Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-18T19:53:00.721Z Has data issue: false hasContentIssue false

Part VI - Future Earth and Food Security

Published online by Cambridge University Press:  22 October 2018

Tom Beer
Affiliation:
IUGG Commission on Climatic and Environmental Change (CCEC)
Jianping Li
Affiliation:
Beijing Normal University
Keith Alverson
Affiliation:
UNEP International Environmental Technology Centre
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Global Change and Future Earth
The Geoscience Perspective
, pp. 237 - 310
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision. ESA Working Paper No. 12–03. Rome: Food and Agriculture Organization of the United Nations, Rome, Italy. www.fao.org/docrep/016/ap106e/ap106e.pdf. Accessed 29.09.16.Google Scholar
ASEAN (2015). ASEAN Regional Guidelines for Promoting Climate Smart Agriculture (CSA) Practices:Endorsed by the 37th AMAF 10 September 2015, Makati City, Philippines. www.asean.org/storage/images/2015/October/ASEAN-Regional-Guidelines-on-Promoting-CSA-Practices/ASEAN%20Regional%20Guidelines%20on%20Promoting%20CSA%20Practices-endorsed%2037th%20AMAF.pdf. Accessed 28.09.16.Google Scholar
Aryal, J. P., Mehrotra, M. B., Jat, M. L., & Sidhu, H. S. (2015). Impacts of laser land leveling in rice–wheat systems of the north-western indo-gangetic plains of India. Food Security, 7(3), 725738. DOI: 10.1007/s12571-015-0460-yGoogle Scholar
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., & Cammarano, D. et al. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143147.Google Scholar
Campbell, B. M., Beare, D. J., Bennett, E. M., Hall-Spencer, J. Ingram, J. S. I., Jaramillo, F., Ortiz, R., Ramankutty, N., Sayer, J. A., & Shindell, D. (2017). Agriculture production as a major driver of the Earth System exceeding planetary boundaries. Ecology and Society, 22(4).CrossRefGoogle Scholar
Campbell, B., & Thornton, P. (2014). How many farmers in 2030 and how many will adopt climate resilient innovations? CCAFS Info Note. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.Google Scholar
Campbell, B. M., Vermeulen, S. J., Aggarwal, P. K., Corner-Dolloff, C., Girvetz, E., Loboguerrero, A. M., Ramirez-Villegas, J., Rosenstock, T., Sebastian, L., Thornton, P. K., & Wollenberg, E (2016). Reducing risks to food security from climate change. Global Food Security, 11, 3443.Google Scholar
CCAFS (2016). Cracking patterns in big data saves Colombian rice farmers’ huge losses. Outcome Case. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.Google Scholar
Chaudhury, M., Vervoort, J., Kristjanson, P., Ericksen, P., & Ainslie, A. (2013). Participatory scenarios as a tool to link science and policy on food security under climate change in East Africa. Regional Environmental Change, 13(2), 389398.Google Scholar
Cheung, W., Lam, V., Sarmiento, J., Kearney, K., Watson, R., Zeller, D., & Pauly, D. (2010): Large scale redistribution of maximum fisheries catch in the global ocean under climate change. Global Change Biology, 16(1), 2435.Google Scholar
Clarke, D. J., & Kumar, N. (2016). Microinsurance decisions gendered evidence from rural Bangladesh. Gender, Technology and Development, 20(2), 218241.Google Scholar
de Haas, Y., Davis, S., Reisinger, A., Richards, M. B., Difford, G., & Lassen, J. (2016). Improved ruminant genetics: Implementation guidance for policymakers and investors. Climate-Smart Agriculture Practice Brief. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen.Google Scholar
Delerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Patiño, V. H., Varón, G. G., & Jiménez, D. (2016). Assessing weather-yield relationships in rice at local scale using data mining approaches. PloS One, 11(8), e0161620.CrossRefGoogle Scholar
De Pinto, A. Loboguerrero, A. M., Londoño, M., Ovalle Sanabria, K., & Suarez Castaño, R. (2018). Informing climate policy through institutional collaboration: Reflections on the preparation of Colombia’s nationally determined contribution. Climate Policy, 18(5), 612626.Google Scholar
Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926929. DOI: 10.1126/science.1156401.Google Scholar
ECOWAS (2015). West Africa Climate-Smart Agriculture Declaration: High Level Forum of Climate-Smart Agriculture Stakeholders in West Africa. www.ecowas-agriculture.org/sites/default/files/High%20Level%20Forum%20of%20CSA%20Stakeholders%20in%20WA_Final%20Declaration_eng.pdf. Accessed 28.09.16.Google Scholar
FAO (2013a). The state of food insecurity in the world 2013: The multiple dimensions of food security. Rome: FAO. www.fao.org/docrep/018/i3434e/i3434e.pdf. Accessed 6.11.13.Google Scholar
FAO (2013b). Climate-Smart Agriculture Sourcebook. Food and Agriculture Organization of the United Nations. Rome.Google Scholar
Fisher, M., Abate, T., Lunduka, R. W., Asnake, W., Alemayehu, Y., & Madulu, R. B. (2015). Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in eastern and southern Africa. Climatic Change, 133(2), 283299.Google Scholar
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., & Helkowski, J. H. (2005). Global consequences of land use. Science, 309(5734), 570574. DOI: 10.1126/science.1111772.Google Scholar
GACSA 2016. Webinars of the Enabling Environment Action Group. Global Alliance for Climate-Smart Agriculture. Rome. www.fao.org/gacsa/webinars/en/#c430423. Accessed 28.09.16.Google Scholar
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889892. DOI: 10.1126/science.1136674.Google Scholar
Gill, G. (2014). An assessment of the impact of laser-assisted precision land levelling technology as a component of climate-smart agriculture in the state of Haryana, India. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.Google Scholar
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812818. DOI: 10.1126/science.1185383.Google Scholar
Hawley, N. L., & McGarvey, S. T. (2015). Obesity and diabetes in Pacific Islanders: The current burden and the need for urgent action. Current Diabetes Reports, 15(5), 110.Google Scholar
Huyer, S. 2016. Introduction: Gender, climate change and agriculture. Gender, Technology and Development, 20(2). DOI: 10.1007/s11892-015-0594-5.Google Scholar
IFPRI (2015). Global Nutrition Report: Actions and Accountability to Advance Nutrition and Sustainable Developmen. International Food Policy Research Institute, Washington DC.Google Scholar
Jost, C., Kyazze, F., Naab, J., Neelormi, S., Kinyangi, J., Zougmore, R., Aggarwal, P., Bhatta, G., Chaudhury, M., Tapio-Bistrom, M., Nelson, S., & Kristjanson, P. (2015). Understanding gender dimensions of agriculture and climate change in smallholder farming communities. Climate and Development, 0(0), 112. article. http://doi.org/10.1080/17565529.2015.1050978.Google Scholar
Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R., & Kushnir, Y. (2015). Climate change in the fertile crescent and implications of the recent Syrian drought. Proceedings of the National Academy of Sciences, 112(11), 32413246.Google Scholar
Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., Hottle, R., Jackson, L., Jarvis, A., Kossam, F., Mann, W., McCarthy, N., Meybeck, A., Neufeldt, H., Remington, T., Sen, P. T., Sessa, R., Shula, R., Tibu, A., & Torquebiau, E. F., (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 10681072.CrossRefGoogle Scholar
Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1), 014002.Google Scholar
Mason-D'Croz, D., Vervoort, J., Palazzo, A., Islam, S., Lord, S., Helfgott, A., Havlík, P., Peou, R., Sassen, M., Veeger, M., van Soesbergen, A., Arnell, A. P., Stuch, B., Arslan, A., & Lipper, L. (2016). Multi-factor, multi-state, multi-model scenarios: Exploring food and climate futures for Southeast Asia. Environmental Modelling and Software, 83, 255270.CrossRefGoogle Scholar
Murray, U., Gebremedhin, Z., Brychkova, G., & Spillane, C. (2016). Smallholder farmer and climate smart agriculture: Technology and labour-productivity constraints among women smallholders in Malawi. Gender, Technology and Development, 20(2), 117148.Google Scholar
NACSAA (2015). North American Climate Smart Agriculture Alliance: Statement at COP21. www.sfldialogue.net/files/NACSAA_cop21_statement.pdf. Accessed 28.09.16.Google Scholar
Nelson, V. (2011). Gender, Generations, Social Protection and Climate Change: A Thematic Review. Overseas Development Institute (ODI), London.Google Scholar
Neufeldt, H., Jahn, M., Campbell, B. M., Beddington, J. R., DeClerck, F., De Pinto, A., Gulledge, J., Hellin, J., Herrero, M., Jarvis, A., LeZaks, D., Meinke, H., Rosenstock, T., Scholes, M., Scholes, R., Vermeulen, S., Wollenberg, E., & Zougmoré, R. (2013). Beyond climate-smart agriculture: Toward safe operating spaces for global food systems. Agriculture & Food Security, 2, 12.CrossRefGoogle Scholar
Porter, J. R., Xie, L., Challinor, A., Cochrane, K., Howden, M., Iqbal, M. M., Lobell, D., & Travasso, M. I. (2014). Food security and food production systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. www.ipcc-wg2.gov.Google Scholar
Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K., & Jarvis, A. (2013). Implications of regional improvement in global climate models for agricultural impact research. Environ. Res. Lett. 8, 24018. http://dx.doi.org/10.1088/1748-9326/8/2/024018.Google Scholar
Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989.Google Scholar
Rippke, U., Ramirez-Villegas, J., Jarvis, A., Vermeulen, S. J., Parker, L., Mer, F., Diekkrüger, B., Challinor, A. J., & Howden, M. (2016). Timescales of transformational climate change adaptation in sub-Saharan African agriculture. Nature Climate Change. 6(6), 605.Google Scholar
Rosenstock, T. S., Rufino, M. C., Butterbach-Bahl, K., Wollenberg, E., & Richards, M. (eds.) 2016. Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture. Springer Open, London.Google Scholar
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R. et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347 (6223), 1259855. DOI:10.1126/science.1259855.Google Scholar
Swaney, D. P., Hong, B., Ti, C., Howarth, R. W., & Humborg, C. (2012). Net anthropogenic nitrogen inputs to watersheds and riverine N export to coastal waters: A brief overview. Current Opinion in Environmental Sustainability, 4(2), 203211.Google Scholar
Thornton, P. K., Van de Steeg, J., Notenbaert, A., & Herrero, M. (2009). The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agricultural Systems, 101(3), 113127.Google Scholar
