Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T21:06:08.506Z Has data issue: false hasContentIssue false

Part V - Magnetic Fields beyond the Earth and beyond Today

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 265 - 326
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Acuña, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., McFadden, J., Anderson, K. A., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P. and Cloutier, P. (1999). Global distribution of crustal magnetism discovered by the Mars Global Surveyor MAG/ER experiment, Science, 284, 790–93.CrossRefGoogle ScholarPubMed
Amit, H., Christensen, U. R. and Langlais, B. (2011). The influence of degree-1 mantle heterogeneity on the past dynamo of Mars, Phys. Earth Planet. Inter., 189, 6379.CrossRefGoogle Scholar
Anderson, J. D., Jurgens, R. F., Lau, E. L., Slade, M. A. and Schubert, G. (1996). Shape and orientation of Mercury from radar ranging data, Icarus, 124(2), 690–97.Google Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J.A. and Zurbuchen, T.H. (2011). The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333(6051), 1859–62.Google Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Winslow, R. M., Borovsky, J. E., Purucker, M. E., Slavin, J. A., Solomon, S. C., Zuber, M. T. and McNutt, R. L. Jr. (2012). Low-degree structure in Mercury’s planetary magnetic field, J. Geophys. Res., 117, doi: 10.1029/2012JE004159.Google Scholar
Arkani-Hamed, J. and Boutin, D. (2012). Is the primordial crust of Mars magnetized?, Icarus, 221(1), 192207.Google Scholar
Arkani-Hamed, J. and Dyment, J. (1996). Magnetic potential and magnetization contrasts of Earth’s lithosphere, J. Geophys. Res., 101(B5), 11401–26.Google Scholar
Arkani-Hamed, J. and Olson, P. (2010). Giant impact stratification of the Martian core, Geophys. Res. Lett., 370(L02), 201, doi: 10.1029/2009GL041417.Google Scholar
Aubert, J., Labrosse, S. and Poitou, C. (2009). Modelling the palaeo-evolution of the geo-dynamo, Geophys. J. Int., 179, 1414–28.Google Scholar
Bland, M. T., Showman, A. P. and Tobie, G. (2009). The orbital–thermal evolution and global expansion of Ganymede, Icarus, 200(1), 207–21.Google Scholar
Bleil, U. and Petersen, N. (1983). Variations in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts, Nature, 301, 384–8.Google Scholar
Braginsky, S. I. (1964). Magnetohydrodynamics of the Earth core, Geomag. Aeron., 4, 698712.Google Scholar
Breuer, D., Labrosse, S. and Spohn, T. (2010). Thermal evolution and magnetic field generation in terrestrial planets and satellites, Space Sci. Rev., 152(1), 449500.Google Scholar
Breuer, D. and Moore, B. (2015). Dynamics and thermal history of the terrestrial planets, the Moon, and Io, in Treatise on Geophysics, 2nd edn., vol. 10, ed. Spohn, T., pp. 255305, Elsevier, Oxford.CrossRefGoogle Scholar
Breuer, D. and Spohn, T. (2003). Early plate tectonics versus single-plate tectonics: Evidence from the magnetic field history and crust evolution, J. Geophys. Res., 108(E7), 5072, doi: 10.1029/20002JE001999.Google Scholar
Breuer, D. and Spohn, T. (2006). Viscosity of the Martian mantle and its initial temperature: Constraints from crust formation history and the evolution of the magnetic field, Planet. Space Sci., 54, 153–69.Google Scholar
Bryson, J. F., Nichols, C. I., Herrero-Albillos, J., Kronast, F., Kasama, T., Alimadadi, H. and Harrison, R. J. (2015). Long-lived magnetism from solidification-driven convection on the pallasite parent body, Nature, 517(7535), 472–5.Google Scholar
Buono, A. S. and Walker, D. (2011). The Fe-rich liquidus in the Fe–FeS system from 1 bar to 10GPa, Geochim. Cosmochim. Acta, 75(8), 2072–87.Google Scholar
Busse, F. H. (1976). Generation of planetary magnetism by convection, Phys. Earth Planet. Inter., 12(4), 350–58.Google Scholar
Byrne, P. K., Klimczak, C., Şengör, A. C., Solomon, S. C., Watters, T. R. and Hauck, S. A. (2014). Mercury’s global contraction much greater than earlier estimates, Nat. Geosci., 7(4), 301–7.Google Scholar
Cameron, A. G. W. (1997). The origin of the Moon and the single impact hypothesis V, Icarus, 126(1), 126–37.Google Scholar
Cameron, A. G. W. and Canup, R. M. (1998). The giant impact and the formation of the Moon, Origin Earth Moon, 957, 3.Google Scholar
Campbell, A. J., Seagle, C. T., Heinz, D. L., Shen, G. and Prakapenka, V. B. (2007). Partial melting in the iron–sulfur system at high pressure: A synchrotron X-ray diffraction study, Phys. Earth Planet. Inter., 162(1), 119–28.Google Scholar
Cao, H., Aurnou, J. M., Wicht, J., Dietrich, W., Soderlund, K. M. and Russell, C. T. (2014). A dynamo explanation for Mercury’s anomalous magnetic field, Geophys. Res. Lett., 41(12), 4127–34.Google Scholar
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., Shuster, D. L., Ebel, D. and Gattacceca, J. (2011). Magnetic evidence for a partially differentiated carbonaceous chondrite parent body, Proc. Natl. Acad. Sci., 108(16), 6386–9.Google Scholar
Chabot, N. L., Wollack, E. A., Klima, R. L. and Minitti, M. E. (2014). Experimental constraints on Mercury’s core composition, Earth Planet. Sci. Lett., 390, 199208.Google Scholar
Chen, B., Li, J. and Hauck, S. A. (2008). Non-ideal liquidus curve in the Fe-S system and Mercury’s snowing core, Geophys. Res. Lett., 35, L07201, doi: 10.1029/2008GL033311.CrossRefGoogle Scholar
Christensen, U. R. and Aubert, J. (2006). Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields, Geophys. J. Int., 166(1), 97114.Google Scholar
Christensen, U. R., Holzwarth, V. and Reiners, A. (2009). Energy flux determines magnetic field strength of planets and stars, Nature, 457(7226), 167–9.Google Scholar
Christensen, U. R. and Wicht, J. (2007). Numerical dynamo simulations, in Core Dynamics, Treatise on Geophysics, vol. 8, ed. Schubert, G., pp. 254–82, Elsevier, Oxford.Google Scholar
