Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T16:27:02.910Z Has data issue: false hasContentIssue false

8 - Dating of Postglacial Faults in Fennoscandia

from Part II - Methods and Techniques for Fault Identification and Dating

Published online by Cambridge University Press:  02 December 2021

Holger Steffen
Affiliation:
Lantmäteriet, Sweden
Odleiv Olesen
Affiliation:
Geological Survey of Norway
Raimo Sutinen
Affiliation:
Geological Survey of Finland
Get access

Summary

Numerous methods have been applied to dating postglacial faults in Fennoscandia. Traditionally, these range from determining relative ages based on cross-cutting relationships to determining absolute ages based on stratigraphy and radiocarbon dates. More recently, however, direct dating of fault scarps using terrestrial cosmogenic nuclide dating has been attempted.

The benefits and limitations of these methods are described citing examples from recent literature. Subsequently, the dates themselves are discussed in the context of the longstanding hypothesis that postglacial faults in Fennoscandia ruptured only once during or shortly after deglaciation. While each of the studies reviewed applies only to the investigated faults, collectively recent literature indicates a longer lasting and more complex spatial and temporal history of postglacial faulting in the Fennoscandian Shield area.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benavente, C., Zerathe, S., Audin, L. et al. (2017). Active transpressional tectonics in the Andean forearc of southern Peru quantified by 10Be surface exposure dating of an active fault scarp. Tectonics, 36(9), 16621678, doi.org/10.1002/2017TC004523.Google Scholar
Benedetti, L., Manighetti, I., Gaudemer, Y. et al. (2013). Earthquake synchrony and clustering on Fucino faults (Central Italy) as revealed from in situ 36Cl exposure dating. Journal of Geophysical Research: Solid Earth, 118(9), 49484974, doi.org/10.1002/jgrb.50299.CrossRefGoogle Scholar
Berglund, M. (2012). Early Holocene in Gästrikland, east central Sweden: shore displacement and isostatic recovery. Boreas, 41(2), 263276, doi.org/10.1111/j.1502-3885.2011.00228.x.CrossRefGoogle Scholar
Berthet, T., Ritz, J.-F., Ferry, M. et al. (2014). Active tectonics of the eastern Himalaya: new constraints from the first tectonic geomorphology study in southern Bhutan. Geology, 42(5), 427430, doi.org/10.1130/G35162.1.CrossRefGoogle Scholar
Björck, S. (1995). A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quaternary International, 27(94), 1940, doi.org/10.1016/1040-6182(94)00057-C.Google Scholar
Crozier, M. J. (1992). Determination of paleoseismicity from landslides. In Bell, D.H., ed., Landslides (Glissements de terrain). Proceedings of the 6th International Symposium, Christchurch, New Zealand, A. A. Balkema, Rotterdam, pp. 11731180.Google Scholar
Cruden, D. M. and Varnes, D. J. (1996). Landslide types and processes. In Turner, A. K. and Schuster, R. L., eds., Landslides: Investigation and Mitigation. Transportation Research Board, US National Research Council Special Report 247, Washington, DC, pp. 3675.Google Scholar
Gosse, J. C. and Phillips, F. M. (2001). Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews, 20, 14751560, doi.org/10.1016/S0277-3791(00)00171-2.CrossRefGoogle Scholar
Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. and Svendsen, J. I. (2016). The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1. Boreas, 45, 145, doi.org/10.1111/bor.12142.CrossRefGoogle Scholar
Hungr, O., Leroueil, S. and Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11, 167194, doi.org/10.1007/s10346–013-0436-y.Google Scholar
Jibson, R. W. (1996). Use of landslides for paleoseismic analysis. Engineering Geology, 43, 291323, doi.org/10.1016/S0013–7952(96)00039-7.Google Scholar
Jibson, R. W. and Keefer, D. K. (1989). Statistical analysis of factors affecting landslide distribution in the New Madrid seismic zone, Tennessee and Kentucky. Engineering Geology, 27, 509542, doi.org/10.1016/0013-7952(89)90044-6.Google Scholar