Thornton, P. K., Jones, P. G., Alagarswamy, G., Andresen, J., & Herrero, M. (2010). Adapting to climate change: agricultural system and household impacts in East Africa. Agricultural Systems, 103(2), 7382.Google Scholar
Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: a review. Global Change Biology, 20(11), 33133328.Google Scholar
Tuan, D. M., Elisabeth, S., & Hai, L. (2016). Participatory identification of climate-smart agriculture priorities. CGIAR Climate Change, Agriculture and Food Security Program, Copenhagen.Google Scholar
UN (2014). Climate Summit 2014 – Agriculture Annex. United Nations, New York.Google Scholar
UNEP (2015). Africa’s Adaptation Gap 2: Technical Report. United Nations Environment Programme, Nairobi.Google Scholar
Van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., & van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 1170711735.Google Scholar
WHO (2016). Obesity and overweight. Fact sheet No. 311. World Health Organization. Geneva.: WHO. www.who.int/mediacentre/factsheets/fs311/en/. Accessed 3.10.2016.Google Scholar
Vermeulen, S. J. (2014). Climate change, food security and small-scale producers. CCAFS Info Brief. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen.Google Scholar
Vermeulen, S., & Campbell, B. (2015). Ten principles for effective AR4D programs. CCAFS Info Note. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.Google Scholar
Vervoort, J. M., Thornton, P. K., Kristjanson, P., Förch, W., Ericksen, P. J., Kok, K., Ingram, J. S. I., Herrero, M., Palazzo, A., Helfgott, A. E., & Wilkinson, A. (2014). Challenges to scenario-guided adaptive action on food security under climate change. Global Environmental Change, 28, 383394.Google Scholar
Waters-Bayer, A., Kristjanson, P., Wettasinha, C., van Veldhuizen, L., Quiroga, G., Swaans, K., & Douthwaite, B. (2015). Exploring the impact of farmer-led research supported by civil society organisations. Agriculture & Food Security, 4, 17. http://doi.org/10.1186/s40066-015-0023-7.Google Scholar
Wollenberg, E., Richards, M., Smith, P., Havlík, P., Obersteiner, M., Tubiello, F. N., Herold, M., Gerber, P., Carter, S., Reisinger, A., van Vuuren, D., Dickie, A., Neufeldt, H., Sander, B. O., Wassmann, R., Sommer, R., Amonette, J. E., Falcucci, A., Herrero, M., Opio, C., Roman-Cuesta, R., Stehfest, E., Westhoek, H., Ortiz-Monasterio, I., Sapkota, T., Rufino, M. C., Thornton, P. K., Verchot, L., West, P. C., Soussana, J. F., Baedeker, T., Sadler, M., Vermeulen, S. J., & Campbell, B. M. (2016). Reducing emissions from agriculture to meet the 2° C target. Global Change Biology. 22(12), 38593864.Google Scholar

References

Alexander, P., Brown, C., Arneth, A., Dias, C., Finnigan, J., Moran, D. and Rounsevell, M. D. A. Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? In: Global Food Security, 22.04.2017. www.elsevier.com/locate/gfs.Google Scholar
Alexandratos, N. and Bruinsma, J. 2012. World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12–03. Rome, FAO. www.fao.org/docrep/016/ap106e/ap106e.pdf. Accessed 06.06.2017.Google Scholar
Alfenore, S. et al., Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeasts and bacteria, Process Biochemistry, 2016; 51 (11): 17471756.Google Scholar
Bakker, R. R. C., Elbersen, H. W., Poppens, R. P. and Lesschen, J. P., Rice straw and wheat straw: potential feed stocks for the bio-based. Economy, June 2013. NL Agency - Ministry of Economic Affairs.Google Scholar
Bauer, B. and Spieß, W. E. L., Gerät zur (elektronischen-) Erfassung von Zeit und Temperatur, Gebrauchsmusteranmeldung (utility patent application) P31 39 663.1, 06.10.1981. 1981.Google Scholar
Ciepiela, G. A., Godlewska, A. and Jankowska, J. The effect of seaweed Ecklonia maxima extract and mineral nitrogen on fodder grass chemical composition. Environ Sci Pollut Res Int. 2016; 23: 2301–2307. Published online 2015 Sep 26. doi: 10.1007/s11356–015–5417–3 PMCID: PMC4717178.Google Scholar
Detroy, R. W. and Hesseltine, C. W. Availability and utilization of agricultural and agro industrial wastes. Process Biochemistry Sept 1978; 13(9), http://handle.nal.usda.gov/10113/28215. Accessed 06.06.2017.Google Scholar
Feed, www.feedipedia.org/node/728. Accessed 10.09.2016.Google Scholar
High Level Panel of Experts on Food Security and Nutrition. HLPE report 8, Food losses and waste in the context of sustainable food systems: A report by The High Level Panel of Experts on Food Security and Nutrition June 2014 www.fao.org/cfs/cfs-hlpe (Modified). Accessed 06.06.2017.Google Scholar
IBIS World Industry Report: Global Fruit and Vegetables Processing. September 2015.Google Scholar
Lizasoain, J. Biogas production from reed biomass: Effect of pretreatment using different steam explosion, Biomass and Bioenergy, 2016; 95: 8491.Google Scholar
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K. and Stocker, T. F. 2008. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature, 2008; 453: 379382.Google Scholar
Marx, J. L. Editor. A Revolution in Biotechnology. ICSU Press, Cambridge University Press, 1989.Google Scholar
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J. and Zhao, Z.-C. 2007: Global Climate Projections. In: Climate Change 2007: The Physical Science Basis.Google Scholar
Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge and New York, USA Global Climate Projections, www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter10.pdf. Accessed 06.06.2017.Google Scholar
Rehm, H.-J. Industrielle Mikrobiologie. 2. völlig neu bearbeitete Auflage. Springer-Verlag, Berlin-Heidelberg-New York 1980. XX, 718 Seiten. mit 215 Abb. u. 89 Tab.Google Scholar
Single-cell protein. https://en.wikipedia.org/wiki/Single-cell_protein. Accessed 18.11.2016.Google Scholar
Spieß, W. E. L., Böhme, T., and Wolf, W. 1998. Food Storage Stability, edited by Taub, I. A., and Singh, R. P. CRC Press.Google Scholar
Spieß, W. E. L., Behsnilian, D. 2001. Introduction into osmotic treatment. Journal of Food Engineering, 2001; 49: 7576.Google Scholar
Spieß, W. E. L. 2002. Freezing and chilling of food, lecture text book; Hohenheim (Germany) University 1976, Seoul (Republic of Korea) National University 2002.Google Scholar
Spieß, W. E. L. 2008. Improving the utilization of agricultural raw materials to reduce food insecurity, the modest contribution of food science and technology to fight food insecurity around the globe, PPP Presentation ICSU-IUFoST Symposium, IUFoST World Congress 2008.Google Scholar
Spieß, W. E. L. and Moy, G. 2014. Reducing aflatoxin exposure in Sub-Saharan Africa by post-harvest sorting of peanuts, business plan submitted to IUFoST 23.07.2014.Google Scholar
The State of Food and Agriculture. Biofuels: prospects, risks and opportunities FAO, Rome, 2008, http://www.fao.org/docrep/011/i0100e/i0100e00.htm, Accessed 06.06.2017.Google Scholar
United Nations, Department of Economic and Social Affairs, Population Division (2015); https://esa.un.org/unpd/wup/Maps/CityDistribution/CityPopulation/2030_City_Urban, Accessed 23.01.2018.Google Scholar
World Food Program. https://www.wfp.org/content/hunger-map-2015, Accessed 14.11.2016.Google Scholar
World Bank Indicator: http://data.worldbank.org/indicator/NV.AGR.TOTL.CD. Accessed 06.06.2017.Google Scholar
World Biofuels Production Potential; Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard; Office of Policy Analysis; Office of Policy and International Affairs; U. S. Department of Energy; Washington, DC 20585; September 15, 2008.Google Scholar
World Development Report 2010: Development and Climate Change. Washington, DC. © World Bank. https://openknowledge.worldbank.org/handle/10986/4387 License: CC BY 3.0 IGO.” Creative Commons Attribution license (CC BY 3.0 IGO) Accessed 06.06.2017.Google Scholar
World Population to 2300. World Population Prospects, UN Department of Economic and Social Affairs Population Division https://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf. Accessed 06.06.2017.Google Scholar
Verma, M., Godbout, S., Brar, S. K., Solomatnikova, O., Lemay, S. P. and Larouche, J. P. Biofuels production from biomass by thermochemical conversion technologies, International Journal of Chemical Engineering, 2012; Article ID 542426. http://dx.doi.org/10.1155/2012/542426. Accessed 06.06.2017.Google Scholar

References

Beer, T, Lin, B L & McGill, A E J (2016). “Urbanisation, nutrition and food security: a climatological perspective” in Maheshswari, B, Singh, V P & Thoradeniya, B (2016). “Balanced Urban Development: Options and Strategies for Liveable Cities”. Springer Verlag. ISBN: 978–3–319–28110.Google Scholar
Bhatt, V & Farah, L M (2009). “Designing Edible Landscapes”. Open House International, 34: 57Google Scholar
Bourlakis, M A & Weightman, P W H (2004). “Introduction to the UK Food Supply Chain” In Bourlakis, M A & Weightman, P W H (eds) “Food Supply Chain Management”, Figure 1.1, p 6. Blackwell, ISBN: 1–4051-0168–7Google Scholar
Boyer, K K & Verma, R (2010). “Operations and Supply Chain Management for the 21st Century”. South Western Cengage Learning. ISBN-13: 978–0–618–74933-1, p 19.Google Scholar
Cornwall, W (2016). “Efforts to link climate change to severe weather gain ground”. Science, 351, 12491250.Google Scholar
Dani, S & Deep, A (2010). “Fragile food supply chains: reacting to risks”. International Journal of Logistics: Research and Applications, 13(5), 395410.Google Scholar
Dumke, D (2010). “Fragile Food Supply Chains: Reacting to Risks”. http://scrimblog.com/review/fragile-food-supply-chains-reacting-to-risks, accessed 26/07/2016.Google Scholar
ETP (European Technology Platform on Food for Life) (2005). The Vision for 2020 and beyond. Brochure published by the European Union through the Confederation of the Food ad Drink Industries (CIAA). Brussels: European Technology Platform on Food for Life, p. 29.Google Scholar
FAO (Food and Agriculture Organization) (1996). World Food Summit, Rome, Italy. 13–17 November.Google Scholar
Future Earth (2013). Initial Design Report, ICSU. ISBN: 978-0-930357-92-4.Google Scholar
Future Earth (2014). Vision – Executive Summary, ICSU. ISBN:978-0-9330357-95-5.Google Scholar
Garfield, L & Jacobs, S (2017). “Kimbal Musk - Elon’s brother - just opened a shipping container farm compound in New York”. www.businessinsider.com/kimbal-musk-shipping-container-farms-new-york-city-2016-12/.Google Scholar
