Published online by Cambridge University Press: 04 November 2009
Abstract
Studying the geometry of a group G leads us to questions about its maximal subgroups and primitive permutation representations (the G-invariant relations and similar structures, the base size, recognition problems, and so on). Taking the point of view that finite projective geometry is the geometry of the groups PGL(n, q), Aschbacher's theorem gives us eight natural families of geometric objects, with greater or smaller degrees of familiarity. This paper presents some speculations on how the subject could develop from this point of view.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.