Christensen, U. R. and Wicht, J. (2008). Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn, Icarus, 196(1), 1634.Google Scholar
Christensen, U. R. and Tilgner, A. (2004). Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos, Nature, 429, 169–71, doi: 10.1038/nature02508.Google Scholar
Christensen, U. R. (2010). Dynamo scaling laws and applications to the planets, Space Sci. Rev., 152, 565–90.Google Scholar
Christensen, U. R. (2015). Iron snow dynamo models for Ganymede, Icarus, 247, 248–59.Google Scholar
Chudinovskikh, L. and Boehler, R. (2007). Eutectic melting in the system Fe–S to 44 GPa, Earth Planet. Sci. Lett., 257(1), 97103.CrossRefGoogle Scholar
Connerney, J. E. P., Acuña, M. H., Wasilewski, P. J., Ness, N. F., Reme, H., Mazelle, C. and Cloutier, P. A. (1999). Magnetic lineations in the ancient crust of Mars, Science, 284, 794–8.CrossRefGoogle ScholarPubMed
Connerney, J. E. P., Acuña, M. H., Ness, N. F., Spohn, T. and Schubert, G. (2004). Mars crustal magnetism, in Mars’ Magnetism and Its Interaction with the Solar Wind, pp. 132, Springer, Netherlands.Google Scholar
Curtis, S. A. and Ness, N. F. (1986). Magnetostrophic balance in planetary dynamos: Predictions for Neptune’s magnetosphere, J. Geophys. Res., 91(A10), 11003–8.Google Scholar
Davies, C. J. and Pommier, A. (2018). Iron snow in the Martian core?, Earth Planet. Sci. Lett., 481, 189200.CrossRefGoogle Scholar
Dehant, V., Lammer, H., Kulikov, Y. N., Grießmeier, J. M., Breuer, D., Verhoeven, O., Karatekin, Ö., Van Hoolst, T., Korablev, O. and Lognonné, P. (2007). Planetary magnetic dynamo effect on atmospheric protection of early Earth and Mars, Space Sci. Rev., 129(1–3), 279300.CrossRefGoogle Scholar
de Koker, N., Steinle-Neumann, G. and Vlček, V. (2012). Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core, Proc. Natl. Acad. Sci., 109(11), 4070–73.Google Scholar
Dietrich, W. and Wicht, J. (2013). A hemispherical dynamo model: Implications for the Martian crustal magnetization, PEPI, 217, 1021.Google Scholar
Dreibus, G. and Wänke, H. (1985). Mars: A volatile rich planet, Meteoritics, 20, 367–82.Google Scholar
Driscoll, P. and Olson, P. (2011). Optimal dynamos in the cores of terrestrial exoplanets: Magnetic field generation and detectability, Icarus, 213(1), 1223.Google Scholar
Driscoll, P. E. and Barnes, R. (2015). Tidal heating of Earth-like exoplanets around M stars: thermal, magnetic, and orbital evolutions, Astrobiology, 15(9), 739–60.Google Scholar
Dumberry, M. and Rivoldini, A. (2015). Mercury’s inner core size and core-crystallization regime, Icarus, 248, 254–68.Google Scholar
Dwyer, C. A., Stevenson, D. J. and Nimmo, F. (2011). A long-lived lunar dynamo driven by continuous mechanical stirring, Nature, 479, 212–14, doi: 10.1038/nature10564.Google Scholar
Elkins-Tanton, L. T., Weiss, B. P. and Zuber, M. T. (2011). Chondrites as samples of differentiated planetesimals, Earth Planet. Sci. Lett., 305(1), 110.CrossRefGoogle Scholar
Elkins-Tanton, L. T., Asphaug, E., Bell, J., Bercovici, D., Bills, B. G., Binzel, R. P., Bottke, W. F., Jun, I., Marchi, S., Oh, D. and Polanskey, C. A. (2014). Journey to a metal world: Concept for a discovery mission to Psyche, Lunar Planet. Sci. Conf., 45, 1253.Google Scholar
Evans, A. J., Zuber, M. T., Weiss, B. P. and Tikoo, S. M. (2014). A wet, heterogeneous lunar interior: Lower mantle and core dynamo evolution, J. Geophys. Res., 119(5), 1061–77.CrossRefGoogle Scholar
Evans, A. J., Tikoo, S. M. and Andrews-Hanna, J. C. (2017). The case against an early lunar dynamo powered by core convection, Geophys. Res. Lett., 44, doi: 10.1002/2017GL075441.Google Scholar
Fei, Y, Bertka, C. M. and Finger, L. W. (1997). High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe-FeS system, Science, 275(5306), 1621–3.CrossRefGoogle ScholarPubMed
Fei, Y., Li, J., Bertka, C. M. and Prewitt, C. T. (2000). Structure type and bulk modulus of Fe3S, a new iron-sulfur compound, Am. Min., 85(11–12), 1830–33.Google Scholar
Fu, R. R., Weiss, B. P., Shuster, D. L., Gattacceca, J., Grove, T. L., Suavet, C., Lima, E. A., Li, L. and Kuan, A. T. (2012). An ancient core dynamo in asteroid Vesta, Science, 338, 238–41.Google Scholar
Gaidos, E., Conrad, C. P., Manga, M. and Hernlund, J. (2010). Thermodynamic limits on magnetodynamos in rocky exoplanets, Astrophys. J., 718, 596609.Google Scholar
Garcia, R., Gagnepain-Beyneix, J., Chevrot, S. and Lognonne, P. (2011). Very preliminary reference Moon model, Phys. Earth. Planet. Inter., 188, 96113, doi: 10.1016/j.pepi.2011.06.015.Google Scholar
Gomi, H., Ohta, K., Hirose, K., Labrosse, S., Caracas, R., Verstraete, M. J. and Hernlund, J. W. (2013). The high conductivity of iron and thermal evolution of the Earth’s core, Phys. Earth. Planet. Inter., 224, 88103.Google Scholar
Grott, M., Breuer, D. and Laneuville, M. (2011). Thermo-chemical evolution and global contraction of Mercury, Earth Planet. Sci. Lett., 307, 135–46, doi: 10.1016/j.epsl.2011.04.040.Google Scholar
Hauck, S. A. and Phillips, R. J. (2002). Thermal and crustal evolution of Mars, J. Geophys. Res., 107(E7), 6–1.Google Scholar
Hauck, S. A., Aurnou, J. M. and Dombard, A. J. (2006). Sulfur’s impact on core evolution and magnetic field generation on Ganymede, J. Geophys. Res., 111(E9).Google Scholar
Hauck, S. A., Dombard, A. J., Phillips, R. J. and Solomon, S. C. (2004). Internal and tectonic evolution of Mercury, Earth Planet. Sci. Lett., 222(3–4), 713–28.Google Scholar
Hauck, S. A., Margot, J.-L., Solomon, S. C., Lemoine, F. G., Mazarico, E., Peale, S. J., Perry, M. E., Phillips, R. J., Smith, D. E. and Zuber, M. T. (2013). The curious case of Mercury’s internal structure, J. Geophys. Res., 118, 1303–22, doi: 10.1002/jgre.20052.CrossRefGoogle Scholar
