Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T16:10:42.017Z Has data issue: false hasContentIssue false

9 - Counting arcs in negative curvature

Published online by Cambridge University Press:  05 January 2016

Jouni Parkkonen
Affiliation:
University of Jyväskylä, Finland
Frédéric Paulin
Affiliation:
Université Paris-Sud
C. S. Aravinda
Affiliation:
TIFR Centre for Applicable Mathematics, Bangalore, India
F. T. Farrell
Affiliation:
Tsinghua University, Beijing
J. -F. Lafont
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AM] V., Ala-Mattila. Geometric characterizations for Patterson-Sullivan measures of geometrically finite Kleinian groups. Ann. Acad. Sci. Fenn. Math. Diss. 157, 2011.Google Scholar
[Asl] H., Aslaksen. Quaternionic determinants. Math. Intelligencer 18 (1996) 57–65.Google Scholar
[Bab1] M., Babillot. On the mixing property for hyperbolic systems. Israel J. Math. 129 (2002) 61–76.Google Scholar
[Bab2] M., Babillot. Points entiers et groupes discrets : de l'analyse aux systèmes dynamiques. in “Rigidité, groupe fondamental et dynamique”, Panor. Synthèses 13, 1–119, Soc. Math. France, 2002.Google Scholar
[Bas] A., Basmajian. The orthogonal spectrum of a hyperbolic manifold. Amer. Math. J. 115 (1993) 1139–1159.Google Scholar
[Bea] A. F., Beardon. The geometry of discrete groups. Grad. Texts Math. 91, Springer-Verlag, 1983.Google Scholar
[BHP] K., Belabas, S., Hersonsky, and F., Paulin. Counting horoballs and rational geodesics. Bull. Lond. Math. Soc. 33 (2001), 606–612.Google Scholar
[BFL] Y., Benoist, P., Foulon, and F., Labourie. Flots d'Anosov à distributions stable et instable différentiables. J. Amer.Math. Soc. 5 (1992) 33–74.Google Scholar
[Bou] M., Bourdon. Structure conforme au bord et flot géodésique d'un CAT(−1) espace. L'Ens. Math. 41 (1995) 63–102.Google Scholar
[Bowd] B., Bowditch. Geometrical finiteness with variable negative curvature. Duke Math. J. 77 (1995) 229–274.Google Scholar
[Bowe] R., Bowen. The equidistribution of closed geodesics. Amer. J. Math. 94 (1972), 413–423.Google Scholar
[Brid] M., Bridgeman. Orthospectra of geodesic laminations and dilogarithm identities on moduli space. Geom. Topol. 15 (2011) 707–733.Google Scholar
[BriK] M., Bridgeman and J., Kahn. Hyperbolic volume of manifolds with geodesic boundary and orthospectra. Geom. Funct. Anal. 20 (2010) 1210–1230.Google Scholar
[BriH] M. R., Bridson and A., Haefliger. Metric spaces of non-positive curvature. Grund. math. Wiss. 319, Springer Verlag, 1999.Google Scholar
[Brin] M., Brin. Ergodicity of the geodesic flow. Appendix in W., Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar 25, Birkhäuser, 1995, 81–95.Google Scholar
[BrPP] A., Broise-Alamichel, J., Parkkonen, and F., Paulin. Équidistribution and counting under equilibrium states and in quantum graphs, with applications to non-Archimedean Diophantine approximation. In preparation.