King, J, Wicker, L & Moskowitz, H (2016). “Influencing consumer choice for healthier products”. Food Technology, 3, 4147.Google Scholar
Maslow, A H (1943). “A theory of human motivation”. Psychological Review, 50 (4), 370396.Google Scholar
Mermelstein, N H (2016). “When natural disasters affect food supply”. Food Technology, 3, 6467.Google Scholar
McNutt, M (2016). “Hazards without disasters”. Science, 353, 201.Google Scholar
Mougeot, L A J (2005). “Introduction”. In: Mougeot, L A J (ed) Agropolis. Earthscan, London.Google Scholar
Premat, A (2005). “Moving between the plan and the ground: shifting perspectives on urban agriculture in Havana, Cuba”. In: Mougeot, L A J (ed) Agropolis. Earthscan, London.Google Scholar
Rio+20, (2012). United Nations Conference on Sustainable Development. Rio de Janeiro, June.Google Scholar
Rosen, J (2016). “Thinking the unthinkable”. Science, 353, 233237.Google Scholar
Smit, J, Nasr, J & Ratta, A (1996). “Urban agriculture: food jobs and sustainable cities”. United Nations Development Programme (UNDP), New York.Google Scholar
Smith, A (2013). “The climate bonus: co-benefits of climate policy”. Routledge, London and New York. ISBN: 978-1-84971-341-2.Google Scholar
Tatham, P H & Pettit, S J (2010). “Transforming Humanitarian Logistics: The journey to Supply Network Management.” International Journal of Physical Distribution and Logistics Management, 40 (8/9), 609622.Google Scholar
Thomas, A S & Kopczak, L R (2005). “Understanding Humanitarian Supply Chains”, pp. 1–15. In “From Logistics to Supply Chain Management: The Path Forward in the Humanitarian Sector” (2005), Fritz Institute, San Francisco.Google Scholar
Wilcockson, S (2004). “UK Crop Production”, Figure 6.1, p. 90. In Bourkalis, M A &Weightman, P W H (eds) “Food Supply Chain Management”, Blackwell. ISBN: 1-4051-0168-7.Google Scholar

References

Abbott, P. (2009). Development dimensions of high food prices. In OECD Food, Agriculture and Fisheries Working Papers, No. 18, Paris: OECD.Google Scholar
Adger, W. N., Pulhin, J. M., Barnett, J., Dabelko, G. D., Hovelsrud, G. K. et al. (2014). Human security. In Field, C. B., Barros, V. R., Dokken, D. J. et al. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press, pp. 755–791.Google Scholar
Ainsworth, E. A. and Rogers, A. (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ., 30, 258270.Google Scholar
Alexandratos, N. and Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12–03. Rome: FAO.Google Scholar
Anacleto, P., Maulvault, A. L., Bandarra, N. M. et al. (2014). Effect of warming on protein, glycogen and fatty acid content of native and invasive clams. Food Res. Int., 64, 439445.Google Scholar
Andre, C. M., Schafleitner, R., Guignard, C. et al. (2009). Modification of the health-promoting value of potato tubers field grown under drought stress: Emphasis on dietary antioxidant and glycoalkaloid contents in five native Andean cultivars (Solanum tuberosum L.). J. Agric. Food Chem., 57, 599609.Google Scholar
Asseng, S., Foster, I. and Turner, N. C. (2014). The impact of temperature variability on wheat yields. Glob. Change Biol., 17, 9971012.Google Scholar
Asseng, S., Ewert, F., Martre, P. et al. (2015) Rising temperatures reduce global wheat production. Nat. Clim. Change, 5, 143147.Google Scholar
Babinszky, L., Halas, V. and Verstegen, M. W. A. (2011). Impacts of climate change on animal production and quality of animal food products. In Blanco, J. and Kheradmand, H. (Eds.), Climate Change - Socioeconomic Effects. Rijeka: InTech, pp. 165190.Google Scholar
Bale, J. S. and Hayward, S. A. L. (2010). Insect overwintering in a changing climate. J. Exp. Biol., 213, 980994.Google Scholar
Banse, M., van Meijl, H., Tabeau, A. and Woltjer, G. (2008). Will EU biofuel policies affect global agricultural markets? Eur. Rev. Agric. Econ., 35, 117141.Google Scholar
Battilani, P., Toscano, P. and Van der Fels-Klerx, H. J. (2016) Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep., 6, 24328.Google Scholar
Bebber, D. P., Ramotowski, M. A. T. and Gurr, S. J. (2013). Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change, 3, 985988.CrossRefGoogle Scholar
Bermúdez, R., Winder, M., Stuhr, A. et al. (2016). Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea. Biogeosciences, 13, 66256635.Google Scholar
Bett, B., Kiunga, P., Gachohi, J. et al. (2017) Effects of climate change on the occurrence and distribution oflivestock diseases. Prev. Vet. Med., 137(Pt B), 119129.Google Scholar
Booker, F., Muntifering, R., McGrath, M. et al. (2009) The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J. Integr. Plant Biol., 51, 337351.Google Scholar
Britz, S. J., Prasad, P. V. V., Moreau, R. A. et al. (2007) Influence of growth temperature on the amounts of tocopherols, tocotrienols, and γ-oryzanol in brown rice. J. Agric. Food Chem., 55, 75597565.Google Scholar
Caldwell, C. R., Britz, S. J. and Mirecki, R. M. (2005). Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. J. Agric. Food Chem., 53, 11251129.Google Scholar
Carrera, C., Martínez, M. J., Dardanelli, J. and Balzarini, M. (2011). Environmental variation and correlation of seed components in nontransgenic soybeans: protein, oil, unsaturated fatty acids, tocopherols, and isoflavones. Crop Sci., 51, 800809.Google Scholar
Cassidy, E. S., West, P. C., Gerber, J. S. and Foley, J. A. (2013). Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett., 8, 034015.Google Scholar
Chennupati, P., Seguin, P. and Liu, W. (2011). Effects of high temperature stress at different development stages on soybean isoflavone and tocopherol concentrations. J. Agric. Food Chem., 59, 1308113088.Google Scholar
Cheung, W. W. L., Watson, R. and Pauly, D. (2013) Signature of ocean warming in global fisheries catch. Nature, 497, 365369.Google Scholar
Choudhury, F. K., Rivero, R. M., Blumwald, E. and Mittler, R. (2016) Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, [e-pub ahead of print] doi: 10.1111/tpj.13299.Google Scholar
Ciais, P., Reichstein, M., Viovy, N. et al. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 473, 529533.Google Scholar
Committee on World Food Security (CFS). (2012). Coming to terms with terminology: food security, nutrition security, food security and nutrition, food and nutrition security, thirty-ninth session, Rome, 15–20 October 2012. Available at: http://www.fao.org/docrep/meeting/026/MD776E.pdf (Accessed 21 June 2016).Google Scholar
Cripps, G., Flynn, K. J., and Lindeque, P. K. (2016) Ocean acidification affects the phyto-zoo plankton trophic transfer efficiency. PLoS ONE, 11, e0151739.Google Scholar
Dai, A. (2011) Drought under global warming: a review. WIREs Clim. Change, 2, 4565.Google Scholar
DaMatta, F. M., Grandis, A., Arenque, B. C. and Buckeridge, M. S. (2010). Impacts of climate change on crop physiology and food quality. Food Res. Int., 43, 18141823.Google Scholar
Dannehl, D., Huber, C., Rocksch, T., Huyskens-Keil, S. and Schmidt, U. (2012). Interactions between changing climate conditions in a semi-closed greenhouse and plant development, fruit yield, and health-promoting plant compounds of tomatoes. Sci. Hortic., 138, 235243.Google Scholar
Dannehl, D. and Josuttis, M. (2014). Cultivar and production effects on bioactive polyphenols. In Watson, R. Ross (Ed.), Polyphenols in Plants. Isolation, Purification and Extract Preparation. London: Academic Press, pp. 313.Google Scholar
Das, K. and Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci., 2, 53.Google Scholar
Díaz-Gil, C., Catalán, I. A., Palmer, M., Faulk, C. K. and Fuiman, L. A. (2015) Ocean acidification increases fatty acids levels of larval fish. Biol. Lett., 11, 20150331.Google Scholar
Dietary Guidelines Advisory Committee (DGAC). (2015). Scientific report of the 2015 Dietary Guidelines Advisory Committee to the Secretaries of the U.S. Departments of Health and Human Services (HHS) and Agriculture (USDA). Washington, DC: U.S. Department of Agriculture, Agricultural Research Service.Google Scholar
Donnelly, A., Lawson, T., Craigon, J. et al. (2001). Effects of elevated CO2 and O3 on tuber quality in potato. Agric. Ecosyst. Environ., 87, 273285.Google Scholar
Dornbos, D. L. and Mullen, R. E. (1992). Soybean seed protein and oil contents and fatty acid composition – adjustments by drought and temperature. J. Am. Oil Chem. Soc., 69, 228231.Google Scholar
Drewnowski, A. and Darmon, N. (2005). The economics of obesity: dietary energy density and energy cost. Am. J. Clin. Nutr., 82, 265S273S.Google Scholar
Elbehri, A., Elliott, J. and Wheeler, T. (2015). Climate change, food security and trade: An overview of global assessments and policy insights. In FAO (Ed.). Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade. Geneva: Food Agriculture Organization of the United Nations (FAO), pp. 127.Google Scholar
Elmadfa, I., Meyer, A., Nowak, V. et al. (2009). European nutrition and health report 2009. Forum Nutr., 62, 1405.Google Scholar
Elmadfa, I. and Meyer, A. L. (2017). Animal proteins as important contributors to a healthy human diet. Annu. Rev. Anim. Biosci., 5, 1111–131.Google Scholar
Elsgaard, L., Børgesen, C. D., Olesen, J. E. et al. (2012) Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe. Food Addit. Contam. Part A – Chem., 29, 15141526.Google Scholar
Fangmeier, A, De Temmerman, L., Black, C., Persson, K. and Vorne, V. (2002). Effects of elevated CO2 and/or ozone on nutrient concentrations and nutrient uptake of potatoes. Eur. J. Agron., 17, 353368.Google Scholar
FAO. (2000) The State of Food Insecurity in the World 2000. Rome: United Nations Food and Agriculture Organization.Google Scholar
FAO. (2006). Livestock’s Long Shadow: Environmental Issues and Options. Rome: Food and Agriculture Organization.Google Scholar
FAO. (2009) Climate change implications for fisheries and aquaculture: Overview of current scientific knowledge. In: FAO Fisheries and Aquaculture Technical Paper 530. Rome: United Nations Food and Agriculture Organization.Google Scholar
FAO (2010) Fats and fatty acids in human nutrition. Report of an expert consultation. Geneva, 10–4 November, 2008. FAO Food and Nutrition Paper 91. Rome: United Nations Food and Agriculture Organization.Google Scholar
FAO. (2015). The Impact of Natural Hazards and Disasters on Agriculture and Food Security and Nutrition: A Call for Action to Build Resilient Livelihoods. Rome: United Nations Food and Agriculture Organization (FAO).Google Scholar
