Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T07:44:19.691Z Has data issue: false hasContentIssue false

13 - Glacially Induced Faults in Finland

from Part III - Glacially Triggered Faulting in the Fennoscandian Shield

Published online by Cambridge University Press:  02 December 2021

Holger Steffen
Affiliation:
Lantmäteriet, Sweden
Odleiv Olesen
Affiliation:
Geological Survey of Norway
Raimo Sutinen
Affiliation:
Geological Survey of Finland
Get access

Summary

The zones of glacially induced faults in Finland are portrayed by a number of discrete <10 km-long fault scarps, often forming multiple parallel segments and establishing longer glacially induced fault systems. A set of glacially induced fault systems further form glacially induced fault complexes, which may extend tens of kilometres cross-cutting glacial sediments. The systematic mapping has revealed 18 glacially induced fault systems forming 9 glacially induced fault complexes. The moment magnitude estimates for the earthquakes in Finnish Lapland are in the range of Mw ≈ 4.9–7.5. The detailed trenching across fault scarps provides evidence of non-stationary seismicity and occurrence of multiple slip events even before the Late Weichselian maximum.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kirsch, M., Lorenz, S., Zimmermann, R. et al. (2019). Hyperspectral outcrop models for palaeoseismic studies. The Photogrammetric Record, 34(168), 358407, doi.org/10.1111/phor.12300.Google Scholar
Kuivamäki, A., Vuorela, P. and Paananen, M. (1998). Indication of Postglacial and Recent Bedrock Movements in Finland and Russian Karelia. Geological Survey of Finland Nuclear Waste Disposal Research Report YST-99, Espoo, Finland, 97 pp.Google Scholar
Kujansuu, R. (1964). Nuorista siirroksista Lapissa [English summary: Recent faults in Lapland]. Geologi, 6, 3036 (in Finnish).Google Scholar
Kujansuu, R. (1972). On landslides in Finnish Lapland. Geological Survey of Finland Bulletin, 256, 22 pp., tupa.gtk.fi/julkaisu/bulletin/bt_256.pdf.Google Scholar
Lagerbäck, R. and Sundh, M. (2008). Early Holocene Faulting and Paleoseismicity in Northern Sweden. Geological Survey of Sweden Research Paper Series C, Vol. 836, 80 pp.Google Scholar
Markovaara-Koivisto, M., Ojala, A. E. K., Mattila, J. et al. R. (2020). Geomorphological evidence of paleoseismicity: surficial and underground structures of Pasmajärvi postglacial fault. Earth Surface Processes and Landforms, 45, 30113024, doi.org/10.1002/esp.4948.CrossRefGoogle Scholar
Mattila, J., Ojala, A. E. K., Ruskeeniemi, T. et al. (2019). Evidence of multiple slip events on postglacial faults in northern Fennoscandia. Quaternary Science Reviews, 215, 242252, doi.org/10.1016/j.quascirev.2019.05.022.CrossRefGoogle Scholar
Middleton, M., Heikkonen, J., Nevalainen, P., Hyvönen, E. and Sutinen, R. (2020a). Machine learning-based mapping of micro-topographic earthquake-induced paleo Pulju moraines and liquefaction spreads. Geomorphology, 358, 107099, doi.org/10.1016/j.geomorph.2020.107099.Google Scholar
Middleton, M., Nevalainen, P., Hyvönen, E., Heikkonen, J. and Sutinen, R. (2020b). Pattern recognition of LiDAR data and sediment anisotropy advocate polygenetic subglacial mass-flow origin of the Kemijärvi hummocky moraine field in northern Finland. Geomorphology, 362, 107212, doi.org/10.1016/j.geomorph.2020.107212.Google Scholar
Mikko, H., Smith, C. A., Lund, B., Ask, M. V. S. and Munier, R. (2015). LiDAR-derived inventory of post-glacial fault scarps in Sweden. GFF, 137(4), 334338, doi.org/10.1080/11035897.2015.1036360.CrossRefGoogle Scholar
Nevalainen, P., Middleton, M., Sutinen, R., Heikkonen, J. and Pahikkala, T. (2016). Detecting terrain stoniness from airborne laser scanning data. Remote Sensing, 8, 720, doi.org/10.3390/rs8090720.Google Scholar
Nordkalott Project (1986). Geological map, Northern Fennoscandia, 1:1 mill. Geological Surveys of Finland, Norway and Sweden.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2017). Postglacial seismic activity along the Isovaara–Riikonkumpu fault complex. Global and Planetary Change, 157, 5972, doi.org/10.1016/j.gloplacha.2017.08.015.Google Scholar
Ojala, A. E. K., Markovaara-Koivisto, M., Middleton, M. et al. (2018a). Dating of seismically-induced paleolandslides in western Finnish Lapland. Earth Surface Processes and Landforms, 43(11), 24492462, doi.org/10.1002/esp.4408.Google Scholar