Head, J. W., Greeley, R., Golombek, M. P., Hartmann, W. K., Hauber, E., Jaumann, R. and Carr, M. H. (2001). Geological processes and evolution, Space Sci. Rev., 96(1/4): 263–92.Google Scholar
Heimpel, M. H., Aurnou, J. M., Al-Shamali, F. M. and Gomez Perez, N. (2005). A numerical study of dynamo action as function of spherical shell geometry, Earth Planet. Sci. Lett., 236, 542–57.CrossRefGoogle Scholar
Hevey, P. J. and Sanders, I. S. (2006). A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies, Meteoritics Planet. Sci., 41(1), 95106.Google Scholar
Hide, R. (1972). Comments on the Moon’s magnetism, Moon, 4, 39.Google Scholar
Hood, L. L., Mitchell, D. L., Lin, R. P., Acuna, M. H. and Binder, A. B. (1999). Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector magnetometer data. Geophys. Res. Lett., 26, 2327–30.Google Scholar
Hood, L. L., Zakharian, A., Halekas, J., Mitchell, D. L., Lin, R. P., Acuña, M. H. and Binder, A. B. (2001). Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data, J. Geophys. Res., 106, 27825–39.Google Scholar
Johnson, C. L., Purucker, M. E., Korth, H., Anderson, B. J., Winslow, R. M., Al Asad, M. M. and Solomon, S. C. (2012). MESSENGER observations of Mercury’s magnetic field structure, J. Geophys. Res., 117(E12).Google Scholar
Johnson, C. L., Phillips, R. J., Purucker, M. E., Anderson, B. J., Byrne, P. K., Denevi, B. W. and Solomon, S. C. (2015). Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field, Science, 348, 892–5.CrossRefGoogle ScholarPubMed
Karato, S. I. (2011). Rheological structure of the mantle of a super-Earth: Some insights from mineral physics, Icarus, 212(1), 1423.Google Scholar
Kimura, J., Nakagawa, T. and Kurita, K. (2009). Size and compositional constraints of Ganymede’s metallic core for driving an active dynamo, Icarus, 202(1), 216–24.Google Scholar
Kivelson, M. G., Khurana, K. K., Russell, C. T., Walker, R. J., Warnecke, J., Coroniti, F. V., Polanskey, C., Southwood, D. J. and Schubert, G. (1996). Discovery of Ganymede’s magnetic field by the Galileo spacecraft, Nature, 384, 537–41.Google Scholar
Kivelson, M. G., Khurana, K. K. and Volwerk, M. (2002). The permanent and inductive magnetic moments of Ganymede, Icarus, 157, 507–22.CrossRefGoogle Scholar
Knibbe, J. and van Westrenen, W. (2018). The thermal evolution of Mercury’s Fe-Si core, Earth Planet. Sci. Lett., 482, 147–59. doi: 10.1016/j.epsl.2017.11.006Google Scholar
Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N. and Goncharov, A. F. (2016). Direct measurement of thermal conductivity in solid iron at planetary core conditions, Nature, 534(7605), 99101.CrossRefGoogle ScholarPubMed
Konopliv, A. S., Binder, A. B., Hood, L. L., Kucinskas, A. B., Sjogren, W. L. and Williams, J. G. (1998). Improved gravity field of the Moon from Lunar Prospector, Science, 281(5382), 1476–80.Google Scholar
Konrad, W. and Spohn, T. (1997). Thermal history of the Moon: Implications for an early core dynamo and post-accretional magmatism, Adv. Space Res., 19(10), 1511–21.Google Scholar
Lammer, H., Kasting, J. F., Chassefière, E., Johnson, R. E., Kulikov, Y.N. and Tian, F. (2008). Atmospheric escape and evolution of terrestrial planets and satellites, Space Sci. Rev., 139(1–4), 399436.Google Scholar
Laneuville, M., Wieczorek, M. A., Breuer, D., Aubert, J., Morard, G. and Rückriemen, T. (2014). A long-lived lunar dynamo powered by core crystallization, Earth Planet. Sci. Lett., 401, 251260.CrossRefGoogle Scholar
Langlais, B., Purucker, M. E. and Mandea, M. (2004). Crustal magnetic field of Mars, J. Geophys. Res., 109(E2).CrossRefGoogle Scholar
Le Bars, M., Wieczorek, M. A., Karatekin, O., Cebron, D. and Laneuville, M. (2011). An impact-driven dynamo for the early Moon, Nature, 479, 215218, doi: 10.1038/nature10565.Google Scholar
Li, J., Fei, Y., Mao, H. K., Hirose, K. and Shieh, S. R. (2001). Sulfur in the Earth’s inner core, Earth Planet. Sci. Lett., 193, 509–14.Google Scholar
Lillis, R. J., Robbins, S., Manga, M., Halekas, J. S. and Frey, H. V. (2013). Time history of the Martian dynamo from crater magnetic field analysis, J. Geophys. Res., 118(7), 14881511, doi: 10.1002/jgre.20105.Google Scholar
Lin, Y., Marti, P., Noir, J. and Jackson, A. (2016). Precession-driven dynamos in a full sphere and the role of large scale cyclonic vortices, Phys. Fluids, 28, 066601, doi: 10.1063/1.4954295.Google Scholar
Malavergne, V., Toplis, M. J., Berthet, S. and Jones, J. (2010). Highly reducing conditions during core formation on Mercury: Implications for internal structure and the origin of a magnetic field, Icarus, 206(1), 199209.Google Scholar
Manglik, A., Wicht, J. and Christensen, U. R. (2010). A dynamo model with double diffusive convection for Mercury’s core, Earth Planet. Sci. Lett., 289(3), 619–28.Google Scholar
Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A. and Holin, I. V. (2007). Large longitude libration of Mercury reveals a molten core, Science, 316(5825), 710–14, doi: 10.1126/science.1140514.Google Scholar
Margot, J. L., Peale, S. J., Solomon, S. C., Hauck, S. A., Ghigo, F. D., Jurgens, R. F. and Campbell, D. B. (2012). Mercury’s moment of inertia from spin and gravity data, J. Geophys. Res., 117(E12).Google Scholar
McCammon, C. A., Ringwood, A. E. and Jackson, I. (1983). Thermodynamic of the system Fe-FeO-MgO at high pressure and temperature and a model for the formation of the Earth’s core, Geophys. J. R. Astron. Soc., 72, 577–95.Google Scholar
McSween, H. Y. Jr (1985). SNC meteorites: Clues to Martian petrologic evolution?, Rev. Geophys., 23, 391416.Google Scholar
Mohit, P. S. and Arkani-Hamed, J. (2004). Impact demagnetization of the Martian crust, Icarus, 168(2), 305–17.Google Scholar
