and Mysak, L. A. (2001). Ice sheet-thermohaline circulation interactions in a climate model of intermediate complexity. J. Oceanography, 57, 481494.Google Scholar
Wang, Z., and Mysak, L. A.(2006). Glacial abrupt climate changes and Dansgaard-Oeschger oscillations in a coupled climate model. Paleoceanography, 21, PA2001, doi:10.1029/2005PA001238.Google Scholar
Weaver, A. J., Saenko, O. A., Clark, P. U., and Mitrovica, J. X. (2003). Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science, 299, 17091713.Google Scholar
Weaver, A. J. et al. 2012: Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophys. Res. Lett., 39, L20709.Google Scholar
Wijffels, S. E., Schmitt, R. W., Bryden, H. L., and Stigebrandt, A. (1992). Transport of freshwater by the oceans. J. Phys. Oceanography, 22, 155162.Google Scholar
Wunsch, C. 2015. Modern Observational Physical Oceanography, Princeton University Press, Princeton, NJ.Google Scholar
Wunsch, C., and Ferrari, R. (2004). Vertical mixing, energy and the general circulation of the ocean. Annu. Rev. Fluid Mech., 36, 281314.Google Scholar
Zhang, Xiao, Prange, M., Merkel, U., and Schulz, M. (2014). Instability of the Atlantic overturning circulation during Marine Isotope Stage 3. Geophys. Res. Lett., 41, doi:10.1002/2014GRL060321.Google Scholar
Zhang, Xu, Lohmann, G., Knorr, G., and Xu, X. (2013). Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation. Clim. Past, 9, 23192333.Google Scholar
Zhang, Xu, Lohmann, G., Knorr, G., and Purcell, C. (2014). Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 290, 290294.Google Scholar
Zika, J. D., England, M. H., and Sijp, W. P. (2012). The ocean circulation in thermohaline coordinates. J. Phys. Oceanogr., 42, 708724, doi:10.1175/JPO-D-11-0139.1.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×