[Cal] D., Calegari. Bridgeman's orthospectrum identity. Topology Proc. 38 (2011) 173–179.Google Scholar
[Clo] L., Clozel. Démonstration de la conjecture τ. Invent. Math. 151 (2003) 297–328.Google Scholar
[Coh] H., Cohn. A second course in number theory. Wiley, 1962, reprinted as Advanced number theory, Dover, 1980.Google Scholar
[CoI] K., Corlette and A., Iozzi. Limit sets of discrete groups of isometries of exotic hyperbolic spaces. Trans. Amer.Math. Soc. 351 (1999) 1507–1530.Google Scholar
[Cos] S., Cosentino. Equidistribution of parabolic fixed points in the limit set of Kleinian groups. Erg. Theo. Dyn. Syst. 19 (1999) 1437–1484.Google Scholar
[Cou] Y., Coudene. Gibbs measures on negatively curved manifolds. J. Dynam. Control Syst. 9 (2003) 89–101.Google Scholar
[Dal] F., Dal'Bo. Remarques sur le spectre des longueurs d'une surface et comptage. Bol. Soc. Bras. Math. 30 (1999) 199–221.Google Scholar
[DaOP] F., Dal'Bo, J.-P., Otal, and M., Peigné. Séries de Poincaré des groupes géométriquement finis. Israel J. Math. 118 (2000) 109–124.Google Scholar
[Die] J., Dieudonné. Les déterminants sur un corps non commutatif. Bull. Soc. Math. France, 71 (1943) 27–45.Google Scholar
[Dol] D., Dolgopyat. On decay of correlation in Anosov flows. Ann. of Math. 147 (1998) 357–390.Google Scholar
[DRS] W., Duke, Z., Rudnick, and P., Sarnak. Density of integer points on affine homogeneous varieties. Duke Math. J. 71 (1993) 143–179.Google Scholar
[EGM] J., Elstrodt, F., Grunewald, and J., Mennicke. Groups acting on hyperbolic space: Harmonic analysis and number theory. Springer Mono. Math., Springer Verlag, 1998.Google Scholar
[EM] A., Eskin and C., McMullen. Mixing, counting, and equidistribution in Lie groups. Duke Math. J. 71 (1993) 181–209.Google Scholar
[Fed] H., Federer. Curvature measures. Trans. Amer. Math. Soc. 93 (1959) 418–491.Google Scholar
[Ghy] E., Ghys. Flots d'Anosov dont les feuilletages stables sont différentiables. Ann. Sci. Ec. Norm. Sup. 20 (1987) 251–270.Google Scholar
[GLP] P., Giulietti, C., Liverani, and M., Pollicott. Anosov flows and dynamical zeta functions. Ann. of Math. 178 (2013) 687–773.Google Scholar
[Gro] W., Grotz. Mittelwert der Eulerschen φ-Funktion und des Quadrates der Dirichletschen Teilerfunktion in algebraischen Zahlkörpern. Monatsh. Math. 88 (1979) 219–228.Google Scholar
[Ham1] U., Hamenstädt. A new description of the Bowen-Margulis measure. Erg. Theo. Dyn. Syst. 9 (1989) 455–464.Google Scholar
[Ham2] U., Hamenstädt. Cocycles, Hausdorff measures and cross ratios. Erg. Theo. Dyn. Syst. 17 (1997) 1061–1081.Google Scholar
[HaW] G. H., Hardy and E. M., Wright. An introduction to the theory of numbers. Oxford Univ. Press, sixth ed., 2008.Google Scholar
[Herr] O., Herrmann. Über die Verteilung der Längen geodätischer Lote in hyperbolischen Raumformen. Math. Z. 79 (1962) 323–343.Google Scholar
[Hers] S., Hersonsky. Covolume estimates for discrete groups of hyperbolic isometries having parabolic elements. Michigan Math. J. 40 (1993) 467–475.Google Scholar
[HeP1] S., Hersonsky and F., Paulin. On the rigidity of discrete isometry groups of negatively curved spaces. Comm. Math. Helv. 72 (1997) 349–388.Google Scholar
[HeP2] S., Hersonsky and F., Paulin. Counting orbit points in coverings of negatively curved manifolds and Hausdorff dimension of cusp excursions. Erg. Theo. Dyn. Syst. 24 (2004) 803–824.Google Scholar
[HeP3] S., Hersonsky and F., Paulin. On the almost sure spiraling of geodesics in negatively curved manifolds. J. Diff. Geom. 85 (2010) 271–314.Google Scholar
[HiP] M., Hirsch and C., Pugh. Smoothness of horocycle foliations. J. Diff. Geom. 10 (1975) 225–238.Google Scholar
[Hop] E., Hopf. Ergodic theory and the geodesic flow on surfaces of constant negative curvature. Bull. Amer. Math. Soc. 77 (1971) 863–877.Google Scholar
[Hub] H., Huber. Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen. Math. Ann. 138 (1959) 1–26.Google Scholar
[HuK] S., Hurder and A., Katok. Differentiability, rigidity and Godbillon-Vey classes for Anosov flows. Publ. Math. IHES. 72 (1990) 5–61.Google Scholar
[Hux] M. N., Huxley. Exponential sums and lattice points III. Proc. London Math. Soc. 87 (2003) 591–609.Google Scholar
[Kai] V., Kaimanovich. Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds. Ann. Inst. Henri Poincaré, Phys. Théo. 53 (1990) 361–393.Google Scholar
[KaH] A., Katok and B., Hasselblatt. Introduction to the modern theory of dynamical systems. Ency. Math. App. 54, Camb. Univ. Press, 1995.Google Scholar
[Kel] R., Kellerhals. Quaternions and some global properties of hyperbolic 5- manifolds. Canad. J. Math. 55 (2003) 1080–1099.Google Scholar
[KlM1] D., Kleinbock and G., Margulis. Bounded orbits of nonquasiunipotent flows on homogeneous spaces. Sinai's Moscow Seminar on Dynamical Systems, 141–172, Amer. Math. Soc. Transl. Ser. 171, Amer. Math. Soc. 1996.Google Scholar
[KlM2] D., Kleinbock and G., Margulis. Logarithm laws for flows on homogeneous spaces. Invent. Math. 138 (1999) 451–494.Google Scholar
[Klo] H. D., Kloosterman. On the representation of numbers in the form ax2 + by2 + cz2 + dt2. Acta Math. 49 (1927) 407–464.Google Scholar
[Kon] A., Kontorovich. The hyperbolic lattice point count in infinite volume with applications to sieves. Duke Math. J. 149 (2009) 1–36.Google Scholar
[KoO] A., Kontorovich and H., Oh. Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds. J. Amer. Math. Soc. 24 (2011) 603–648.Google Scholar
[Kor] J., Korevaar. Tauberian theory. Grund. math.Wiss. 329, Springer Verlag, 2010.