Jibson, R. W. and Keefer, D. K. (1993). Analysis of the seismic orgin of landslides—examples from the New Madrid seismic zone. Geological Society of America Bulletin, 105, 421436.Google Scholar
Kujansuu, R. (1964). Nuorista siirroksista Lapissa [English summary: Recent faults in Lapland]. Geologi, 16, 3036 (in Finnish).Google Scholar
Lagerbäck, R. (1978). Neotectonic structures in northern Sweden. GFF, 100(3), 263269, doi.org/10.1080/11035897809452533.Google Scholar
Lagerbäck, R. (1988). The Veiki moraines in northern Sweden – widespread evidence of an Early Weichselian deglaciation. Boreas, 17, 469486, doi.org/10.1111/j.1502-3885.1988.tb00562.x.Google Scholar
Lagerbäck, R. (1990). Late Quaternary faulting and paleoseismicity in northern Fennoscandia with particular reference to the Lansjärv area, Northern Sweden. GFF, 112, 333354, doi.org/10.1080/11035899009452733.Google Scholar
Lagerbäck, R. (1992). Dating of Late Quaternary faulting in northern Sweden. Journal of the Geological Society, 149(2), 285291, doi.org/10.1144/gsjgs.149.2.0285.CrossRefGoogle Scholar
Lagerbäck, R. and Robertsson, A.-M. (1988). Kettle holes – stratigraphical archives for Weichselian geology and palaeoenvironment in northernmost Sweden. Boreas, 17, 439468, doi.org/10.1111/j.1502-3885.1988.tb00561.x.Google Scholar
Lagerbäck, R. and Sundh, M. (2008). Early Holocene Faulting and Paleoseismicity in Northern Sweden: Research Paper C 836. Geological Survey of Sweden pp.Google Scholar
Lindén, M., Möller, P., Björck, S. and Sandgren, P. (2006). Holocene shore displacement and deglaciation chronology in Norrbotten, Sweden. Boreas, 35(1), 122, doi.org/10.1111/j.1502-3885.2006.tb01109.x.Google Scholar
Lundqvist, J. and Lagerbäck, R. (1976). The Pärve Fault: a late-glacial fault in the Precambrian of Swedish Lapland. Geologiska Föreningens i Stockholm Förhandlingar, 98, 4551, doi.org/10.1080/11035897609454337.Google Scholar
Mattila, J., Ojala, A. E. K., Ruskeeniemi, T. et al. (2019). Evidence of multiple slip events on postglacial faults in northern Fennoscandia. Quaternary Science Reviews, 215, 242252, doi.org/10.1016/j.quascirev.2019.05.022.CrossRefGoogle Scholar
Mikko, H., Smith, C. A., Lund, B., Ask, M. V. S. and Munier, R. (2015). LiDAR-derived inventory of post-glacial fault scarps in Sweden. GFF, 137, 334338, doi.org/10.1080/11035897.2015.1036360.CrossRefGoogle Scholar
Ojala, A. E. K. and Alenius, T. (2005). 10000 years of interannual sedimentation recorded in the Lake Nautajärvi (Finland) clastic–organic varves. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(3), 285302, doi.org/10.1016/j.palaeo.2005.01.002.CrossRefGoogle Scholar
Ojala, A. E. K., Palmu, J.-P., Åberg, A., Åberg, S. and Virkki, H. (2013). Development of an ancient shoreline database to reconstruct the Litorina Sea maximum extension and the highest shoreline of the Baltic Sea basin in Finland. Bulletin of the Geological Society of Finland, 85(PART 2), 127144, doi.org/10.17741/bgsf/85.2.002.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2017). Postglacial seismic activity along the Isovaara–Riikonkumpu fault complex. Global and Planetary Change, 157(January), 5972, doi.org/10.1016/j.gloplacha.2017.08.015.CrossRefGoogle Scholar
Ojala, A. E. K., Markovaara-Koivisto, M., Middleton, M. et al. (2018a). Dating of paleolandslides in western Finnish Lapland. Earth Surface Processes and Landforms, 43, 24492462, doi.org/10.1002/esp.4408.Google Scholar
Ojala, A. E. K., Mattila, J., Virtasalo, J. Kuva, J. and Luoto, T.P. (2018b). Seismic deformation of varved sediments in southern Fennoscandia at 7400 cal BP. Tectonophysics, 744, 5871, doi.org/10.1016/j.tecto.2018.06.015.Google Scholar
Ojala, A. E. K., Mattila, J., Hämäläinen, J. and Sutinen, R. (2019a). Lake sediment evidence of paleoseismicity: timing and spatial occurrence of late- and postglacial earthquakes in Finland. Tectonophysics, 771, 228227, doi.org/10.1016/j.tecto.2019.228227.Google Scholar
