Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T02:22:30.807Z Has data issue: false hasContentIssue false

9 - Proposed Drilling into Postglacial Faults

The Pärvie Fault System

from Part II - Methods and Techniques for Fault Identification and Dating

Published online by Cambridge University Press:  02 December 2021

Holger Steffen
Affiliation:
Lantmäteriet, Sweden
Odleiv Olesen
Affiliation:
Geological Survey of Norway
Raimo Sutinen
Affiliation:
Geological Survey of Finland
Get access

Summary

Postglacial faults in northern Fennoscandia have been investigated through geophysical methods, trenching, and mapping of brittle deformation structures. Very little is known about postglacial faults through direct measurements. A few short, up to 500 m deep, boreholes exist. Plans for a scientific drilling program were initiated in 2010. The drilling target has been identified: The Pärvie Fault system is the longest known postglacial fault in the world and has been proposed to have hosted an M8 earthquake near the end or just after the last glaciation. Further, this fault system is still microseismically active. The drill sites are north of the Arctic Circle, in a sparsely populated area. Existing site survey data, established logistics, and societal relevance through the fault’s proximity to mining and energy operations make this fault system an appropriate target. The International Continental Scientific Drilling Program approved a full drilling proposal in October 2019. This chapter presents an abbreviated version of the approved proposal.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, O., Juhlin, C., Ask, M. V. S. and Lund, B. (2015). Revealing the deeper structure of the end-glacial Pärvie fault system in northern Sweden by seismic reflection profiling. Solid Earth, 6, 621632, doi.org/10.5194/se-6-621-2015.CrossRefGoogle Scholar
Andersson, J. B. H. (2019). Structural Evolution of Two Ore-Bearing Palaeoproterozoic Metasupracrustal Belts in the Kiruna Area, Northwestern Fennoscandian Shield. Licentiate thesis, Luleå University of Technology, Sweden, 91 pp.Google Scholar
Araki, E., Saffer, D. M., Kopf, A. et al. (2017). Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. Science, 356, 11571160, doi.org/10.1126/science.aan3120.CrossRefGoogle ScholarPubMed
Arvidsson, R. (1996). Fennoscandian earthquakes: whole crustal rupturing related to postglacial rebound. Science, 274, 744746, doi.org/10.1126/science.274.5288.744.Google Scholar
Bäckström, A., Giulio, V., Rantakokko, N., Jonsson, E. and Ask, M. (2013). Preliminary Results from Fault-Slip Analysis of the Pärvie Neotectonic Postglacial Fault Zone, Northern Sweden. EGU General Assembly 2013, 7–12 April 2013 in Vienna, Austria, id. EGU2013–1751.Google Scholar
Bauer, T., Andersson, J., Sarlus, Z., Lund, C. and Kearney, T. (2018). Structural controls on the setting, shape and hydrothermal alteration of the Malmberget IOA deposit, northern Sweden. Economic Geology, 113(2), 377395, doi.org/10.5382/econgeo.2018.4554.Google Scholar
Bergman, S., Kübler, L. and Martinsson, O. (2001). Regional geological and geophysical maps of northern Norrbotten County: bedrock map (east of the Caledonian orogen). Sveriges Geologiska Undersökning, Ba 56.Google Scholar
Bohnhoff, M., Dresen, G., Ceken, U. et al. (2017). GONAF – the borehole Geophysical Observatory at the North Anatolian Fault in the eastern Sea of Marmara. Scientific Drilling, 22, 1928, doi.org/10.5194/sd-22-19-2017.Google Scholar
Calais, E., Camelbeeck, T., Stein, S., Liu, M. and Craig, T. J. (2016). A new paradigm for large earthquakes in stable continental plate interiors. Geophysical Research Letters, 43, 1062110637, doi.org/10.1002/2016GL070815.CrossRefGoogle Scholar
Campell, D. L. (1978). Investigation of the stress-concentration mechanism for intraplate earthquakes. Geophysical Research Letters, 5, 477479.Google Scholar