FAO (2016) The State of World Fisheries and Aquaculture 2016: Contributing to food security and nutrition for all. Rome: United Nations Food and Agriculture Organization.Google Scholar
FAO, IFAD and WFP. (2014). The State of Food Insecurity in the World 2014: Strengthening the Enabling Environment for Food Security and Nutrition. Rome: United Nations Food and Agriculture Organization.Google Scholar
FAO, IFAD and WFP. (2015) The state of food insecurity in the world 2015. In: Meeting the 2015 international hunger targets: taking stock of uneven progress. Rome: United Nations Food and Agriculture Organization.Google Scholar
Feng, S. and Fu, Q. (2013) Expansion of global drylands under a warming climate. Atmos. Chem. Phys., 13, 1008110094.Google Scholar
Flagella, Z., Rotunno, T., Tarantino, E., Di Caterina, R. and De Caro, A. (2002). Changes in seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and the water regime. Eur. J. Agron., 17, 221230.Google Scholar
Fleurbaey, M., Kartha, S., Bolwig, S. et al. (2014) Sustainable development and equity. In Edenhofer, O., Pichs-Madruga, R., Sokona, Y. et al. (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 283350.Google Scholar
Fouad, A. M., Chen, W., Ruan, D. et al. (2016). Impact of heat stress on meat, egg quality, immunity and fertility in poultry and nutritional factors that overcome these effects: A review. Int. J. Poultry Sci., 15, 8195.Google Scholar
Fu, Y., Shao, L., Liu, H. et al. (2015) Unexpected decrease in yield and antioxidants in vegetable at very high CO2 levels. Environ. Chem. Lett., 13, 473479.Google Scholar
Galloway, A. W. E. and Winder, M. (2015) Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. PLoS ONE, 10, e0130053.Google Scholar
Gammans, M., Mérel, P. and Ortiz-Bobea, A. (2016) The impact of climate change on cereal yields: Statistical evidence from France. Selected Paper prepared for presentation at the Agricultural and Applied Economics Association’s 2016 AAEA Annual Meeting, Boston, MA, July 31–August 2, 2016. Available at: www.uni-goettingen.de/de/document/download/98d80dc02fbdf7cfe708b3a29eaf987d.pdf/Session%208b%20M%C3%A9rel.pdf (Accessed 10 August 2016).Google Scholar
García, G. A., Dreccer, M. F., Miralles, D. J. and Serrago, R. A. (2015). High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob. Change Biol., 21, 41534164.Google Scholar
Garzke, J., Hansen, T., Ismar, S. M. H. and Sommer, U. (2016). Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content. PLoS ONE, 11, e0155952.Google Scholar
Gautier, H. Diakou-Verdin, V., Bénard, C. et al. (2008) How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J. Agric. Food Chem., 56, 12411250.Google Scholar
Gebauer, S. K. and Baer, D. J. (2013) Trans-fatty acids: health effects, recommendations, and regulations. Encyclopedia of Human Nutrition, 3rd ed., Vol. 4, 288292.Google Scholar
Gleadow, R. M., Evans, J. R., McCaffery, S. and Cavagnaro, T. R. (2009). Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO2. BMC Plant Biol., 11 (Suppl. 1), 7682.Google Scholar
Goufo, P., Pereira, J., Figueiredo, N. et al. (2014). Effect of elevated carbon dioxide (CO2) on phenolic acids, flavonoids, tocopherols, tocotrienols, γ-oryzanol and antioxidant capacities of rice (Oryza sativa L.). J. Cereal Sci., 59, 1524.Google Scholar
Grace, D. (2015). Food safety in low and middle income countries. Int. J. Environ. Res. Publ. Health., 12, 1049010507.CrossRefGoogle ScholarPubMed
Gregory, P. J., Ingram, J. S. I. and Brklacich, M. (2005). Climate change and food security. Phil. Trans. R. Soc. B, 360, 21392148.Google Scholar
Gregory, P. J., Johnson, S. N., Newton, A. C. and Ingram, J. S. I. (2009). Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot., 60, 28272838Google Scholar
Hammami, H., Vandenplas, J., Vanrobays, M.-L. et al. (2015) Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows. J. Dairy Sci., 98, 49564968.Google Scholar
Harris, W. S. (2014). Achieving optimal n–3 fatty acid status: the vegetarian’s challenge … or not. Am. J. Clin. Nutr., 100, 449S452S.Google Scholar
Hatfield, J. L. and Prueger, J. H. (2015). Temperature extremes: effect on plant growth and development. Weather & Climate Extr., 10, 410.Google Scholar
Hatfield, J. L., Boote, K. J., Kimball, B. A. et al. (2011) Climate impacts on agriculture: Implications for crop production. Agron. J., 103, 351370.Google Scholar
Havlík, P., Leclère, D., Valin, H. et al. (2015). Global climate change, food supply and livestock production systems: A bioeconomic analysis. In FAO (Ed.), Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade. Geneva: Food Agriculture Organization of the United Nations, pp. 176201.Google Scholar
Herrero, M., Grace, D., Njuki, J. et al. (2013). The roles of livestock in developing countries. Animal, 7, 318.Google Scholar
Herrero, M., Henderson, B., Havlík, P. et al. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change, 6, 452461.Google Scholar
Herring, S. C., Hoerling, M. P., Kossin, J. P. et al. (Eds, .) (2015). Explaining extreme events of 2014 from a climate perspective. B. Am. Meteorol. Soc., 96, S1S172.Google Scholar
Hoffmann, H. and Rath, T. (2013). Future bloom and blossom frost risk for Malus domestica considering climate model and impact model uncertainties. PLoS ONE, 8, e75033.Google Scholar
Högy, P. and Fangmeier, A. (2008). Effects of elevated atmospheric CO2 on grain quality of wheat. J. Cereal Sci., 48, 580591.Google Scholar
Iglesias, A., Garrote, L., Quiroga, S. and Moneo, M. (2012). A regional comparison of the effects of climate change on agricultural crops in Europe. Clim. Change, 112, 2946.Google Scholar
IPCC. [Solomon, S., Qin, D., Manning, M. et al. (Eds.)] (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
IPCC (Intergovernmental Panel on Climate Change). [Field, C. B., Barros, V. R., Dokken, D. J. et al. (Eds.)]. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part a: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Jalloh, A., Nelson, G. C., Thomas, T. S. et al. (Eds.) (2013). West African Agriculture and Climate Change: A Comprehensive Analysis. IFPRI Research Monograph. Washington, DC: International Food Policy Research Institute.Google Scholar
Jayalakshmi, T., Nandakumar, R., Balaji Prasath, B. and Santhanam, P. (2016). Effect of acidification on fatty acids profiling of marine benthic harpacticoid copepod Parastenhelia sp. Ann. Agrar. Sci., 14, 278282.Google Scholar
Jensen, R. and Miller, N. (2008) Giffen behavior and subsistence consumption. Am. Econ. Rev., 97, 15531577.Google Scholar
Katona, P. and Katona-Apte, J. (2008). The interaction between nutrition and infection. Clin. Infect. Dis., 46, 15821588.Google Scholar
Khan, A. E., Ireson, A. and Kovats, S. (2011). Drinking water salinity and maternal health in coastal Bangladesh: implications of climate change. Environ. Health Persp., 119, 13281332.Google Scholar
Khanom, T. (2016) Effect of salinity on food security in the context of interior coast of Bangladesh. Ocean & Coastal Management, 130, 205212.Google Scholar
King, A. L., Jenkins, B. D., Wallace, J. R. et al. (2015). Effects of CO2 on growth rate, C:N:P, and fatty acid composition of seven marine phytoplankton species. Marine Ecology Progress Series, 537, 5969.Google Scholar
Kitinoja, L., Saran, S., Roy, S. K. and Kader, A. A. (2011). Postharvest technology for developing countries: challenges and opportunities in research, outreach and advocacy. J. Sci. Food Agr., 91, 597603.Google Scholar
Lake, I. R., Gillespie, I. A., Bentham, G. et al. (2009). A re-evaluation of the impact of temperature and climate change on foodborne illness. Epidemiol. Infect., 137, 15381547.Google Scholar
Lake, I. R., Hooper, L., Abdelhamid, A. et al. (2012). Climate change and food security: health impacts in developed countries. Environ. Health Persp., 120, 15201526.Google Scholar
Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J. (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot., 60, 28592876.Google Scholar
Lefsrud, M. G., and Kopsell, D. A. (2005). Air temperature affects biomass and carotenoid pigment accumulation in kale and spinach grown in a controlled environment. HortSci., 40, 20262030.Google Scholar
Legave, J.-M., Guédon, Y., Malagi, G., El Yaacoubi, A. and Bonhomme, M. (2015). Differentiated responses of apple tree floral phenology to global warming in contrasting climatic regions. Front. Plant Sci., 6, 1054.Google Scholar
Lloyd, S. J., Kovats, S. R. and Chalabi, Z. (2011). Climate change, crop yields, and undernutrition: development of a model to quantify the impact of climate scenarios on child undernutrition. Environ. Health Perspect., 119, 18171823.Google Scholar
Lobell, D. B., Gourdji, S.M. (2012) The influence of climate change on global crop productivity. Plant Physiol., 160, 16861697.Google Scholar
Long, S. P., Ainsworth, E. A., Rogers, A. and Ort, D. R. (2004). Rising atmospheric carbon dioxide: Plants FACE the future. Annu. Rev. Plant Biol., 55, 591628.Google Scholar
Luedeling, E., Zhang, M. and Girvetz, E. H. (2009). Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950–2099. PLoS ONE 4, e6166.Google Scholar
Massot, C., Bancel, D., Lopez Lauri, F. et al. (2013). High temperature inhibits ascorbate recycling and light stimulation of the ascorbate pool in tomato despite increased expression of biosynthesis genes. PLoS ONE, 8 (12), e84474.Google Scholar
McMurray, G., Arruda, C., Britton, D. et al. (2013). Food Security: a Systems Approach. White paper presented at: EU Science: Global Challenges and Global Collaboration, Brussels, March 4 to 9, 2013.Google Scholar
Medina, A., Rodriguez, A. and Magan, N. (2014) Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front. Microbiol., 5, 348.Google Scholar
Office, Met and World Food Programme (WFP). (2012). Climate Impacts on Food Security and Nutrition. Devon: Met Office and Rome: WFP.Google Scholar
Miraglia, M., Marvin, H. J. P., Kleter, G. A. et al. (2009). Climate change and food safety: an emerging issue with special focus on Europe. Food Chem. Toxicol., 47, 10091021.Google Scholar
Montagnac, J. A., Davis, C. R. and Tanumihardjo, S. A. (2009). Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr. Rev. Food Sci. Food Saf., 8, 181194.Google Scholar
Moore, F. C. and Lobell, D. B. (2015) The fingerprint of climate trends on European crop yields. Proc. Natl. Acad. Sci. U.S.A., 112, 26702675.Google Scholar