Monteux, J., Jellinek, A. M. and Johnson, C. L. (2013). Dynamics of core merging after a mega-impact with applications to Mars’ early dynamo, Icarus, 226(1), 2032.Google Scholar
Morard, G., Andrault, D., Guignot, N., Sanloup, C., Mezouar, M., Petitgirard, S. and Fiquet, G. (2008). In situ determination of Fe-Fe3S phase diagram and liquid structural properties up to 65 GPa, Earth Planet. Sci. Lett., 272, 620–26.Google Scholar
Morard, G. and Katsura, T. (2010). Pressure–temperature cartography of Fe–S–Si immiscible system, Geochim. Cosmochim. Acta, 74(12), 3659–67.Google Scholar
Morschhauser, A., Lesur, V. and Grott, M. (2014). A spherical harmonic model of the lithospheric magnetic field of Mars, J. Geophys. Res., 119(6), 1162–88.Google Scholar
Moskovitz, N. and Gaidos, E. (2011). Differentiation of planetesimals and the thermal consequences of melt migration, Meteorit. Planet. Sci., 46(6), 903–18.Google Scholar
Ness, N. F., Acuna, M. H., Connerney, J., Wasilewski, P. and Bauer, S. J. (1999). MGS magnetic fields and electron reflectometer investigation: Discovery of paleomagnetic fields due to crustal remanence, Adv. Space Res., 23(11), 1879–86.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P., Schatten, K. H. and Whang, Y. C. (1974). Magnetic field observations near Mercury: Preliminary results from Mariner 10, Science, 185, 151–60.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P. and Whang, Y. C. (1975). Magnetic field of Mercury, J. Geophys. Res., 80, 2708–16.Google Scholar
Neumann, W., Breuer, D. and Spohn, T. (2012). Differentiation and core formation in accreting planetesimals, Astron. Astrophys., 543, A141.Google Scholar
Neumann, W., Breuer, D. and Spohn, T. (2014). Differentiation of Vesta: Implications for a shallow magma ocean, Earth Planet. Sci. Lett., 395, 267–80.Google Scholar
Nimmo, F. (2000). Dike intrusion as a possible cause of linear Martian magnetic anomalies, Geology, 28, 391–4.Google Scholar
Nimmo, F. (2009). Energetics of asteroid dynamos and the role of compositional convection, Geophys. Res. Lett., 36(10).Google Scholar
Nimmo, F. (2015). Thermal and compositional evolution of the core, in Treatise on Geophysics, 2nd edn., ed. Stevenson, D. and Schubert, G., pp. 201–19, Elsevier, Amsterdam.Google Scholar
Nimmo, F. and Stevenson, D. (2000). Influence of early plate tectonics on the thermal evolution and magnetic field of Mars, J. Geophys. Res., 105, 11969–79.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L., Schlemm, C. E., Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry, Science, 333, 18471950, doi: 10.1126/science.1211567.Google Scholar
Olson, P., Landeau, M. and Hirsh, B. H. (2017). Laboratory experiments on rain-driven convection: Implications for planetary dynamos, Earth Planet. Sci. Lett., 457, 403–11.Google Scholar
Olson, P. and Christensen, U. R. (2006). Dipole moment scaling for convection-driven planetary dynamos, Earth Planet. Sci. Lett., 250(3), 561–71.Google Scholar
Peale, S. J. (1976). Inferences from the dynamical history of Mercury’s rotation, Icarus, 28(4), 459–67.Google Scholar
Plesa, A.-C., Grott, M., Tosi, N., Breuer, D., Spohn, T. and Wieczoreck, M. (2016). How large are present-day heat flux variations across the surface of Mars?, J. Geophys. Res., 121(12), 23862403, doi: 10.1002/2016JE005126.Google Scholar
Pozzo, M., Davies, C., Gubbins, D. and Alfe, D. (2012). Thermal and electrical conductivity of iron at Earth’s core conditions, Nature, 485, 355359.Google Scholar
Rai, N. and Westrenen, W. (2013). Core‐mantle differentiation in Mars, J. Geophys. Res., 118(6), 11951203.Google Scholar
Reese, C. C. and Solomatov, V. S. (2010). Early Martian dynamo generation due to giant impacts, Icarus, 207(1), 8297.Google Scholar
Ringwood, A. E. (1977). Composition of the core and implications for the origin of the earth, Geochem. J., 11, 111–35.Google Scholar
Rivoldini, A. and Van Hoolst, T. (2013). The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury, Earth Planet. Sci. Lett., 377, 6272.CrossRefGoogle Scholar
Rivoldini, A., Van Hoolst, T., Verhoeven, O., Mocquet, A. and Dehant, V. (2011). Geodesy constraints on the interior structure and composition of Mars, Icarus, 213(2), 451–72.Google Scholar
Roberts, J. H., Lillis, R. J. and Manga, M. (2009). Giant impacts on early Mars and the cessation of the Martian dynamo, J. Geophys. Res., 114(E4).CrossRefGoogle Scholar
Rochette, P., Lorand, J.-P., Fillion, G. and Sautter, V. (2001). Pyrrhotite and the remanent magnetization of SNC meteorites: A changing perspective on Martian magnetism, Earth Planet. Sci. Lett., 190(1–2), 112.Google Scholar
Rückriemen, T., Breuer, D. and Spohn, T. (2015). The Fe snow regime in Ganymede’s core: A deep‐seated dynamo below a stable snow zone, J. Geophys. Res., 120(6), 10951118.Google Scholar
Rückriemen, T., Breuer, D. and Spohn, T. (2018). Top-down freezing in a Fe–FeS core and Ganymede’s present-day magnetic field, Icarus, 307, 172–96.Google Scholar
Sahijpal, S., Soni, P. and Gupta, G. (2007). Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources, Meteoritics Planet. Sci., 42(9), 1529–48.Google Scholar
Sanloup, C. and Fei, Y. (2004). Closure of the Fe-S-Si liquid miscibility gap at high pressure, Phys. Earth Planet. Inter., 147, 5765, doi: 10.1016/j.pepi.2004.06.008.Google Scholar
Scheinberg, A., Soderlund, K. M. and Schubert, G. (2015). Magnetic field generation in the lunar core: The role of inner core growth, Icarus, 254, 6271.Google Scholar
Scheinberg, A., Elkins‐Tanton, L. T., Schubert, G. and Bercovici, D. (2016). Core solidification and dynamo evolution in a mantle‐stripped planetesimal, J. Geophys. Res., 121(1), 220.Google Scholar