Carlson, L. and Lundqvist, A. (1984). Laukujärvi kopparfyndighet. Prospekteringsförslag 1984 och geologisk sammanfattning [Laukujärvi copper deposit. Exploration proposal 1984 and geological summary]. Sveriges Geologiska AB, PRAP 84067, 57 pp. (in Swedish).Google Scholar
Claesson, L.-Å. and Nilsson, G. (2005). Forsmark Site investigation. Drilling of the Borehole KFM01B at Drilling Site DS1. SKB Report P-04-302, Swedish Nuclear Fuel and Waste Management Co., Stockholm, 32 pp.Google Scholar
Claesson Liljedahl, L., Kontula, A., Harper, J. et al. (2016). The Greenland Analogue Project: Final Report, SKB Technical Report TR-14-13, Swedish Nuclear Fuel and Waste Management Co., Stockholm, 142 pp.Google Scholar
Costain, J. K. (2017). Groundwater recharge as the trigger of naturally occurring intraplate earthquakes. In Landgraf, A., Kuebler, S., Hintersberger, E. and Stein, S., eds., Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publication, Vol. 432, pp. 91–118, doi.org/10.1144/SP432.9.Google Scholar
Doughty, C., Tsang, C.-F., Rosberg, J.-E. et al. (2017). Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones. Hydrogeology Journal, 25(2): 501517, doi.org/10.1007/s10040–016-1497-5.Google Scholar
England, R. W. and Ebbing, J. (2012). Crustal structure of central Norway and Sweden from integrated modelling of teleseismic receiver functions and the gravity anomaly. Geophysical Journal International, 191(1), 111, doi.org/10.1111/j.1365-246X.2012.05607.x.Google Scholar
England, P. and Jackson, J. (2011). Uncharted seismic risk. Nature Geoscience, 4, 348349, doi.org/10.1038/ngeo1168.CrossRefGoogle Scholar
Gaál, G. and Gorbatschev, R. (1987). Precambrian geology and of the Central Baltic Shield. Precambrian Research, 35, 382 pp.CrossRefGoogle Scholar
Gerdin, P. (1979). Vieto resultat av utförda prospekteringsarbeten [Vieto Results of Exploration Work Performed]. Rapport för NSG. Berggrundsbyrån, Geological Survey of Sweden.Google Scholar
Grad, M., Tiira, T. and the ESC Working Group (2009). The Moho depth map of the European Plate. Geophysical Journal International, 176, 279292, doi.org/10.1111/j.1365-246X.2008.03919.x.Google Scholar
Gupta, H. K., Arora, K., Rao, N. P. et al. (2017). Investigations of continued reservoir triggered seismicity at Koyna, India. In Mukherjee, S., Misra, A. A., Calvès, G. and Nemčok, M., eds., Tectonics of the Deccan Large Igneous Province. Geological Society, London, Special Publication, Vol. 445, pp. 151188, doi.org/10.1144/SP445.11.Google Scholar
Haimson, B. C. and Cornet, F. H. (2003). ISRM SM for rock stress estimation – part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). International Journal of Rock Mechanics and Mining Sciences, 40, 10111020, doi.org/10.1016/j.ijrmms.2003.08.002.CrossRefGoogle Scholar
Harper, J., Hubbard, A., Ruskeeniemi, T. et al. (2016). The Greenland Analogue Project. SKB Report R-14-13, 387 pp.Google Scholar
Hirose, T., Kawagucci, S. and Suzuki, K. (2011). Mechanoradical H2 generation during simulated faulting: implications for an earthquake‐driven subsurface biosphere. Geophysical Research Letters, 38, L17303, doi.org/10.1029/2011GL048850.Google Scholar
Johnson, C. W., Fu, Y. and Bürgmann, R. (2017). Seasonal water storage, stress modulation, and California seismicity. Science, 356(6343), 11611164, doi.org/10.1126/science.aak9547.Google Scholar
Juhlin, C., Dehghannejad, M., Lund, B., Malehmir, A. and Pratt, G. (2010). Reflection seismic imaging of the end-glacial Pärvie Fault system, Sweden. Journal of Applied Geophysics, 70, 307316, doi.org/10.1016/j.jappgeo.2009.06.004.CrossRefGoogle Scholar
Kallmeyer, J. (2017). Contamination control for scientific drilling operations. Advances in Applied Microbiology, 98, 6191, doi.org/10.1016/bs.aambs.2016.09.003.Google Scholar