Moretti, C. L., Mattos, L. M., Calbo, A. G. and Sargent, S. A. (2010). Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: a review. Food Res. Int., 43, 18241832.Google Scholar
Montero-Serra, I., Edwards, M. and Genner, M. J. (2015) Warming shelf seas drive the subtropicalization of European pelagic fish communities. Global Change Biol., 21, 144153Google Scholar
Müller, C. and Robertson, R. D. (2014). Projecting future crop productivity for global economic modeling. Agr. Econ., 45, 3750, DOI: 10.1111/agec.12088.Google Scholar
Myers, N. and Kent, J. (2003) New consumers: The influence of affluence on the environment. Proc. Natl. Acad. Sci. U.S.A., 100, 49634968.Google Scholar
Myers, S. S., Zanobetti, A., Kloog, I. et al. (2014) Increasing CO2 threatens human nutrition. Nature, 510, 139142.Google Scholar
Namazkar, S., Stockmarr, A., Frenck, G. et al. (2016). Concurrent elevation of CO2, O3 and temperature severely affects oil quality and quantity in rapeseed. J. Exp. Bot., 67, 41174125.Google Scholar
Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S. and Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci., 130, 5769.Google Scholar
Nelson, G. C., Rosegrant, M. W., Palazzo, A., Gray, I., Ingersoll, C. et al. (2010). Food Security, Farming, and Climate Change to 2050: Scenarios, Results, Policy Options. Washington, DC: International Food Policy Research Institute (IFPRI).Google Scholar
Niang, I., Ruppel, O. C., Abdrabo, M. A. et al. (2014). Africa. In Field, C. B., Barros, V. R., Dokken, D. J. et al. (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 11991265.Google Scholar
Olfert, O. and Weiss, R. M. (2006). Impact of climate change on potential distributions and relative abundances of Oulema melanopus, Meligethes viridescens and Ceutorhynchus obstrictus in Canada. Agric. Ecosyst. Environ., 113, 295301.Google Scholar
Pangaribowo, E. H., Gerber, N. and Torero, M. (2013). Food and nutrition security indicators: a review. ZEF Working Paper Series, 108.Google Scholar
Parry, M., Evans, A., Rosegrant, M. W. and Wheeler, T. (2009). Climate Change and Hunger: Responding to the Challenge. Rome: World Food Programme.Google Scholar
Paterson, R. R. M. and Lima, N. (2011) Further mycotoxin effects from climate change. Food Res. Int., 44, 25552566.Google Scholar
Peters, K., Breitsameter, L. and Gerowitt, B. (2014). Impact of climate change on weeds in agriculture: a review. Agron. Sustain. Dev., 34, 707721.Google Scholar
Pleijel, H., Mortensen, L., Fuhrer, J., Ojanperä, K., and Danielsson, H. (1999). Grain protein accumulation in relation to grain yield of spring wheat (Triticum aestivum L.) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability. Agric. Ecosyst. Environ., 72, 265270.Google Scholar
Pörtner, H. O. (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 132, 739761.Google Scholar
Porter, J. R., Xie, L., Challinor, A. J. et al. (2014) Food security and food production systems. In Field, C. B., Barros, V. R., Dokken, D. J. et al. (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 485533.Google Scholar
Prakash, A. (Ed.) (2011) Safeguarding Food Security in Volatile Global Markets. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
Prasad, P. V. V., Staggenborg, S. A. and Ristic, Z. (2008) Impacts of Drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In Ahuja, L. R., Reddy, V. R., Saseendran, S. A. and Yu, Q. (Eds.), Response of Crops to Limited Water. Understanding and Modeling Water Stress Effects on Plant Growth Processes. Advances in Agricultural Systems Modeling 1, Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, pp. 301355.Google Scholar
Reich, P. B., Hobbie, S. E. and Lee, T. D. (2014). Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci., 7, 920924.Google Scholar
Remington, T., Maroko, J., Walsh, S., Omanga, P. and Charles, E. (2002). Getting off the seeds-and-tools treadmill with CRS seed vouchers and fairs. Disasters, 26, 316328.Google Scholar
Renna, M., Lussiana, C., Malfatto, V., Mimosi, A. and Battaglini, L. M. (2010). Effect of exposure to heat stress conditions on milk yield and quality of dairy cows grazing on Alpine pasture. Proceedings of the 9th European IFSA Symposium, 4–7 July 2010, Vienna, Austria, pp. 13381348.Google Scholar
Richardson, A. C., Marsh, K. B., Boldingh, H. L. et al. (2004). High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit. Plant Cell Environ., 27, 423435.Google Scholar
Richerson, P. J., Boyd, R. and Bettinger, R. L. (2001) Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. Am. Antiq., 66, 387411.Google Scholar
Rochette, P., Bélanger, G., Castonguay, Y. et al. (2004). Climate change and winter damage to fruit trees in eastern Canada. Can. J. Plant Sci., 84, 11131125.Google Scholar
Rogers, A., Ainsworth, E. A. and Leakey, A. D. B. (2009). Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol., 151, 10091016.Google Scholar
Rosales, M. A., Ruiz, J. M., Hernández, J., Soriano, T., Castilla, N. and Romero, L. (2006). Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. J. Sci. Food Agr., 86, 15451551.Google Scholar
Rötter, R. P., Palosuoa, T., Pirttioj, N. K. et al. (2011). What would happen to barley production in Finland if global warming exceeded 4 °C? A model-based assessment. Eur. J. Agron., 35, 205214.Google Scholar
Sánchez, B. A., Rasmussen, A. and Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: a review. Global Change Biol., 20, 408417.Google Scholar
Seneviratne, S. I., Nicholls, N., Easterling, D. et al. (2012). Changes in climate extremes and their impacts on the natural physical environment. In Field, C. B., Barros, V., Stocker, T. F. et al. (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press, pp. 109230.Google Scholar
Shen, Y., Lansky, E., Traber, M. and Nevo, E. (2013). Increases in both acute and chronic temperature potentiate tocotrienol concentrations in wild barley at “Evolution Canyon”. Chem Biodivers., 10, 16961705.Google Scholar
Showler, A. T. (2013) Drought and arthropod pests of crops. In Neves, D. F. and Sanz, J. D. (Eds.), Droughts: New Research. Hauppauge, NY: Nova Science, pp. 131156.Google Scholar
Singh, S., Gupta, A. K. and Kaur, N. (2012). Influence of drought and sowing time on protein composition, antinutrients, and mineral contents of wheat. Scientific World J., 2012, 485751.Google Scholar
Skuce, P. J., Morgan, E. R., van Dijk, J. and Mitchell, M. (2013). Animal health aspects of adaptation to climate change: beating the heat and parasites in a warming Europe. Animal, 7 (s2), 333345.Google Scholar
Smith, K. R., Woodward, A., Campbell-Lendrum, D. et al. (2014). Human health: impacts, adaptation, and co-benefits. In Field, C. B., Barros, V. R., Dokken, D. J. et al. (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 709754.Google Scholar
Sperling, L. and McGuire, S. J. (2010). Persistent myths about emergency seed aid. Food Policy, 35, 195201.Google Scholar
Taub, D. R., Miller, B. and Allen, H. (2008). Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Global Change Biol., 14, 565575.Google Scholar
Teh, S. Y. and Koh, H. L. (2016) Climate change and soil salinization: impact on agriculture, water and food security. International Journal of Agriculture, Forestry and Plantation, 2, 19.Google Scholar
The Royal Society (2005) Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide. London: The Royal Society.Google Scholar
Thomas, J. M. G., Prasad, P. V. V., Boote, K. J. and Allen, L. H. Jr. (2009). Seed composition, seedling emergence and early seedling vigour of red kidney bean seed produced at elevated temperature and carbon dioxide. J. Agron. Crop Sci., 195, 148156.Google Scholar
Thomas, J. M. G., Boote, K. J., Allen, L. H. Jr., Gallo-Meagher, M. and Davis, J. M. (2003). Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci., 43, 15481557.Google Scholar
Thomson, L. J., Macfadyen, S. and Hoffmann, A. A. (2010). Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control, 52, 296306.Google Scholar
Thornton, P. K., Ericksen, P. J., Herrero, M. and Challinor, A. J. (2014) Climate variability and vulnerability to climate change: a review. Global Change Biol., 20, 33133328.Google Scholar
Triboi, E. and Triboi-Blondel, A. M. (2002). Productivity and grain or seed composition: a new approach to an old problem. Eur. J. Agron., 16, 163186.Google Scholar
Trnka, M., Olesen, J. E., Kersebaum, K. C. et al. (2011) Agroclimatic conditions in Europe under climate change. Global Change Biol., 17, 22982318.Google Scholar
Tubiello, F. N., Salvatore, M., Cóndor Golec, R. D. et al. (2014). Agriculture, forestry and other land use emissions by sources and removals by sinks. 1990 – 2011 analysis. Rome: FAO Statistics Division Working Paper Series ESS/14–02.Google Scholar
UNICEF, WHO and The World Bank Group. (2015). Joint Child Malnutrition Estimates – Levels and Trends (2015 Edition): Key Findings. New York: UNICEF, WHO, World Bank. Available at: http://www.who.int/entity/nutgrowthdb/jme_brochure2015.pdf?ua=1 (Accessed 29 June 2016).Google Scholar
U.S. Department of Transportation. (2014). Climate Adaptation Plan: Ensuring Transportation Infrastructure and System Resilience. Washington, DC: DoT.Google Scholar
van der Fels-Klerx, H. J., Olesen, J. E., Naustvoll, L.-J., Friocourt, Y., Mengelers, M. J. B. and Christensen, J. H. (2012).Climate change impacts on natural toxins in food production systems, exemplified by deoxynivalenol in wheat and diarrhetic shellfish toxins. Food Addit. Contam. Part A – Chem., 29, 16471659Google Scholar
Vineis, P., Chan, Q. and Khan, A. (2011) Climate change impacts on water salinity and health. J. Epidemiol. Global Health., 1, 510.Google Scholar
Vorne, V., Ojanperä, K., De Temmerman, L. et al. (2002). Effects of elevated carbon dioxide and ozone on potato tuber quality in the European multiple-site experiment ‘CHIP-project’. Eur. J. Agron., 17, 369381.Google Scholar
Waithaka, M., Nelson, G., Thomas, T. and Kyotalimye, M. (Eds.) (2013). East African agriculture and climate change: A comprehensive analysis. IFPRI Research Monograph. Washington, DC: International Food Policy Research Institute.Google Scholar
Wang, Y. and Frei, M. (2011). Stressed food – the impact of abiotic environmental stresses on crop quality. Agric. Ecosyst. Environ., 141, 271286.Google Scholar
Wang, S. Y., Bunce, J. A. and Maas, J. L. (2003). Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. J. Agric. Food Chem., 51, 43154320.Google Scholar