Schubert, G., Ross, M. N., Stevenson, D. J. and Spohn, T. (1988). Mercury’s thermal history and the generation of its magnetic field, in Mercury, ed. Viulas, F., Chapman, C. R. and Matthews, M. S., pp. 514–61, University Press of Arizona, Tucson.Google Scholar
Schubert, G., Zhang, K., Kivelson, M. G. and Anderson, J. D. (1996). The magnetic field and internal structure of Ganymede, Nature, 384(6609), 544–5.Google Scholar
Schubert, G., Anderson, J. D., Spohn, T. and McKinnon, W. B. (2004). Interior composition, structure and dynamics of the Galilean satellites, in Jupiter: The Planet, Satellites and Magnetosphere, pp. 281306. Cambridge University Press, Cambridge.Google Scholar
Scott, H. P., Williams, Q. and Ryerson, F. J. (2002). Experimental constraints on the chemical evolution of large icy satellites, Earth Planet. Sci. Lett., 203, 399412.Google Scholar
Shimizu, H., Matsushima, M., Takahashi, F., Shibuya, H. and Tsunakawa, H. (2013). Constraint on the lunar core size from electromagnetic sounding based on magnetic field observations by an orbiting satellite. Icarus, 222(1), 3243.Google Scholar
Snyder, G. A., Taylor, L. A. and Neal, C. R. (1992). A chemical model for generating the sources of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere, Geochim. Cosmochim. Acta, 56(10), 3809–23.CrossRefGoogle Scholar
Smith, D., Zuber, M., Phillips, R., Hauck, S. A., Lemoine, F., Mazarico, E., Neumann, G., Peale, S., Margot, J.-L., Johnson, C. L., Torrence, M. H., Perry, M. E., Rowlands, D. D., Goossens, S., Head, J. W. and Taylor, A. H. (2012). Gravity field and internal structure of Mercury from MESSENGER, Science, 336(6078), 214–17, doi: 10.1126/science.1218809.Google Scholar
Sohl, F., Spohn, T., Breuer, D. and Nagel, K. (2002). Implications from Galileo observations of the interior structure and chemistry of the Galilean satellites, Icarus, 157, 104–19.Google Scholar
Sohl, F. and Schubert, G. (2015). Interior structure, composition, and mineralogy of the terrestrial planets, in Physics of Terrestrial Planets and Moons, Treatise on Geophysics, 2nd edn., vol. 10, pp. 2364, Elsevier, New York.Google Scholar
Solomon, C. S., Aharonson, O., Aurnou, J. M., Banerdt, W. B., Carr, M. H., Dombard, A. J., Frey, H. V., Golombek, M. P., Hauck, S. A., Head, J. W., Jakosky, B. M., Johnson, C. L., McGovern, P. J., Neumann, G. A., Phillips, R. J., Smith, D. E. and Zuber, M. T. (2005). New perspectives on ancient Mars, Science, 307, 1214–20.Google Scholar
Spohn, T., Acuña, M. A., Breuer, D., Golombek, M., Greeley, R., Halliday, A., Hauber, E., Jaumann, R. and Sohl, F. (2001). Geophysical constraints on the evolution of Mars, Space Sci. Rev., 96, 231–62.Google Scholar
Spohn, T., Sohl, F. and Breuer, D. (1998). Mars, Astron. Astrophys. Rev., 8, 181235.Google Scholar
Stacey, F. D. and Anderson, O. L. (2001). Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions, Phys. Earth Planet. Inter., 124(3), 153–62.Google Scholar
Stamenković, V., Breuer, D. and Spohn, T. (2011). Thermal and transport properties of mantle rock at high pressure: Applications to super-Earths, Icarus, 216(2), 572–96.CrossRefGoogle Scholar
Stanley, S., Bloxham, J., Hutchinson, W. E. and Zuber, M. T. (2005). Thin shell dynamo models consistent with Mercury’s weak observed magnetic field, Earth Planet. Sci. Lett., 234, 2738.Google Scholar
Stanley, S., Elkins-Tanton, L., Zuber, M. T. and Parmentier, E. M. (2008). Mars’ paleomagnetic field as the result of a single-hemisphere dynamo, Science, 321(5897), 1822–5.Google Scholar
Stegman, D. R., Jellinek, A. M., Zatman, S. A., Baumgardner, J. R. and Richards, M. A. (2003). An early lunar core dynamo driven by thermochemical mantle convection, Nature, 421(6919), 143–6.Google Scholar
Sterenborg, M. G. and Crowley, J. W. (2013). Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos, Phys. Earth Planet. Inter., 214, 5373.Google Scholar
Stevenson, D. J. (2001). Mars core and magnetism, Nature, 412, 214–19.Google Scholar
Stevenson, D. J., Spohn, T. and Schubert, G. (1983). Magnetism and thermal evolution of the terrestrial planets, Icarus, 54, 466–89.Google Scholar
Stewart, A. J., Schmidt, M. W., van Westrenen, W. and Liebske, C. (2007). Mars: A new core-crystallization regime, Science, 316(5829), 1323–5.Google Scholar
Tachinami, C., Senshu, H. and Ida, S. (2011). Thermal evolution and lifetime of intrinsic magnetic fields of super-Earths in habitable zones, Astrophys. J., 726(2), 70.Google Scholar
Tackley, P. J., Ammann, M., Brodholt, J. P., Dobson, D.P. and Valencia, D. (2013). Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity, Icarus, 225(1), 5061.Google Scholar
Tarduno, J. A., Cottrell, R. D., Nimmo, F., Hopkins, J., Voronov, J., Erickson, A., Blackman, E., Scott, E. R. and McKinley, D. R. (2012). Evidence for a dynamo in the main group pallasite parent body, Science, 338, 939–42.Google Scholar
Tian, Z., Zuber, M. T. and Stanley, S. (2015). Magnetic field modeling for Mercury using dynamo models with a stable layer and laterally variable heat flux, Icarus, 260, 263–8.Google Scholar
Tikoo, S. M., Weiss, B. P., Cassata, W., Shuster, D. L., Gattacceca, J., Lima, E. A., Suavet, C., Nimmo, F. and Fuller, M. (2014). Decline of the lunar core dynamo, Earth Planet. Sci. Lett., 404, 8997.Google Scholar
Tikoo, S. M., Weiss, B. P., Shuster, D. L., Suavet, C., Wang, H. and Grove, T. L. (2017). A two-billion-year history for the lunar dynamo, Sci. Adv., 3, e1700207, doi: 10.1126/sciadv.1700207s.Google Scholar
Tosi, N., Grott, M., Plesa, A.-C. and Breuer, D. (2013). Thermo-chemical evolution of Mercury’s interior, J. Geophys. Res., doi: 10.1002/jgre.20168.Google Scholar
Usselman, T. M. (1975). Experimental approach to the state of the core; Part I, The liquidus relations of the Fe-rich portion of the Fe-Ni-S system from 30 to 100 kb, Am. J. Sci., 275(3), 278–90.Google Scholar