Ojala, A. E. K., Mattila, J., Markovaara-Koivisto, M. et al. (2019b). Distribution and morphology of landslides in northern Finland: an analysis of postglacial seismic activity. Geomorphology, 326, 190201, doi.org/10.1016/j.geomorph.2017.08.045.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2019c). Postglacial Faults in Finland – A Review of PGSdyn – Project Results, Posiva Report 2019-1, 118 pp., Posiva Oy, Eurajoki.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2019d). Postglacial reactivation of the Suasselkä PGF complex in SW Finnish Lapland. International Journal of Earth Sciences, 108(3), 10491065, doi.org/10.1007/s00531-019-01695-w.CrossRefGoogle Scholar
Owen, G., Moretti, M. and Alfaro, P. (2011). Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology, 235, 133140, doi.org/10.1016/j.sedgeo.2010.12.010.Google Scholar
Palmu, J. P., Ojala, A. E. K., Ruskeeniemi, T., Sutinen, R. and Mattila, J. (2015). LiDAR DEM detection and classification of postglacial faults and seismically-induced landforms in Finland: a paleoseismic database. GFF, 137(4), 344352, doi.org/10.1080/11035897.2015.1068370.CrossRefGoogle Scholar
Salomaa, R. (1982). Post-glacial shoreline displacement in the Lauhanvuori area, Western Finland. Annales Academiæ Scientiarum Fennicæ A III, 134, 8197.Google Scholar
Sims, J. D. (1973). Earthquake-Induced Structures in Sediments of Van Norman Lake, San Fernando, California. Science, 182, 161163, doi.org/10.1126/science.182.4108.161.Google Scholar
Smith, C. A., Sundh, M. and Mikko, H. (2014). Surficial geology indicates early Holocene faulting and seismicity, central Sweden. International Journal of Earth Sciences, 103(6), 17111724, doi.org/10.1007/s00531-014-1025-6.Google Scholar
Smith, C. A., Nyberg, J. and Bergman, B. (2018). Comparison between hydroacoustical and terrestrial evidence of glacially induced faulting, Lake Voxsjön, central Sweden. International Journal of Earth Sciences, 107, 169175, doi.org/10.1007/s00531-017-1479-4.Google Scholar
Stroeven, A. P., Hättestrand, C., Kleman, J., et al. (2016). Deglaciation of Fennoscandia. Quaternary Science Reviews, 147, 91121, doi.org/10.1016/j.quascirev.2015.09.016.Google Scholar
Strömberg, B. (1989) Late Weichselian Deglaciation and Clay Varve Chronology in East-Central Sweden, Geological Survey of Sweden (SGU) Series Ca. 73, 70 pp.Google Scholar
Sutinen, R., Hyvönen, E., Middleton, M. and Ruskeeniemi, T. (2014). Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojärvi, Finnish Lapland. Global and Planetary Change, 115, 2432, doi.org/10.1016/j.gloplacha.2014.01.007.CrossRefGoogle Scholar
Tesson, J. and Benedetti, L. (2019). Seismic history from in situ 36Cl cosmogenic nuclide data on limestone fault scarps using Bayesian reversible jump Markov chain Monte Carlo. Quaternary Geochronology, 52, 120, doi.org/10.1016/j.quageo.2019.02.004.Google Scholar
Tikhomirov, D., Amiri, N. M., Ivy-Ochs, S. et al. (2019). Fault Scarp Dating Tool – a MATLAB code for fault scarp dating using in-situ chlorine-36 supplemented with datasets of Yavansu and Kalafat faults. Data in Brief, 26, 104476, doi.org/10.1016/j.dib.2019.104476.Google Scholar
Tiljander, M., Saarnisto, M., Ojala, A. E. K. and Saarinen, T. (2003). A 3000-year palaeoenvironmental record from annually laminated sediment of Lake Korttajärvi, central Finland. Boreas, 32(4), 566577, doi.org/10.1111/j.1502-3885.2003.tb01236.x.Google Scholar
Varnes, D. J. (1978). Slope movement types and processes. In Schuster, R. L. and Krizek, R. J., eds., Landslides: Analysis and Control, Special Report 176, Transportation Research Board, National Academy of Sciences, Washington, DC., pp. 1133.Google Scholar
Yang, H., Yang, X., Huang, X. et al. (2018). New constraints on slip rates of the Fodongmiao–Hongyazi fault in the Northern Qilian Shan, NE Tibet, from the 10Be exposure dating of offset terraces. Journal of Asian Earth Sciences, 151, 131147, doi.org/10.1016/j.jseaes.2017.10.034.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×