Book contents
- Frontmatter
- Contents
- Preface
- Introduction
- On maximum size anti-Pasch sets of triples
- Some simple 7–designs
- Inscribed bundles, Veronese surfaces and caps
- Embedding partial geometries in Steiner designs
- Finite geometry after Aschbacher's Theorem: PGL(n, q) from a Kleinian viewpoint
- The Hermitian function field arising from a cyclic arc in a Galois plane
- Intercalates everywhere
- Difference sets: an update
- Computational results for the known biplanes of order 9
- A survey of small embeddings for partial cycle systems
- Rosa triple systems
- Searching for spreads and packings
- A note on Buekenhout-Metz unitals
- Elation generalized quadrangles of order (q2, q)
- Uniform parallelisms of PG(3, 3)
- Double-fives and partial spreads in PG(5, 2)
- Rank three geometries with simplicial residues
- Generalized quadrangles and the Axiom of Veblen
- Talks
- Participants
Computational results for the known biplanes of order 9
Published online by Cambridge University Press: 04 November 2009
- Frontmatter
- Contents
- Preface
- Introduction
- On maximum size anti-Pasch sets of triples
- Some simple 7–designs
- Inscribed bundles, Veronese surfaces and caps
- Embedding partial geometries in Steiner designs
- Finite geometry after Aschbacher's Theorem: PGL(n, q) from a Kleinian viewpoint
- The Hermitian function field arising from a cyclic arc in a Galois plane
- Intercalates everywhere
- Difference sets: an update
- Computational results for the known biplanes of order 9
- A survey of small embeddings for partial cycle systems
- Rosa triple systems
- Searching for spreads and packings
- A note on Buekenhout-Metz unitals
- Elation generalized quadrangles of order (q2, q)
- Uniform parallelisms of PG(3, 3)
- Double-fives and partial spreads in PG(5, 2)
- Rank three geometries with simplicial residues
- Generalized quadrangles and the Axiom of Veblen
- Talks
- Participants
Summary
Abstract
The ternary codes associated with the five known biplanes of order 9 were examined using the computer language Magma. The computations showed that each biplane is the only one to be found among the weight-11 vectors of its ternary code, and that none of the biplanes can be extended to a 3-(57,12,2) design. The residual designs of the biplanes, and designs associated with {12; 3}-arcs were also examined.
- Type
- Chapter
- Information
- Geometry, Combinatorial Designs and Related Structures , pp. 113 - 122Publisher: Cambridge University PressPrint publication year: 1997
- 2
- Cited by