Keiding, M., Kreemer, C., Lindholm, C. D. et al. (2015). A comparison of strain rates and seismicity for Fennoscandia: depth dependency of deformation from glacial isostatic adjustment. Geophysical Journal International, 202, 10211028, doi.org/10.1093/gji/ggv207.Google Scholar
Kierulf, H. P., Steffen, H., Simpson, M. J. R. et al. (2014). A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models. Journal of Geophysical Research, 119(8), 66136629, doi.org/10.1002/2013JB010889.Google Scholar
Korja, T. (2007). How is the European lithosphere imaged by magnetotellurics? Surveys in Geophysics, 28(2–3), 239272, doi.org/10.1007/s10712-007-9024-9.Google Scholar
Kreemer, C., Blewitt, G. and Klein, E. C. (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15, 38493889, doi.org/10.1002/2014GC005407.Google Scholar
Kuivamäki, A., Vuorela, P. and Paananen, M. (1998). Indications of Postglacial and Recent Bedrock Movements in Finland and Russian Karelia. Geological Survey of Finland Nuclear Waste Disposal Research Report YST-99, Espoo, Finland, 92 pp.Google Scholar
Kujansuu, R. (1972). The deglaciation of Finnish Lapland. In L. K. Kauranne, ed., Glacial Stratigraphy, Engineering Geology and Earth Construction. Geological Survey of Finland Special Paper 15, pp. 2131.Google Scholar
Kukkonen, I. T., Olesen, O., Ask, M. V. S. and the PFDP Working Group (2010). Postglacial faults in Fennoscandia: targets for scientific drilling. GFF, 132(1), 7181, doi.org/10.1080/11035891003692934.CrossRefGoogle Scholar
Lagerbäck, R. (1978). Neotectonic structures in northern Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 100(3), 263269, doi.org/10.1080/11035897809452533.Google Scholar
Lagerbäck, R. (1992). Dating of Late Quaternary faulting in northern Sweden. Journal of the Geological Society, London, 149, 285291, doi.org/10.1144/gsjgs.149.2.0285.Google Scholar
Lagerbäck, R. and Sundh, M. (2008). Early Holocene Faulting and Paleoseismicity in Northern Sweden. Geological Survey of Sweden Research Paper, C836, 84 pp.Google Scholar
Lagerbäck, R. and Witschard, F. (1983). Neotectonics in Northern Sweden – Geological Investigations. SKBF/KBS Technical Report 83–58, Svensk Kärnbränslehantering AB, Stockholm, 58 pp.Google Scholar
Lahtinen, R., Korja, A. and Nironen, M. (2005). Palaeoproterozoic tectonic evolution. In Lehtinen, M., Nurmi, P. and Rämö, T., eds., Precambrian Geology of Finland – Key to the Evolution of the Fennoscandian Shield. Elsevier Science Publishers, Amsterdam, pp. 481–531, doi.org/10.1016/S0166-2635(05)809012-X.Google Scholar
Leonard, M. (2010). Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America, 100, 19711988, doi.org/10.1785/0120090189.Google Scholar
Li, Q., Liu, M. and Stein, S. (2009). Spatiotemporal complexity of continental intraplate seismicity: insights from geodynamic modeling and implications for seismic hazard estimation. Bulletin of the Seismological Society of America, 99, 5299, doi.org/10.1785/0120080005.Google Scholar
Lin, Y.-Y., Ma, K.-F. and Oye, V. (2012). Observation and scaling of microearthquakes from the Taiwan Chelungpu-fault borehole seismometers. Geophysical Journal International, 190, 665676, doi.org/10.1111/j.1365-246X.2012.05513.x.Google Scholar
Lindblom, E., Lund, B., Tryggvason, A. et al. (2015). Microearthquakes illuminate the deep structure of the endglacial Pärvie fault, northern Sweden, Geophysical Journal International, 201, 17041716, doi.org/10.1093/gji/ggv112.Google Scholar
Lund, B. (2015). Palaeoseismology of glaciated terrain. In Beer, M., Kougioumtzoglou, I. A., Patelli, E. and Au, I. K., eds., Encyclopedia of Earthquake Engineering. Springer, Berlin/Heidelberg, doi.org/10.1007/978-3-642-36197-5_25-1.Google Scholar
Lundqvist, J. and Lagerbäck, R. (1976). The Pärve Fault: a late-glacial fault in the Precambrian of Swedish Lapland. Geologiska Föreningens i Stockholm Förhandlingar, 98, 4551, doi.org/10.1080/11035897609454337.Google Scholar