[KrO] V., Krafft and D., Osenberg. Eisensteinreihen fÜr einige arithmetisch definierte Untergruppen von SL2(H). Math. Z. 204 (1990) 425–449.Google Scholar
[Lan] E., Landau. Elementary number theory. Chelsea Pub. 1958.
[LaP] P. D., Lax and R. S., Phillips. The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal. 46 (1982) 280–350.Google Scholar
[Led1] F., Ledrappier. Structure au bord des variétés à courbure négative. Sém. Théorie Spec. Géom. Grenoble 13, Année 1994–1995, 97–122.Google Scholar
[Led2] F., Ledrappier. A renewal theorem for the distance in negative curvature. In “Stochastic Analysis” (Ithaca, 1993), p. 351–360, Proc. Symp. Pure Math. 57 (1995), Amer. Math. Soc.Google Scholar
[Liv] C., Liverani. On contact Anosov flows. Ann. of Math. 159 (2004) 1275–1312.Google Scholar
[MaR] C., Maclachlan and A., Reid. Parametrizing Fuchsian subgroups of the Bianchi groups. Canad. J. Math. 43 (1991) 158-181.Google Scholar
[Mar1] G., Margulis. Applications of ergodic theory for the investigation of manifolds of negative curvature. Funct. Anal. Applic. 3 (1969) 335–336.Google Scholar
[Mar2] G., Margulis. On some aspects of the theory of Anosov systems. Mono. Math., Springer Verlag, 2004.Google Scholar
[MMW] K., Martin, M., McKee, and E., Wambach. A relative trace formula for a compact Riemann surface. Int. J. Number Theory 7 (2011) 389–429; see webpage of first author for errata.Google Scholar
[Mey] R., Meyerhoff. The ortho-length spectrum for hyperbolic 3-manifolds. Quart. J. Math. Oxford 47 (1996) 349–359.Google Scholar
[Moh] O., Mohsen. Le bas du spectre d'une variété hyperbolique est un point selle. Ann. Sci. École Norm. Sup. 40 (2007) 191–207.Google Scholar
[Moo] C., Moore. Exponential decay of correlation coefficients for geodesic flows. In “Group representations, ergodic theory, operator algebras, and mathematical physics” (Berkeley, 1984), 163–181, Math. Sci. Res. Inst. Publ. 6, Springer, 1987.Google Scholar
[Mos] G. D., Mostow. Strong rigidity of locally symetric spaces. Ann. Math. Studies 78, Princeton Univ. Press, 1973
[OS1] H., Oh and N., Shah. The asymptotic distribution of circles in the orbits of Kleinian groups. Invent. Math. 187 (2012) 1–35.Google Scholar
[OS2] H., Oh and N., Shah. Equidistribution and counting for orbits of geometrically finite hyperbolic groups. J. Amer.Math. Soc. 26 (2013) 511–562.Google Scholar
[OS3] H., Oh and N., Shah. Counting visible circles on the sphere and Kleinian groups. In “Geometry, Topology, and Dynamics in Negative Curvature”, 272–287, London Math. Soc. Lecture Notes in Math. 425, Cambridge University Press, 2016.Google Scholar
[OtP] J.-P., Otal and M., Peigné. Principe variationnel et groupes Kleiniens. Duke Math. J. 125 (2004) 15–44.Google Scholar
[PaP1] J., Parkkonen and F., Paulin. Prescribing the behaviour of geodesics in negative curvature. Geom. & Topo. 14 (2010) 277–392.Google Scholar
[PaP2] J., Parkkonen and F., Paulin. Equidistribution, counting and arithmetic applications. Oberwolfach Report 29 (2010) 35–37.Google Scholar
[PaP3] J., Parkkonen and F., Paulin. On the representations of integers by indefinite binary Hermitian forms. Bull. London Math. Soc. 43 (2011) 1048–1058.Google Scholar
[PaP4] J., Parkkonen and F., Paulin. Équidistribution, comptage et approximation par irrationnels quadratiques. J. Mod. Dyn. 6 (2012) 1–40.Google Scholar
[PaP5] J., Parkkonen and F., Paulin. On the arithmetic and geometry of binary Hamiltonian forms. Appendix by Vincent Emery. Algebra & Number Theory 7 (2013)75–115.Google Scholar
[PaP6] J., Parkkonen and F., Paulin. Skinning measures in negative curvature and equidistribution of equidistant submanifolds. Erg. Theo. Dyn. Syst. 34 (2014) 1310–1342.Google Scholar
[PaP7] J., Parkkonen and F., Paulin. Counting common perpendicular arcs in negative curvature. Preprint [arXiv:1305.1332], to appear in Erg. Theo. Dyn. Syst.