Van Summeren, J., Gaidos, E. and Conrad, C. P. (2013). Magnetodynamo lifetimes for rocky, Earth‐mass exoplanets with contrasting mantle convection regimes, J. Geophys. Res., 118(5), 938–51.Google Scholar
Vervelidou, F., Lesur, V., Grott, M., Morschhauser, A. and Lillis, R. J. (2017). Constraining the date of the Martian dynamo shutdown by means of crater magnetization signatures, J. Geophys. Res., doi: 10.1002/2017JE005410.Google Scholar
Vilim, R., Stanley, S. and Hauck, S. A. (2010). Iron snow zones as a mechanism for generating Mercury’s weak observed magnetic field, J. Geophys. Res., 115(E11).Google Scholar
Wang, H., Weiss, B. P., Bai, X. N., Downey, B. G., Wang, J., Wang, J., Suavet, C., Fu, R. R. and Zucolotto, M. E. (2017). Lifetime of the solar nebula constrained by meteorite paleomagnetism, Science, 355, 623–7.Google Scholar
Wang, Z. and Becker, H. (2017). Chalcophile elements in Martian meteorites indicate low sulfur content in the Martian interior and a volatile element-depleted late veneer, Earth Planet. Sci. Lett., 463, 5668.Google Scholar
Weber, R. C., Lin, P. Y., Garnero, E. J., Williams, Q. and Lognonne, P. (2011). Seismic detection of the lunar core, Science, 331, 309–12, doi: 10.1126/science.1199375.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill‐Cahill, K. R., Byrne, P. K. and Solomon, S. C. (2012). Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X‐Ray Spectrometer, J. Geophys. Res., 117(E12).Google Scholar
Weiss, B. P., Berdahl, J. S., Elkins-Tanton, L., Stanley, S., Lima, E. A. and Carporzen, L. (2008). Magnetism on the angrite parent body and the early differentiation of planetesimals, Science, 322(5902), 713–16.Google Scholar
Weiss, B. P., Gattacceca, J., Stanley, S., Rochette, P. and Christensen, U. R. (2010). Paleomagnetic records of meteorites and early planetesimal differentiation, Space Sci. Rev., 152(1–4), 341–90.Google Scholar
Weiss, B. P., Shuster, D. L. and Stewart, S. T. (2002). Temperatures on Mars from 40Ar/39Ar thermochronology of ALH84001, Earth Planet. Sci. Lett., 201(3–4), 465–72.Google Scholar
Weiss, B. P. and Tikoo, S. M. (2014). The lunar dynamo, Science, 346, 11981209, doi: 10.1126/science.1246753.Google Scholar
Wicht, J., Mandea, M., Takahashi, F., Christensen, U. R., Matsushima, M. and Langlais, B. (2007). The origin of Mercury’s internal magnetic field, Space Sci. Rev., 132, 261–90, doi: 10.1007/s11214-007-9280-5.Google Scholar
Wicht, J. and Heyner, D. (2014). Mercury’s magnetic field in the MESSENGER era, Planet. Geod. Remote Sens., 223.Google Scholar
Wieczorek, M. A., Jolliff, B. L., Khan, A., Pritchard, M. E., Weiss, B. P., Williams, J. G., Hood, L. L., Righter, K., Neal, C. R., Shearer, C. K., McCallum, I. S., Tompkins, S., Hawke, B. R., Peterson, C., Gillis, J. J. and Bussey, B. (2006). The constitution and structure of the lunar interior, Rev. Mineral. Geochem., 60, 221364.Google Scholar
Williams, Q. (2009). Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores, Earth Planet. Sci. Lett., 284(3), 564–9.Google Scholar
Williams, J. G. and Nimmo, F. (2004). Thermal evolution of the Martian core: Implications for an early dynamo, Geology, 32(2), 97100.Google Scholar
Williams, J. G., Boggs, D. H., Yoder, C. F., Ratcliff, J. T. and Dickey, J. O. (2001). Lunar rotational dissipation in solid body and molten core, J. Geophys. Res., 106(E11), 27933–68.Google Scholar
Zhan, X. and Schubert, G. (2012). Powering Ganymede’s dynamo, J. Geophys. Res., 117(E8).Google Scholar
Zhang, N., Parmentier, E. M. and Liang, Y. (2013). Effects of lunar cumulate mantle overturn and megaregolith on the expansion and contraction history of the Moon, Geophys. Res. Lett., 40(19), 5019–23.Google Scholar
Zhang, N., Dygert, N., Liang, Y. and Parmentier, E. M. (2017). The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle, Geophys. Res. Lett., 44, 6543–52, doi: 10.1002/2017GL073702.Google Scholar
Zuluaga, J. I., Bustamante, S., Cuartas, P. A. and Hoyos, J. H. (2013). The influence of thermal evolution in the magnetic protection of terrestrial planets, Astrophys. J., 770, doi: 10.1088/0004-637X/770/1/23.Google Scholar

References

Abbo, L., Ofman, L., Antiochos, S. K., Hansteen, V. H., Harra, L., Ko, Y.-K., Lapenta, G., Li, B., Riley, P., Strachan, L., von Steiger, R. & Wang, Y.-M. Slow solar wind: Observations and modeling, Space Sci. Rev., 201, 55108 (2016). doi: 10.1007/s11214-016-0264-1Google Scholar
Altschuler, M. D. & Newkirk, G. Jr. Magnetic fields and the structure of the solar corona I: Methods of calculating coronal fields, Sol. Phys., 9, 131–49 (1969).Google Scholar
Aulanier, G., Török, T., Démoulin, P. & DeLuca, E. E. Formation of torus-unstable flux ropes and electric currents in erupting sigmoids, Astrophys. J., 708, 314–33 (2010). doi: 10.1088/0004-637X/708/1/314Google Scholar
Babcock, H. D. The Sun’s polar magnetic field, Astrophys. J., 130, 364–5 (1959). doi: 10.1086/146726Google Scholar
Babcock, H. W. The topology of the Sun’s magnetic field and the 22-year cycle, Astrophys. J., 133, 572–87 (1961).Google Scholar
Balogh, A. & Erdõs, G. The heliospheric magnetic field, Space Sci. Rev., 176, 177215 (2013). doi: 10.1007/s11214-011-9835-3Google Scholar
Balogh, A. & Smith, E. J. The heliospheric magnetic field at solar maximum: Ulysses observations, Space Sci. Rev., 97, 147–60 (2001). doi: 10.1023/A:101185490Google Scholar
Balogh, A. & Thompson, M. J. Introduction to solar magnetism: The early years, Space Sci. Rev., 144, 114 (2009). doi: 10.1007/s11214-009-9493-xGoogle Scholar
Balogh, A., Hudson, H. S., Petrovay, K. & von Steiger, R. Introduction to the solar activity cycle: Overview of causes and consequences, Space Sci. Rev., 186, 115 (2014). doi: 10.1007/s11214-014–0125Google Scholar