Mather, W. W. (1843). Geology of New-york. Part I. Comprising the Geology of the First Geological District. Carroll & Cook, Albany.Google Scholar
Matthew, G. F. (1894). Movements of the Earth’s crust at St. John, N. B., in post-glacial times. Bulletin of the Natural History Society of New Brunswick, 12, 3442.Google Scholar
Mikko, H., Smith, C. A., Lund, B., Ask, M. V. S. and Munier, R. (2015). LiDAR-derived inventory of post-glacial fault scarps in Sweden. GFF, 137, 344352, doi.org/10.1080/11035897.2015.1036360.Google Scholar
Muir Wood, R. (1989). Extraordinary deglaciation reverse faulting in northern Fennoscandia. In Gregersen, S. and Basham, P. W., eds., Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound. Kluwer Academic Publishers, Dordrecht, pp. 141173, doi.org/10.1007/978-94-009-2311-9_10.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2017). Postglacial seismic activity along the Isovaara–Riikonkumpu fault complex. Global and Planetary Change, 157, 5972, doi.org/10.1016/j.gloplacha.2017.08.015.CrossRefGoogle Scholar
Ojala, A. E. K., Markovaa-Koivisto, M., Middleton, M. et al. (2018). Dating of paleolandslides in western Finnish Lapland. Earth Surface Processes and Landforms, 43, 24492462, doi.org/10.1002/esp.4408.CrossRefGoogle Scholar
Ojala, A. E. K., Mattila, J., Markovaara-Koivisto, M. et al. (2019). Distribution and morphology of landslides in northern Finland: an analysis of postglacial seismic activity. Geomorphology, 326, 190201, doi.org/10.1016/j.geomorph.2017.08.045.CrossRefGoogle Scholar
Olesen, O., Henkel, H., Lile, O. B., Mauring, E. and Rønning, J. S. (1992). Geophysical investigations of the Stuoragurra postglacial fault, Finnmark, northern Norway. Journal of Applied Geophysics, 29, 95118, doi.org/10.1016/0926-9851(92)90001-2.CrossRefGoogle Scholar
Olesen, O., Bungum, H., Lindholm, C. et al. (2013). Neotectonics, seismicity and contemporary stress field in Norway – mechanisms and implications. In Olsen, L., Fredin, O. and Olesen, O., eds., Quaternary Geology of Norway. Geological Survey of Norway Special Publication 13, pp. 145174.Google Scholar
Page, M. T. and Hough, S. E. (2014). The New Madrid seismic zone: not dead yet. Science, 343(6172), 762764, doi.org/10.1126/science.1248215.Google Scholar
Peng, Z. and Gomberg, J. (2010). An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geoscience, 3(9), 599607, doi.org/10.1038/ngeo940.Google Scholar
Plomerova, J. and Babuska, V. (2010). Long memory of mantle lithosphere fabric – European LAB constrained from seismic anisotropy. Lithos, 120, 131143, doi.org/10.1016/j.lithos.2010.01.008.Google Scholar
Riad, L. (1990). The Pärvie Fault, Northern Sweden. Research Report 63, Minerology, Department of Mineralogy and Petrology, Uppsala University, 48 pp.Google Scholar
Saar, M. O. and Manga, M. (2003). Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. Earth and Planetary Science Letters, 214(3–4), 605618, doi.org/10.1016/S0012-821X(03)00418-7.Google Scholar
Sarlus, Z., Andersson, U. B., Bauer, T. E. et al. (2018). Timing of plutonism in the Gällivare area: implications for Proterozoic crustal development in the northern Norrbotten ore district, Sweden. Geological Magazine, 155(6), 13511376, doi.org/10.1017/S0016756817000280.Google Scholar
Smith, C., Sundh, M. and Mikko, H. (2014). Surficial geology indicates early Holocene faulting and seismicity, central Sweden. International Journal of Earth Sciences, 103, 17111724, doi.org/10.1007/s00531–014-1025-6.Google Scholar
Stein, S. and Liu, M. (2009). Long aftershock sequences within continents and implications for earthquake hazard assessment. Nature, 462, 8789, doi.org/10.1038/nature08502.Google ScholarPubMed
Stein, S., Liu, M., Calais, E. and Li, Q. (2009). Mid-continent earthquakes as a complex system. Seismological Research Letters, 80(4), 551553, doi.org/10.1785/gssrl.80.4.551.Google Scholar