[PaP8] J., Parkkonen and F., Paulin. On the arithmetic of crossratios and generalised Mertens' formulas. Numéro Spécial “Aux croisements de la géométrie hyperbolique et de l'arithmétique”, F., Dal'Bo, C., Lecuire eds, Ann. Fac. Scien. Toulouse 23 (2014) 967–1022.Google Scholar
[PaPo] W., Parry and M., Pollicott. An analog of the prime number theorem for closed orbits of Axiom A flows. Ann. of Math. 118 (1983) 573–591.Google Scholar
[Par] W., Parry. Bowen's equidistribution theory and the Dirichlet density theorem. Erg. Theo. Dyn. Syst. 4 (1984) 117–134.Google Scholar
[Pat] S. J., Patterson. The limit set of a Fuchsian group. Acta. Math. 136 (1976) 241–273.Google Scholar
[PauPS] F., Paulin, M., Pollicott, and B., Schapira. Equilibrium states in negative curvature. Astérisque 373, Soc. Math. France 2015.Google Scholar
[Pol] M., Pollicott. A symbolic proof of a theorem of Margulis on geodesic arcs on negatively curved manifolds. Amer. J. Math. 117 (1995) 289–305.Google Scholar
[Pra] G., Prasad. Volumes of S-arithmetic quotients of semi-simple groups. Publ. Math. IHES 69 (1989) 91–117.Google Scholar
[Rei] I., Reiner. Maximal orders. Academic Press, 1972.Google Scholar
[Rob1] T., Roblin. Sur la fonction orbitale des groupes discrets en courbure négative. Ann. Inst. Fourier 52 (2002) 145–151.Google Scholar
[Rob2] T., Roblin. Ergodicité et équidistribution en courbure négative. Mémoires Soc. Math. France, 95 (2003).Google Scholar
[Sar] P., Sarnak. The arithmetic and geometry of some hyperbolic three-manifolds. Acta Math. 151 (1983) 253–295.Google Scholar
[Sch] B., Schapira. On quasi-invariant transverse measures for the horospherical foliation of a negatively curved manifold. Erg. Theo. Dyn. Syst. 24 (2004) 227–257.Google Scholar
[Sha] R., Sharp. Periodic orbits of hyperbolic flows. In G. A., Margulis, “On some aspects of the theory of Anosov systems”, Springer Verlag, 2004.Google Scholar
[Sto] L., Stoyanov. Spectra of Ruelle transfer operators for axiom A flows. Nonlinearity 24 (2011) 1089–1120.Google Scholar
[SV] B., Stratmann and S. L., Velani. The Patterson measure for geometrically finite groups with parabolic elements, new and old. Proc. London Math. Soc. 71 (1995) 197–220.Google Scholar
[Sul1] D., Sullivan. The density at infinity of a discrete group of hyperbolic motions. Publ. Math. IHES 50 (1979) 172–202.Google Scholar
[Sul2] D., Sullivan. Entropy, Hausdorff measures old and new, and the limit set of geometrically finite Kleinian groups. Acta Math. 153 (1984) 259–277.Google Scholar
[Tuk] P., Tukia. The Poincaré series and the conformal measure of conical and Myrberg limit points. J. Analyse Math. 62 (1994) 241–259.Google Scholar
[Vig] M. F., Vignéras. Arithmétique des algèbres de quaternions. Lect. Notes in Math. 800, Springer Verlag, 1980.Google Scholar
[Wal] R., Walter. Some analytical properties of geodesically convex sets. Abh. Math. Sem. Univ. Hamburg 45 (1976) 263–282.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×