Warland, J., McKeown, A. W. and McDonald, M. R. (2006). Impact of high air temperatures on Brassicaceae crops in southern Ontario. Can. J. Plant Sci., 86, 12091215.Google Scholar
Watts, E. J., Shen, Y., Lansky, E. P. et al. (2015) High environmental stress yields greater tocotrienol content while changing vitamin E profiles of wild emmer wheat seeds. J. Med. Food, 18, 216223.Google Scholar
White, R., Stewart, B. and O’Neill, P. (2011). Access to Food in a Changing Climate: A Report to DEFRA. University of Oxford, Environmental Change Institute. Available at: http://www.eci.ox.ac.uk/publications/downloads/2011-OIA-ECI-report-access-to-food.pdf. (Accessed 28 September 2016)Google Scholar
Woolf, A. B., Ferguson, I. B., Requejo-Tapia, L. C., Boyd, L., Laing, W. A. and White, A. (1999). Impact of sun exposure on harvest quality of ‘Hass’ avocado fruit. Rev. Chapingo Ser. Hortic., 5, 353358.Google Scholar
World Bank, Poverty Reduction and Equity Group. (2011). Food Price Watch, 5, February 2011.Google Scholar
World Bank, Poverty Reduction and Equity Group. (2015). Food Price Watch, 19, June 2015.Google Scholar
Yang, X., Chen, F., Lin, X. et al. (2015) Potential benefits of climate change for crop productivity in China. Agricultural and Forest Meteorology, 208, 7684.Google Scholar
Yonetani, M., Lavell, C., Bower, E. et al. (2015). Global Estimates 2015: People Displaced by Disasters. Geneva: Internal Displacement Monitoring Centre (IDMC).Google Scholar
Yoshida, Y., Saito, Y., Jones, L. S. and Shigeri, Y. (2007). Chemical reactivities and physical effects in comparison between tocopherols and tocotrienols: physiological significance and prospects as antioxidants. J. Biosci. Bioeng., 104, 439–45, doi: 10.1263/jbb.104.439.Google Scholar
Zavala, J. A., Casteel, C. L., DeLucia, E. H. and Berenbaum, M. R. (2008). Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proc. Natl. Acad. Sci. U.S.A., 105, 51295133.Google Scholar
Zhang, Z. Y., Jian, G. Q., Zuo, J. J. (2012). Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poultry Sci., 91, 29312937.Google Scholar
Zhu, Y., Qian, W. and Hua, J. (2010). Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathogens, 6, e1000844.Google Scholar
Ziska, L., Crimmins, A., Auclair, A. et al. (2016). Food Safety, Nutrition, and Distribution. In: The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. Washington, DC: U.S. Global Change Research Program, pp. 189–216. Available at: http://dx.doi.org/10.7930/J0ZP4417 (Accessed on 29 September 2016)Google Scholar
Zvereva, E. L. and Kozlov, M. V. (2006). Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a metaanalysis. Glob. Change Biol., 12, 2741.Google Scholar

References

Alder, J., Guénette, S., Beblow, J., Cheung, W., and Christensen, V. (2007) Ecosystem-based Global Fishing Policy Scenarios. Fisheries Centre Research Reports 15(7).Google Scholar
Allison, E.H., Perry, A.L., Badjeck, M.-C., Adger, W.N., Brown, K., Conway, D., Halls, A.S., Pilling, G.M., Reynolds, J.D., Andrew, N.L., and Dulvy, N.K. (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries, 10, 173196.Google Scholar
Apaza, M., and Figari, A. (1999) Mortandad de aves marinas durante El Niño 1997–98 en el litoral sur de San Juan de Marcona, Ica, Perú. Revista Peruana de Biología, Vol. Extraordinario, pp. 110–117.Google Scholar
Asif, M., and Muneer, T. (2007) Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews, 11, 13881413.Google Scholar
Barange, M., Merino, G., Blanchard, J.L., Scholtens, J., Harle, J., Allison, E.H., Allen, J.I., Holt, J., and Jennings, S. (2014) Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nature Climate Change, 4, 211216.Google Scholar
Barber, R.T., and Chavez, F.P. (1983) Biological consequences of El Niño. Science 222, 12031210.Google Scholar
Battisti, D.S., and Naylor, R.L. (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240244.Google Scholar
Baines, J., Baines, T., and Quigley, R. (2015) The Social and Community Effects of Aquaculture: A Case Study of Southland Aquaculture. New Zealand Ministry for Primary Industries report.Google Scholar
Beldade, R., Holbrook, S.J., Schmitt, R.J., Planes, S., Malone, D., and Bernardi, G. (2012) Larger female fish contribute disproportionately more to self-replenishment. Proceedings of the Royal Society B, 279, 21162121.Google Scholar
Bell, J.D., Ganachaud, A., Gehrke, P.C., Griffiths, S.P., Hobday, A.J., Hoegh-Guldberg, O., Johnson, J.E., Le Borgne, R., Lehodey, P., Lough, J.M., Matear, R.J., Pickering, T.D., Pratchett, M.S., Gupta, A.S., Senina, I., and Waycott, M. (2013) Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nature Climate Change, 3, 591599.Google Scholar
Béné, C., Barange, M., Subasinghe, R., Pinstrup-Andersen, P., Merino, G., Hemre, G.-I., and Williams, M. (2015). Feeding 9 billion by 2050—putting fish back on the menu. Food Security, 7, 261274.Google Scholar
Bradshaw, C.J.A., and Brook, B.W. (2014) Human population reduction is not a quick fix for environmental problems. Proceedings of the National Academy of Sciences, 111, 1661016615.Google Scholar
Branch, T.A., DeJoseph, B.M., Ray, L.J., and Wagner, C.A. (2013) Impacts of ocean acidification on marine seafood. Trends in Ecology & Evolution, 28, 178186.Google Scholar
Brodie, J.E., Kroon, F.J., Schaffelke, B., Wolanski, E.C., Lewis, S.E., Devlin, M.J., Bohnet, I.C., Bainbridge, Z.T., Waterhouse, J., and Davis, A.M. (2012) Terrestrial pollutant runoff to the Great Barrier Reef: An update of issues, priorities and management responses. Marine Pollution Bulletin, 65, 81100.Google Scholar
Brūchert, V., Currie, B., Peard, K.R., Lass, U., Endler, R., Dübecke, A., Julies, E., Leipe, T., and Zitzmann, S. 2006. Biogeochemical and physical control on shelf anoxia and water column hydrogen sulphide in the Benguel: A coastal upwelling off Namibia. In: Past and Present Water Column Anoxia, Neretin, L.N. (Ed.). Springer. pg. 161193.Google Scholar
Burge, C.A., Eakin, C.M., Friedman, C.S., Froelich, B., Hershberger, P.K., Hofmann, E.E., Petes, L.E., Prager, K.C., Weil, E., Willis, B.L., Ford, S.E., and Harvell, C.D. (2014) Climate change influences on marine infectious diseases: Implications for management and society. Annual Reviews in Marine Science, 6, 249–77.Google Scholar
Buschmann, A.H., Varela, D.A., Hernández-González, M.C., Huovinen, P., (2008)Opportunities and challenges for the development of an integrated seaweed based aquaculture activity in Chile: Determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. Journal of Applied Phycology, 20, 571577.Google Scholar
Butterworth, A. (2016) A Review of the welfare impact on pinnipeds of plastic marine debris. Frontiers in Marine Science, 3,149. doi: 10.3389/fmars.2016.00149.Google Scholar
Capone, D.G., and Hutchins, D.A. (2013) Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nature Geoscience, 6, 711717.Google Scholar
CBI (2015) CBI Trade Statistics: Fish and Seafood. CBI.Google Scholar
Chassot, E., Bonhommeau, S., Dulvy, N.K., Mélin, F., Watson, R., Gascuel, D. and Le Pape, O. (2010) Global marine primary production constrains fisheries catches. Ecology Letters, 13, 495505.Google Scholar
Chern, W.S., Ishibashi, K., Taniguchi, K., and Tokoyama, Y. (2002) Analysis of food consumption behavior by Japanese households. ESA Working Paper No. 02–06.Google Scholar
Cheung, W.W.L., Lam, V.W.Y., Sarmiento, J.L., Kearney, K., Watson, R., Zeller, D., and Pauly, D. (2010). Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16, 2435.Google Scholar
Cheung, W.W.L., Dunne, J., Sarmiento, J.L., and Pauly, D. (2011) Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES Journal of Marine Science, 68, 10081018.Google Scholar
Cheung, W.W.L., Sarmiento, J.L., Dunne, J., Frölicher, T.L., Lam, V.W.Y., Palomares, M.L.D., Watson, R., and Pauly, D. (2013) Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change, 3, 254258.Google Scholar
Cheung, W.W.L., Jones, M.C., Reygondeau, G., Stock, C.A., Lam, V.W.Y., and Frölicher, T.L. (2016) Structural uncertainty in projecting global fisheries catches under climate change. Ecological Modelling, 325, 5766.Google Scholar
Cheung, W.W.L., Reygondeau, G., and Frölicher, T.L. (2016) Large benefits to marine fisheries of meeting the 1.5 °C global warming target. Science, 354, 15911594.Google Scholar
Chimits, P. (1957) Tilapia in ancient Egypt. FAO Fisheries Bulletin, 10, 211215.Google Scholar
Christensen, V. Walters, C.J., Ahrens, R., Alder, J., Buszowski, J., Christensen, L.B., Cheung, W.W.L., Dunne, J., Froese, R., Karpouzi, V., Kastner, K., Kearney, K., Lai, S., Lam, V., Palomares, M.L.D., Peters-Mason, A., Piroddi, C., Sarmiento, J.L., Steenbeek, J., Sumaila, R., Watson, R., Zeller, D. and Pauly, D. (2008) Models of the world’s large marine ecosystems. GEF/LME global project Promoting Ecosystem-based Approaches to Fisheries Conservation and Large Marine Ecosystems. IOC Technical Series No. 80. Paris, UNESCO.Google Scholar
Cinner, J.E., Huchery, C., MacNeil1, M.A., Graham, N.A.J., McClanahan, T.R., Maina, J.,Maire, E., Kittinger, J.N., Hicks, C.C., Mora, C., Allison, E.H., D’Agata, S., Hoey, A., Feary, D.A., Crowder, L., Williams, I.D., Kulbicki, M., Vigliola, L., Wantiez, L., Edgar, G., Stuart-Smith, R.D., Sandin, S.A., Green, A.L., Hardt, M.J., Beger, M., Friedlander, A., Campbell, S.J., Holmes, K.E., Wilson, S.K., Brokovich, E., Brooks, A.J., Cruz-Motta, J.J., Booth, D.J., Chabanet, P., Gough, C., Tupper, M., Ferse, S.C.A., Sumaila, U.R., and Mouillot, D. (2016) Bright spots among the world’s coral reefs. Nature, 535, 416419.Google Scholar
Costa-Pierce, B.A. (2002). Ecological Aquaculture: The evolution of the blue revolution. Oxford: Wiley-Blackwell. pp 129.Google Scholar
Costello, C., Ovando, D., Hilborn, R., Gaines, S.D., Deschenes, O., Lester, S.E. (2012) Status and solutions for the world’s unassessed fisheries. Science, 338, 517520.Google Scholar
Costello, C., Ovando, D., Clavelle, T., Strauss, C.K., Hilborn, R., Melnychuk, M.C., Branch, T.A., Gaines, S.D., Szuwalski, C.S., Cabral, R.B., Rader, D.N., and Leland, A. (2016) Global fishery prospects under contrasting management regimes. Proceedings of the National Academy of Sciences, 113, 51255129.Google Scholar
Cotner, J.B., and Biddanda, B.A. (2002) Small players, large role: Microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems, 5, 105121.Google Scholar