Barnes, G., Leka, K. D., Schrijver, C. J., Colak, T., Qahwaji, R., Ashamari, O. W., Yuan, Y., Zhang, J., McAteer, R. T. J., Bloomfield, D. S., Higgins, P. A., Gallagher, P. T., Falconer, D. A., Georgoulis, M. K., Wheatland, M. S., Balch, C., Dunn, T. & Wagner, E. L. A comparison of flare forecasting methods. I. Results from the ‘All-Clear’ workshop, Astrophys. J., 829(2), Article 89 (2016). doi: 10.3847/0004-637X/829/2/89Google Scholar
Behannon, K. W. Heliocentric distance dependence of the interplanetary magnetic field, Rev. Geophys. Space Phys., 16, 125–45 (1978). doi: 10.1029/RG016i001p00125Google Scholar
Berger, M. A. Introduction to magnetic helicity, Plasma Phys. Control. Fusion, 41, B167–75 (1999). doi: 10.1088/0741-3335/41/12B/312Google Scholar
Berger, M. Magnetic helicity conservation, Highlights Astron., 13, 85–8 (2005). doi: 10.1017/S1539299600015148Google Scholar
Blackman, E. G. Magnetic helicity and large scale magnetic fields: A primer, Space Sci. Rev., 188, 5991 (2015). doi: 10.1007/s11214-014-0038-6Google Scholar
Brueckner, G. E., Howard, R. A., Koomen, M. J., et al. The Large Angle Spectroscopic Coronagraph (LASCO), Sol. Phys., 162, 357402 (1995). doi: 10.1007/BF00733434Google Scholar
Brun, A. S., Miesch, M. S. & Toomre, J., Global-scale turbulent convection and magnetic dynamo action in the solar envelope, Astrophys. J., 614, 1073–98 (2004). doi: 10.1086/423835Google Scholar
Brun, A. S., Browning, M. K., Dikpati, M., Hotta, H. & Strugarek, A. Recent advances on solar global magnetism and variability, Space Sci. Rev., 196, 101–36 (2015). doi: 10.1007/s11214-013-0028-0Google Scholar
Cameron, R. H. & Schüssler, M. The crucial role of surface magnetic fields for the solar dynamo, Science, 347, 1333–5 (2015). doi: 10.1126/science.1261470Google Scholar
Cameron, R. H. & Schüssler, M. An update of Leighton’s solar dynamo model, Astron. Astrophys., 599, Article A52 (2017). doi: 10.1051/0004-6361/201629746Google Scholar
Cameron, R. H., Dasi-Espuig, M., Jiang, J., Işik, E., Schmidt, D. & Schüssler, M. Limits to solar cycle predictability: Cross-equatorial flux plumes, Astron. Astrophys., 557, Article A141 (2013). doi: 10.1051/0004-6361/201321981Google Scholar
Cameron, R. H., Jiang, J., Schüssler, M. & Gizon, L. Physical causes of solar cycle amplitude variability, J. Geophys. Res., 119, 680–88 (2014). doi: 10.1002/2013JA019498CrossRefGoogle Scholar
Charbonneau, P. Where is the solar dynamo? J. Phys. Conf. Ser., 440, Article 012014 (2013). doi: 10.1088/1742-6596/440/1/012014Google Scholar
Charbonneau, P. Solar dynamo theory, Ann. Rev. Astron. Astrophys., 52, 251–90 (2014). doi: 10.1146/annurev-astro-081913-040012Google Scholar
Chen, F., Rempel, M. & Fan, Y., Emergence of magnetic flux generated in a solar convective dynamo. I: Formation of sunspots and active regions, and origin of their asymmetries, Astrophys. J., 846, Article 149 (2017). doi: 10.3847/1538-4357/aa85a0Google Scholar
Chen, Y., Liu, L. & Wan, W., Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009? J. Geophys. Res., 116, Article A04304 (2011). doi: 10.1029/2010JA016301Google Scholar
Cheung, M. C. M., van Driel-Gesztelyi, L., Martínez Pillet, V. & Thompson, M. J., The life cycle of active region magnetic fields, Space Sci. Rev., 210, 317–49 (2017). doi: 10.1007/s11214-016-0259-yGoogle Scholar
Clette, F., Svalgaard, L., Vaquero, J. M. & Cliver, E. W. Revisiting the sunspot number: A 400-year perspective on the solar cycle, Space Sci. Rev., 186(1–4), 35103 (2014). doi: 10.1007/s11214-014-0074-2Google Scholar
Choudhuri, A. R. Starspots, stellar cycles and stellar flares: Lessons from solar dynamo models, Sci. Chin. Phys. Mech. Astron., 60, Article 1:019601 (2017). doi: 10.1007/s11433-016-0413-7Google Scholar
Cranmer, S. R. Coronal holes and the high speed solar wind, Space Sci. Rev., 101, 229–94 (2002). doi: 10.1023/A:1020840004535Google Scholar
Cranmer, S. R., Coronal holes, Living Rev. Sol. Phys., 6, Article 3 (2009). doi: 10.12942/lrsp-2009-3CrossRefGoogle ScholarPubMed
Cranmer, S. R., Gibson, S. E. & Riley, P. Origins of the ambient solar wind: Implications for space weather, Space Sci. Rev., 212, 1345–84 (2017). doi: 10.1007/s11214-017-0416-yGoogle Scholar
Dasi-Espuig, M., Solanki, S. K., Krivova, N. A., Cameron, R. & Peñuela, T. Sunspot group tilt angles and the strength of the solar cycle, Astron. Astrophys., 518, Article A7 (2010). doi: 10.1051/0004-6361/201014301Google Scholar
Demoulin, P. & Berger, M. A. Magnetic energy and helicity fluxes at the photospheric level, Sol. Phys., 215, 203–15 (2003). doi: 10.1023/A:1025679813955Google Scholar
de Toma, G., Chapman, G. A., Cookson, A. M. & Preminger, D. Temporal stability of sunspot umbral intensities: 1986–2012, Astrophys. J. Lett., 771, Article L22 (2013). doi: 10.1088/2041-8205/771/2/L22Google Scholar
Deubner, F.-L. & Gough, D. Helioseismology: Oscillations as a diagnostic of the solar interior, Annu. Rev. Astron. Astrophys., 22, 593619 (1984). doi: 10.1146/annurev.aa.22.090184.0031Google Scholar
Dikpati, M. & Gilman, P. A. Flux-transport solar dynamos, Space Sci. Rev., 144, 6775 (2009). doi: 10.1007/s11214-008-9484-3Google Scholar
Dudok de Wit, T., Bruinsma, S. & Shibasaki, K. Synoptic radio observations as proxies for upper atmosphere modelling, J. Space Weather Space Clim., 4, Article A06 (2015). doi: 10.1051/swsc/2014003Google Scholar
Dudok de Wit, T., Kopp, G., Fröhlich, C. & Schöll, M. Methodology to create a new Total Solar Irradiance record: Making a composite out of multiple data records, Geophys. Res. Lett., 44, 11961203 (2017). doi: 10.1002/2016GL071866Google Scholar
Ebert, R. W., McComas, D. J., Elliott, H. A., Forsyth, R. J. & Gosling, J. T. Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations, J. Geophys. Res., 114, Article A01109 (2009). doi: 10.1029/2008JA013631Google Scholar