Ojala, A. E. K., Mattila, J., Virtasalo, J., Kuva, J. and Luoto, T. P. (2018b). Seismic deformation of varved sediments in southern Fennoscandia at 7400 cal BP. Tectonophysics, 744, 5871, doi.org/10.1016/j.tecto.2018.06.015.CrossRefGoogle Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2019a). Postglacial Faults in FinlandA Review of PGSdyn-Project Results. Posiva Report 2019-1, 118 pp., Posiva Oy, Eurajoki.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2019b). Postglacial reactivation of the Suasselkä GIF complex in Finnish Lapland. International Journal of Earth Sciences, 108, 10491065, doi.org/10.1007/s00531-019-01695-w.Google Scholar
Ojala, A. E. K., Mattila, J., Markovaara-Koivisto, M. et al. (2019c). Distribution and morphology of landslides in northern Finland: an analysis of postglacial seismic activity. Geomorphology, 326, 190201, doi.org/10.1016/j.geomorph.2017.08.045.CrossRefGoogle Scholar
Ojala, A. E. K., Mattila, J., Hämäläinen, J. and Sutinen, R. (2019d). Lake sediment evidence of paleoseismicity: timing and spatial occurrence of Late- and postglacial earthquakes in Finland. Tectonophysics, 771(228227), doi.org/10.1016/j.tecto.2019.228227.CrossRefGoogle Scholar
Ojala, A. E. K., Mattila, J., Middleton, M. et al. (2020). Earthquake-induced deformation structures in glacial sediments – evidence on fault reactivation and instability at the Vaalajärvi fault in northern Fennoscandia. Journal of Seismology, 24, 549–571, doi.org/10.1007/s10950-020-09915-6.Google Scholar
Olesen, O., Blikra, L. H., Braathen, A. et al. (2004). Neotectonic deformation in Norway and its implications: a review. Norwegian Journal of Geology, 84, 334.Google Scholar
Palmu, J-P., Ojala, A. E. K., Ruskeeniemi, T., Sutinen, R. and Mattila, J. (2015). LiDAR DEM detection and classification of postglacial faults and seismically-induced landforms in Finland: a paleoseismic database. GFF, 137(4), 344352, doi.org/10.1080/11035897.2015.1068370.Google Scholar
Sutinen, R. (2005). Timing of early Holocene landslides in Kittilä, Finnish Lapland. Geological Survey of Finland Special Paper, 40, 5358.Google Scholar
Sutinen, R., Piekkari, M. and Middleton, M. (2009a). Glacial geomorphology in Utsjoki, Finnish Lapland proposes Younger Dryas fault-instability. Global and Planetary Change, 69, 1628, doi.org/10.1016/j.gloplacha.2009.07.002.Google Scholar
Sutinen, R., Middleton, M., Liwata, M., Piekkari, M. and Hyvönen, E. (2009b). Sediment anisotropy coincides with moraine ridge trend in south-central Finnish Lapland. Boreas, 38, 638646, doi.org/10.1111/j.1502-3885.2009.00089.x.CrossRefGoogle Scholar
Sutinen, R., Hyvönen, E. and Kukkonen, I. (2014a). LiDAR detection of paleolandslides in the vicinity of the Suasselkä postglacial fault, Finnish Lapland. International Journal of Applied Earth Observation and Geoinformation, 27, 9198, doi.org/10.1016/j.jag.2013.05.004.Google Scholar
Sutinen, R., Hyvönen, E., Middleton, M. and Ruskeeniemi, T. (2014b). Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojärvi, Finnish Lapland. Global and Planetary Change, 115, 2432, doi.org/10.1016/j.gloplacha.2014.01.007.CrossRefGoogle Scholar
Sutinen, R., Hyvönen, E., Middleton, M. and Airo, M-L. (2018). Earthquake-induced deformations on ice-stream landforms in Kuusamo, eastern Finnish Lapland. Global and Planetary Change, 160, 4660, doi.org/10.1016/j.gloplacha.2017.11.011.Google Scholar
Sutinen, R., Andreani, L. and Middleton, M. (2019a). Post-Younger Dryas fault instability and deformations on ice-lineations in Finnish Lapland. Geomorphology, 326, 202212, doi.org/10.1016/j.geomorph.2018.08.034.Google Scholar
Sutinen, R., Hänninen, P., Hyvönen, E. et al. (2019b). Electrical-sedimentary anisotropy of landforms adjacent to postglacial faults in Lapland. Geomorphology, 326, 213224, doi.org/10.1016/j.geomorph.2018.01.008.CrossRefGoogle Scholar
Sutinen, R., Sutinen, A. and Middleton, M. (2021). Subglacial squeeze-up moraines adjacent to the Vaalajärvi-Ristonmännikkö glacially-induced fault system, Finnish Lapland. Geomorphology, 384, 107716, doi.org/10.1016/j.geomorph.2021.107716.CrossRefGoogle Scholar
Tanner, V. (1930). Studier över kvartärsystemet I Fennoscandias nordliga delar IV [Studies of the Quaternary system in northern Fennoscandia – IV]. Bulletin de la Commission Géologique de Finlande, 88, 594 pp.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×