Crossland, C.J., Kremer, H.H., Lindeboom, H.J., Marshall Crossland, J.I., and Le Tissier, M.D.A. (2005) Coastal Fluxes in the Anthropocene: The Land-Ocean Interactions in the Coastal Zone Project of the International Geosphere-Biosphere Programme. Springer.Google Scholar
Dafforn, K.A., Glasby, T.M., Airoldi, L., Rivero, N.K., Mayer-Pinto, M., and Johnston, E.L. (2015). Marine urbanization: An ecological framework for designing multifunctional artificial structures. Frontiers in Ecology and the Environment, 13, 8290.Google Scholar
Derraik, J.G.B. (2002) The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 44, 842852.Google Scholar
Dhar, A.K., Manna, S.K., and Allnutt, F.C.T. (2014) Viral vaccines for farmed finfish. Virus Disease, 25, 117.Google Scholar
Dodds, S. (1997) Towards a ‘science of sustainability’: Improving the way ecological economics understands human well-being. Ecological Economics, 23, 95111.Google Scholar
Doney, S.C., Fabry, V.J., Feely, R.A., and Kleypas, J.A. (2009) Ocean acidification: The other CO2 problem. Annual Reviews in Marine Science, 1, 169–92.Google Scholar
Doyen, L., Pereau, J.-C., and Cissé, A. (2016) The tragedy of open ecosystems. Dynamic Games and Applications. doi: 10.1007/s13235-016-0205-3.Google Scholar
Dugdale, R., Goering, J., Barber, R., Smith, R., and Packard, T. (1977) Denitrification and hydrogen sulfide in the Peru upwelling region during 1976. Deep Sea Research, 24, 601608.Google Scholar
EIA (U.S. Energy Information Administration) (2016) Monthly Energy Review October 2016. Washington, DC: EIA.Google Scholar
Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, S., Feket, B.M., Folberth, C., Foster, I., Gosling, S.N., Haddeland, I., Khabarov, N., Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, A.C., Satoh, Y., Schmid, E., Stack, T., Tang, W., and Wisser, D. (2014). Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, 111, 32393244.Google Scholar
EJF (2016) The EU IUU Regulation: Building on success, EU progress in the global fight against illegal fishing. Report by The Environmental Justice Foundation (EJF), Oceana, The Pew Charitable Trusts and WWF.Google Scholar
Ekstrom, J.A., Suatoni, L., Cooley, S.R., Pendleton, L.H., Waldbusser, G.G., Cinner, J.E., Ritter, J., Langdon, C., van Hooidonk, R., Gledhill, D., Wellman, K., Beck, M.W., Brander, L.M., Rittschof, D., Doherty, C., Edwards, P.E.T., and Portela, R. (2015) Vulnerability and adaptation of US shellfisheries to ocean acidification. Nature Climate Change, 5, 207214.Google Scholar
Essington, T.E., Beaudreau, A.H., and Wiedenmann, J. (2006) Fishing through marine food webs. Proceedings of the National Academy of Sciences, 103, 31713175.Google Scholar
Elliot, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, S., Fekete, B.M., Folberth, C., Foster, I., Gosling, S.N., Haddeland, I., Khabarov, N., Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, A.C., Satoh, Y., Schmid, E., Stacke, T., Tang, Q., and Wisser, D. (2014) Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, 111, 32393244.Google Scholar
Evans, K., Bax, N., and Smith, D.C. (2017) Australia State of the Environment 2016: Marine Environment, Independent Report to the Australian Government Minister for the Environment and Energy. Canberra: Australian Government Department of the Environment and Energy.Google Scholar
FAO (2016) The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition for All. Rome: FAO.Google Scholar
FAO, IFAD and WFP (2014) The State of Food Insecurity in the World 2014. Strengthening the Enabling Environment for Food Security and Nutrition. Rome: FAO.Google Scholar
Fogarty, M.J., Rosenberg, A.A, Cooper, A.B., Dickey-Collas, M., Fulton, E.A., Gutiérrez, N.L., Hyde, K.J.W., Kleisner, K.M., Kristiansen, T., Longo, C., Minte-Vera, C.V., Minto, C., Mosqueira, I., Osio, G.C., Ovando, D., Selig, E.R., Thorson, J.T., and Yimin, Y (2016) Fishery production potential of large marine ecosystems: A prototype analysis. Environmental Development, 17, 211219.Google Scholar
Francis, C.D., and Barber, J.R. (2013) A framework for understanding noise impacts on wildlife: An urgent conservation priority. Frontiers in Ecology and the Environment, 11, 305313.Google Scholar
Fujita, M., Yamasaki, S., Katagiri, C., Oshiro, I., Sano, K., Kurozumi, T., Sugawara, H., Kunikita, D., Matsuzaki, H., Kano, A., Okumura, T., Sone, T., Fujita, H., Kobayashi, S., Naruse, T., Kondo, M., Matsu’ura, S., Suwa, G., and Kaifu, Y. (2016) Advanced maritime adaptation in the western Pacific coastal region extends back to 35,000–30,000 years before present. Proceedings of the National Academy of Sciences, 113, 1118411189.Google Scholar
Fulton, E.A., and Gorton, R. (2014) Adaptive Futures for SE Australian Fisheries & Aquaculture: Climate Adaptation Simulations. Hobart: CSIRO.Google Scholar
Garcia, S.M., Kolding, J., Rice, J., Rochet, M.J., Zhou, S., Arimoto, T., Beyer, J.E., Borges, L., Bundy, A., Dunn, D., Fulton, E.A., Hall, M., Heino, M., Law, R., Makino, M., Rijnsdorp, A.D., Simard, F., and Smith, A.D.M. (2012) Reconsidering the consequences of selective fisheries. Science, 335, 10451047.Google Scholar
Gerland, P., Raftery, A.E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, B.K., Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G.K., and Wilmoth, J. (2014) World population stabilization unlikely this century. Science, 346, 234237.Google Scholar
Goldburg, R.J., Elliott, M.S., and Naylor, R.L. (2001) Marine Aquaculture in the United States: Environmental Impacts and Policy Options. Wasington, DC: Pew.Google Scholar
Golden, C.D., Allison, E.H., Cheung, W.W.L., Dey, M.M., Halpern, B.S., McCauley, D.J., Smith, M., Vaitla, B., Zeller, D., and Myers, S.S. (2016) Fall in fish catch threatens human health. Nature, 534, 317320.Google Scholar
Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., and Wiltshire, A. (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B, 365, 29732989.Google Scholar
Graham, H.W., and Edwards, R.L. (1962) The world biomass of marine fishes. In: Fish in Nutrition, Heen, E. and Kreuzer, R., (eds). London: Fishing News (books), pp. 38.Google Scholar
Griffith, G.P., Richardson, A.J., Fulton, E.A., and Gorton, R. (2012) Evaluating the interaction effects of ocean warming, ocean acidification and fisheries. Conservation Biology, 6, 11451152.Google Scholar
Griffith, G.P., and Fulton, E.A. (2014) New approaches to simulating the complex interaction effects of multiple human impacts on the marine environment. ICES Journal of Marine Science, 71, 764774.Google Scholar
Gulland, J.A. (1970) Summary In: The Fish Resources of the Ocean, Gulland, J.A. (ed). FAO Fisheries Technical Paper 97.Google Scholar
Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R., and Watson, R., (2008) A global map of human impact on marine ecosystems. Science, 319, 948952.Google Scholar
Halpern, B.S., Frazier, M., Potapenko, J., Casey, K.S., Koenig, K., Longo, C., Stewart Lowndes, J., Rockwood, R.C., Selig, E.R., Selkoe, K.A., and Walbridge, S. (2015) Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nature, 6, 17.Google Scholar
Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A.P., Ostfeld, R.S., and Samuel, M.D. (2002) Climate warming and disease risks for terrestrial and marine biota. Science, 296, 21582162.Google Scholar
Hildebrand, J.A. (2009) Anthropogenic and natural sources of ambient noise in the ocean. Marine Ecology Progress Series, 395, 520.Google Scholar
Hobday, A.J., and Pecl, G.T. (2014) Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Reviews in Fish Biology and Fisheries, 24, 415425.Google Scholar
Hobday, A.J., Alexander, L.V., Perkins, S.E., Smale, D.E., Straub, S.C., Oliver, E.C.J., Benthuysen, J.A., Burrows, M.T., Donat, M.G., Feng, M., Holbrook, N.J., Moore, P.J., Scannell, H.A., Gupta, A.S., and Wernberg, T. 2016. A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141, 227238.Google Scholar
Hoegh-Guldberg, O., and Bruno, J.F. (2010) The impact of climate change on the world’s marine ecosystems. Science, 328, 15231528.Google Scholar
Hönisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R.C., Greene, S.E., Kiessling, W., Ries, J., Zachos, J.C., Royer, D.L., Barker, S., Marchitto, T.M. Jr., Moyer, R., Pelejero, C., Ziveri, P., Foster, G.L., Williams, B., 2012. The geological record of ocean acidification. Science, 335, 10581063.Google Scholar
Hu, Y., Shang, H., Tong, H., Nehlich, O., Liu, W., Zhao, C., Yu, J., Wang, C., Trinkaus, E., and Richards, M.P. (2009) Stable isotope dietary analysis of the Tianyuan 1 early modern human. Proceedings of the National Academy of Sciences, 107, 1097110974.Google Scholar
IPCC. (2013) Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. (eds). Cambridge: Cambridge University Press.Google Scholar
Irigoien, X., Klevjer, T.A., Røstad, A., Martinez, U., Boyra, G., Acuña, J.L., Bode, A., Echevarria, F., Gonzalez-Gordillo, J.I., Hernandez-Leon, S., Agusti, S., Aksnes, D.L., Duarte, C.M., and Kaartvedt, S. (2014) Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature Communications, 5, 110.Google Scholar
Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., and Law, K.L. (2015) Plastic waste inputs from land into the ocean. Science, 347, 768771.Google Scholar
Jennings, S., Mélin, F., Blanchard, J.L., Forster, R.M., Dulvy, N.K., and Wilson, R.W. (2008) Global-scale predictions of community and ecosystem properties from simple ecological theory. Proceedings of the Royal Society B Biological Sciences, 275, 13751383.Google Scholar
Jennings, S., and Brander, K. (2010) Predicting the effects of climate change on marine communities and the consequences for fisheries. Journal of Marine Systems, 79, 418426.Google Scholar
Jennings, S., and Collingridge, K. (2015) Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world’s marine ecosystems. PLoS One, 10, e0133794.Google Scholar
Jones, M.C., and Cheung, W.W.L. (2015) Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES Journal of Marine Science, 72, 741752.Google Scholar
Koslow, J.A., and Davison, P.C. (2016) Productivity and biomass of fishes in the California Current Large Marine Ecosystem: Comparison of fishery-dependent and –independent time series. Environmental Development, 17, 2332.Google Scholar
Kunc, H.P., McLaughlin, K.E., and Schmidt, R. (2016) Aquatic noise pollution: Implications for individuals, populations, and ecosystems. Proceedings of the Royal Society B, 283, 20160839.Google Scholar