Stephansson, O. (1983). Rock Stress Measurements by Sleeve Fracturing. Proceedings of the 5th Congress of the International Society for Rock Mechanics and Rock Engineering, 10–15 April 1983, Melbourne, Australia, F129–F137.Google Scholar
Stephansson, O. (1989). Stress measurements and modeling of crustal rock mechanics in Fennoscandia. In Gregersen, S. and Basham, P. W., eds., Earthquake at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound. NATO Advanced Studies Institute Series, Series C, Vol. 266, pp. 213229.Google Scholar
Stroeven, A. P., Hättestrand, C., Kleman, J. et al. (2016). Deglaciation of Fennoscandia. Quaternary Science Reviews, 147, 91121, doi.org/10.1016/j.quascirev.2015.09.016.CrossRefGoogle Scholar
Sugihara, T., Kinoshita, M., Araki, E. et al. (2014). Re-evaluation of temperature at the updip limit of locked portion of Nankai megasplay inferred from IODP Site C0002 temperature observatory. Earth, Planets and Space, 66, 107, doi.org/10.1186/1880-5981-66-107.Google Scholar
Sutinen, R. (2005). Timing of early Holocene landslides in Kittilä, Finnish Lapland. In Ojala, A. E. K., ed., Quaternary Studies in the Northern and Arctic Regions of Finland, Proceedings of the workshop organized within the Finnish National Committee for Quaternary Research (INQUA), Kilpisjärvi Biological Station, Finland, January 13–14th 2005. Geological Survey of Finland Special Paper 40, Espoo, Finland, pp. 53–58.Google Scholar
Sutinen, R., Hyvönen, E., Middleton, M. and Ruskeeniemi, T. (2014). Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojärvi, Finnish Lapland. Global and Planetary Change, 115, 2432, doi.org/10.1016/j.gloplacha.2014.01.007Google Scholar
Townend, J., Sutherland, R., Toy, V. G. et al. (2017). Petrophysical, geochemical, and hydrological evidence for extensive fracture-mediated fluid and heat transport in the Alpine Fault’s hanging-wall damage zone. Geochemistry, Geophysics, Geosystems, 18(12), 47094732, doi.org/10.1002/2017GC007202.Google Scholar
Ueda, T. and Kato, A. (2019). Seasonal variations in crustal seismicity in San‐in district, southwest Japan. Geophysical Research Letters, 46, 31723179, doi.org/10.1029/2018GL081789.Google Scholar
Vestøl, O. (2006). Determination of postglacial land uplift in Fennoscandia from leveling, tide-gauges and continuous GPS stations using least squares collocation. Journal of Geodesy, 80(5), 248258, doi.org/10.1007/s00190-006-0063-7.CrossRefGoogle Scholar
Wanke, A. and Melezhik, V. (2005). Sedimentary and volcanic facies recording the Neoarchaean continent breakup and decline of the positive δ13 Ccarb excursion. Precambrian Research, 140(1–2), 135, doi.org/10.1016/j.precamres.2005.05.003.Google Scholar
Westaway, R. (2006). Investigation of coupling between surface processes and induced flow in the lower continental crust as a cause of intraplate seismicity. Earth Surface Processes and Landforms, 31, 14801509, doi.org/10.1002/esp.1366.Google Scholar
Witschard, F. (1984). The geological and tectonic evolution of the Precambrian of northern Sweden – a case for basement reactivation? Precambrian Research, 23(3–4), 273315, doi.org/10.1016/0301-9268(84)90047-0.Google Scholar
Wu, P. and Hasegawa, H. S. (1996a). Induced stresses and fault potential in eastern Canada due to a disc load: a preliminary analysis. Geophysical Journal International, 125, 415430, doi.org/10.1111/j.1365-246X.1996.tb00008.x.Google Scholar
Wu, P. and Hasegawa, H. S. (1996b). Induced stresses and fault potential in eastern Canada due to a realistic load: a preliminary analysis. Geophysical Journal International, 127, 215229, doi.org/10.1111/j.1365-246X.1996.tb01546.x.Google Scholar
Zoback, M., Hickman, S., Ellsworth, W. and the SAFOD Science Team (2011). Scientific drilling into the San Andreas Fault Zone – an overview of SAFOD’s first five years. Scientific Drilling, 11, 1428, doi.org/10.2204/iodp.sd.11.02.2011.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×