Leadbitter, D., Benguerel, R. (2014). Sustainable tuna–can the marketplace improve fishery management? Business Strategy and the Environment, 23, 417432.Google Scholar
Ling, S.D., Johnson, C.R., Ridgway, K., Hobday, A.J., and Haddon, M. (2009). Climate‐driven range extension of a sea urchin: Inferring future trends by analysis of recent population dynamics. Global Change Biology, 15, 719731.Google Scholar
Lönnstedt, O.M., and Eklöv, P. (2016) Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science, 352, 12131216.Google Scholar
Maeda, H. (2015) The Past, Present and Future of the Ocean Engineering Activities: Maritime Technology and Engineering – Soares, Guedes & Santos, (eds). Taylor & Francis Group, London. pgs 39.Google Scholar
McCauley, D.J., Pinsky, M.L., Palumbi, S.R., Estes, J.A., Joyce, F.H., and Warner, R.R. (2015) Marine defaunation: Animal loss in the global ocean. Science, 347, 1255641.Google Scholar
Merino, G., Barange, M., Blanchard, J.L., Harle, J., Holmes, R., Allen, I., Allison, E.H., Badjeck, M.C., Dulvy, N.K., Holt, J., Jennings, S., Mullon, C., Rodwell, L.D. (2012) Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Global Environmental Change, 22, 795806.Google Scholar
Molinos, J.G., Halpern, B.S., Schoeman, D.S., Brown, C.J., Kiessling, W., Moore, P.J., Pandolfi, J.M., Poloczanska, E.S., Richardson, A.J., and Burrows, M.T. (2015) Climate velocity and the future global redistribution of marine biodiversity. Nature Climate Change. doi: 10.1038/nclimate2769.Google Scholar
Murphy, E.J., Cavanagh, R.D., Drinkwater, K.F., Grant, S.M., Heymans, J.J., Hofmann, E.E., Hunt, G.L. Jr., and Johnston, N.M. (2016) Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change. Proceedings of the Royal Society B, 283, 20161646.Google Scholar
Neori, A., Chopin, T., Troell, M., Buschmann, A., Kraemer, G.P., Halling, C., Shpigel, M., and Yarish, C. (2004). Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231, 361391.Google Scholar
Nicklisch, S.C.T., Rees, S.D., McGrath, A.P., Gökirmak, T., Bonito, L.T., Vermeer, L.M., Cregger, C., Loewen, G., Sandin, S., Chang, G., and Hamdoun, A. (2016) Global marine pollutants inhibit P-glycoprotein: Environmental levels, inhibitory effects, and cocrystal structure. Science Advances, 2, e1600001.Google Scholar
NRC (National Research Council)(2014) Responding to Oil Spills in the U.S. Arctic Marine Environment. Washington, DC: The National Academies Press.Google Scholar
O’Connor, S., Ono, R., and Clarkson, C. (2011) Pelagic fishing at 42,000 years before the present and the maritime skills of modern humans. Science, 334, 11171121.Google Scholar
Parkinson, C. (2014) Global sea ice coverage from satellite data: Annual cycle and 35-yr trends. Journal of Climate, 27, 93779382.Google Scholar
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., and Torres, F. Jr. (1998) Fishing down marine food webs. Science, 279, 860863.Google Scholar
Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C., Chen, I-C., Clark, T.D., Colwell, R.K., Danielsen, F., Evengård, B., Falconi, L., Ferrier, S., Frusher, S., Garcia, R.A., Griffis, R.B., Hobday, A.J., Janion-Scheepers, C., Jarzyna, M.A., Jennings, S., Lenoir, J., Linnetved, H.I., Martin, V.Y., McCormack, P.C., McDonald, J., Mitchell, N.J., Mustonen, T., Pandolfi, J.M., Pettorelli, N., Popova, E., Robinson, S.A., Scheffers, B.R., Shaw, J.D., Sorte, C.J.B., Strugnell, J.M., Sunday, J.M., Tuanmu, M.-N., Vergés, A., Villanueva, C., Wernberg, T., Wapstra, E., and Williams, S.E. (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355, eaai9214.Google Scholar
Perkins, S.E., Alexander, L.V., and Nairn, J., (2012) Increasing frequency, intensity and duration of observed global heat waves and warm spells. Geophysical Research Letters, 39, 20. http://dx.doi.org/10.1029/2012GL053361.Google Scholar
Plagányi, É.E., van Putten, I., Thébaud, O., Hobday, A.J., Innes, J., Lim-Camacho, J., Norman-Ló pez, A., Bustamante, R.H., Farmery, A., Fleming, A., Frusher, S., Green, B., Hoshino, E., Jennings, S., Pecl, G., Pascoe, S., Schrobback, P., and Thomas, L. (2014) A quantitative metric to identify critical elements within seafood supply networks. PLoS ONE, 9: e91833. doi: 10.1371/journal.pone.0091833.Google Scholar
Poloczanska, E.S., Brown, C.J., Sydeman, W.J., Kiessling, W., Schoeman, D.S., Moore, P.J., Brander, K., Bruno, J.F., Buckley, L.B., Burrows, M.T., Duarte, C.M., Halpern, B.S., Holding, J., Kappel, C.V., O’Connor, M.I., Pandolfi, J.M., Parmesan, C., Schwing, F., Thompson, S.A., and Richardson, A.J. (2013) Global imprint of climate change on marine life. Nature Climate Change, 3, 919925.Google Scholar
Popper, A.N., and Hastings, M.C. (2009) The effects of human-generated sound on fish. Integrative Zoology, 4, 4352.Google Scholar
Radcliffe, W. (1921) Fishing from the Earliest Times. London: Murray.Google Scholar
Rakocy, J.E. (2012) Aquaponics – Integrating fish and plant culture. In: Aquaculture Production Systems, Tidwell, J. (Ed.). John Wiley & Sons.Google Scholar
Rammelt, C.F., and van Schie, M.. (2016) Ecology and equity in global fisheries: Modelling policy options using theoretical distributions. Ecological Modelling, 337, 107122.Google Scholar
Revollo-Fernández, D., Aguilar-Ibarra, A., Micheli, F., and Sáenz-Arroyo, A. (2016) Exploring the role of gender in common-pool resource extraction: Evidence from laboratory and field experiments in fisheries. Applied Economics Letters, 23, 912920.Google Scholar
REN21 (Renewable Energy Policy Network for the 21st Century) (2015) Renewables 2015 Global Status Report. Paris: REN21 Secretariat.Google Scholar
Ricker, W.E. (1969) Food from the sea. In: Resources and Man, the report of the Committee on Resources and Man to the U.S. National Academy of Sciences. San Francisco: W.H. Freeman,Google Scholar
Roberts, S.M., Grattan, L.M., Toben, A.C., Ausherman, C., Trainer, V.L., Tracy, K., Morris, J.G. Jr. (2016) Perception of risk for domoic acid related health problems: A cross-cultural study. Harmful Algae, 57, 3944.Google Scholar
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Müller, C., Arneth, A., Boote, K.J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T.A.M., Schmid, E., Stehfest, E., Yang, H., and Jones, J.W. (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences, 111, 32683273.Google Scholar
Ryther, J. (1969) Photosynthesis and fish production in the sea. Science, 166, 7276.Google Scholar
Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace, D.W.R., Tilbrook, B., Millero, F.J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A.F. (2004) The oceanic sink for anthropogenic CO2. Science, 305, 367–71.Google Scholar
Schaefer, M.B. (1965) The potential harvest of the sea. Transactions of the American Fisheries Society, 94, 123128.Google Scholar
Sethi, S.A., Branch, T.A., and Watson, R. (2010) Global fishery development patterns are driven by profit but not trophic level. Proceedings of the National Academy of Sciences, 107, 1216312167.Google Scholar
Shepherd, C.J., and Jackson, A.J. (2013). Global fishmeal and fish-oil supply: Inputs, outputs and marketsa. Journal of Fish Biology, 83, 10461066.Google Scholar
Skretting, . (2015). Annual Sustainability Report 2015. Skretting Australia. Cambridge Tasmania, Skretting. 24 pages.Google Scholar
Smith, A.D.M., Smith, D.C., Haddon, M., Knuckey, I., Sainsbury, K.J., and Sloan, S. (2014) Implementing harvest strategies in Australia: 5 years on. ICES Journal of Marine Science, 71, 195203.Google Scholar
Sofonia, J.J., and Anthony, K.R.N. (2008) High-sediment tolerance in the reef coral Turbinaria mesenterina from the inner Great Barrier Reef lagoon (Australia). Estuarine, Coastal and Shelf Science, 78, 748752.Google Scholar
Sunday, J.M., Pecl, G.T., Frusher, S., Hobday, A.J., Hill, N., Holbrook, N.J., Edgar, G.J., Stuart-Smith, R., Barrett, N., Wernberg, T., Watson, R.A., Smale, D.A., Fulton, E.A., Slawinski, D., Feng, M., Radford, B.T., Thompson, P.A., and Bates, A.E. (2015). Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecology Letters, 18, 944953.Google Scholar
Thums, M., Whiting, S.D., Reisser, J., Pendoley, K.L., Pattiaratchi, C.B., Proietti, M., Hetzel, Y., Fisher, R., and Meekan, M.G. (2016) Artificial light on water attracts turtle hatchlings during their near shore transit. Royal Soceity Open Science, 3, 160142.Google Scholar
Troell, M., Joyce, A., Chopin, T., Neori, A., Buschmann, A.H., and Fang, J.G. (2009). Ecological engineering in aquaculture—potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, 297, 19.Google Scholar
Van Dover, C.L. (2014) Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: A review. Marine Environmental Research, 102, 5972.Google Scholar
Whitmee, S., Haines, A., Beyrer, C., Boltz, F., Capon, A.G., de Souza Dias, B.F., Ezeh, A., Frumkin, H., Gong, P., Head, P., Horton, R., Mace, G.M., Marten, R., Myers, S.S., Nishtar, S., Osofsky, S.A., Pattanayak, S.K., Pongsiri, M.J., Romanelli, C., Soucat, A., Vega, J., and Yach, D. (2015) Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet, 386, 19732028.Google Scholar
Wilcox, C., Van Sebille, E., and Hardesty, B.D. (2015) Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proceedings of the National Academy of Sciences, 112, 1189911904.Google Scholar
Wilson, R.W., Millero, F.J., Taylor, J.R., Walsh, P.J., Christensen, V., Jennings, S., and Grosell, M. (2009) Contribution of fish to the marine inorganic carbon cycle. Science, 323, 359362.Google Scholar
World Bank (2013) Fish to 2030: Prospects for Fisheries and Aquaculture. Washington, DC: World Bank.Google Scholar
World Bank (2014) Reducing Disease Risk in Aquaculture. Washington, DC: World Bank.Google Scholar
World Bank (2016) Global Monitoring Report 2015/2016: Development Goals in an Era of Demographic Change. Washington, DC: World Bank.Google Scholar
Worm, B., Hilborn, R., Baum, J., Branch, T., Collie, J., Costello, C., Fogarty, M., Fulton, E.A., Hutchings, J., Jennings, S., Jensen, O., Lotze, H., Mace, P., McClanahan, T., Minto, C., Palumbi, S., Parma, A., Ricard, D., Rosenberg, A., Watson, R., and Zeller, D. (2009) Rebuilding global fisheries. Science, 325, 578585.Google Scholar
Yool, A., Popova, E.E., and Coward, A.C. (2015) Future change in ocean productivity: Is the Arctic the new Atlantic? Journal of Geophysical Research, 120, 77717790.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×