Eddy, J. A. The Maunder minimum, Science, 192(4245), 11891202 (1976).Google Scholar
Edmondson, J. K. On the role of interchange reconnection in the generation of the slow solar wind, Space Sci. Rev., 172, 209–25 (2012). doi: 10.1007/s11214-011-9767-yGoogle Scholar
Erdõs, G. & Balogh, A. Magnetic flux density measured in fast and slow solar wind streams, Astrophys J., 753, Article 130 (2012). doi: 10.1088/0004-637X/753/2/130.Google Scholar
Erdõs, G. & Balogh, A. Magnetic flux density in the heliosphere through several solar cycles, Astrophys. J., 781(1), Article 50 (2014). doi: 10.1088/0004-637X/781/1/50Google Scholar
Fletcher, S. T., Broomhall, A.-M., Salabert, D., Basu, S., Chaplin, W. J., Elsworth, Y., Garcia, R. A. & New, R. A seismic signature of a second dynamo? Astophys. J. Lett., 718, L1922 (2010). doi: 10.1088/2041-8205/718/1/L19Google Scholar
Fox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R. A., Kasper, J. C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M. K., McComas, D. J., Raouafi, N. E. & Szabo, A. The Solar Probe Plus mission: Humanity’s first visit to our star, Space Sci. Rev., 204, 748 (2016). doi: 10.1007/s11214-015-0211-6Google Scholar
Fröhlich, C. Solar irradiance variability since 1978: Revision of the PMOD composite during Solar Cycle 21, Space Sci. Rev., 125, 5365 (2006). doi: 10.1007/s11214-006-9046-5.Google Scholar
Fröhlich, C. Total solar irradiance: What have we learned from the last three cycles and the recent minimum? Space Sci. Rev., 176, 237–52 (2013). doi: 10.1007/s11214-011-9780-1.Google Scholar
Geiss, J., Gloeckler, G. & von Steiger, R. Origin of the solar wind from composition data, Space Sci. Rev., 72, 4960 (1995). doi: 10.1007/BF00768753Google Scholar
Girazian, Z. & Withers, P. An empirical model of the extreme ultraviolet solar spectrum as a function of the F10.7 index, J. Geophys. Res., 120, 6779–94 (2015). doi: 10.1002/2015JA021436.Google Scholar
Gloeckler, G., Geiss, J., Balsiger, H., Bedini, P., Cain, J. C., Fischer, J., Fisk, L. A., Galvin, A. B., Gliem, F., Hamilton, D. C., Hollweg, J. V., Ipavich, F. M., Joos, R., Livi, S., Lundgren, R. A., Mall, U., McKenzie, J. F., Ogilvie, K. W., Ottens, F., Rieck, W., Tums, E. O., von Steiger, R., Weiss, W. & Wilken, B. The solar wind ion composition spectrometer, Astron. Astrophys. Suppl. Ser., 92, 267 (1992).Google Scholar
Gopalswamy, N., Xie, H., Akiyama, S., Mäkelä, P., Yashiro, S. & Michalek, G. The peculiar behavior of halo coronal mass ejections in Solar Cycle 24, Astrophys. J. Lett., 804(1), Article L23 (2015). doi: 10.1088/2041-8205/804/1/L23Google Scholar
Gosling, J. T. Corotating and transient solar wind flows in three dimensions, Annu. Rev. Astron. Astrophys., 34, 3573 (1996). doi: 10.1146/annurev.astro.34.1.35Google Scholar
Green, L. M., Török, T., Vršnak, B., Manchester, B. IV & Veronig, A. The origin, early evolution and predictability of solar eruptions, Space Sci. Rev., 214, Article 46 (2018). doi: 10.1007/s11214-017-0462-5Google Scholar
Haigh, J. D. The Sun and the Earth’s climate, Living Rev. Sol. Phys., 4, Article 2 (2007). doi: 10.12942/lrsp-2007-2Google Scholar
Hale, G. E., Ellerman, F., Nicholson, S. B. & Joy, A. H. The magnetic polarity of sunspots, Astrophys. J., 49, 153–78 (1919).Google Scholar
Hanasoge, S., Miesch, M. S., Roth, M., Schou, J., Schüssler, M. & Thompson, M. J. Solar dynamics, rotation, convection and overshoot, Space Sci. Rev., 196, 7999 (2015). doi: 10.1007/s11214-015–0144–0Google Scholar
Hathaway, D. H. Solar cycle forecasting, Space Sci. Rev., 144, 401–12 (2009).Google Scholar
Hathaway, D. H. The solar cycle, Living Rev. Sol. Phys., 12, Article 4 (2015). doi: 10.1007/lrsp-2015-4Google Scholar
Hathaway, D. H. & Upton, L. The solar meridional circulation and sunspot cycle variability, J. Geophys. Res., 119, 3316–24 (2014). doi: 10.1002/2013JA019432Google Scholar
Hathaway, D. H. & Wilson, R. M. Geomagnetic activity indicates large amplitude for sunspot cycle 24, Geophys. Res. Lett., 33, L18101 (2006). doi: 10.1029/2006GL027053Google Scholar
Hathaway, D. H., Wilson, R. M. & Reichmann, E. J. A synthesis of solar cycle predictions, J. Geophys. Res., 104, 22375–88 (1999). doi: 10.1029/1999JA900313Google Scholar
Hathaway, D. H., Wilson, R. M. & Reichmann, E. J. Group sunspot numbers: Sunspot cycle characteristics, Sol. Phys., 211, 357–70 (2002). doi: 10.1023/A:1022425402664Google Scholar
Hess, P. & Colaninno, R. C. Comparing automatic CME detections in multiple LASCO and SECCHI catalogs, Astrophys. J., 836, Article 134 (2017). doi: 10.3847/1538-4357/aa5b85Google Scholar
Hoeksema, J. T., Wilcox, J. M. & Scherrer, P. H. Structure of the heliospheric current sheet in the early portion of Sunspot Cycle 21, J. Geophys. Res., 87, 10331–8 (1982). doi: 10.1029/JA087iA12p10331Google Scholar
Jiang, J. Solar-cycle precursors and predictions, in Solar and Astrophysical Dynamos and Magnetic Activity, ed. Kosovichev, A. G., de Gouveia Dal Pino, E. M. & Yan, Y., pp. 4960, Proceedings IAU Symposium 294 (2013). doi: 10.1017/S1743921313002196Google Scholar
Jiang, J., Chatterjee, P. & Choudhuri, A. R. Solar activity forecast with a dynamo model, Mon. Not. R. Astron. Soc., 381, 1527–42 (2007). doi: 10.1111/j.1365-2966.2007.12267.xGoogle Scholar
Jiang, J., Cameron, R. H., Schmitt, D. & Işık, E. Modelling solar cycles 15 to 21 using a flux transport dynamo, Astron. Astrophys., 553, Article A128 (2013). doi: 10.1051/0004-6361/201321145Google Scholar
Jiang, J., Hathaway, D. H., Cameron, R. H., Solanki, S. K., Gizon, L. & Upton, L. Magnetic flux transport at the solar surface, Space Sci. Rev., 186, 491523 (2014). doi: 10.1007/s11214-014-0083-1Google Scholar
Kepko, L., Viall, N. M., Antiochos, S. K., Lepri, S. T., Kasper, J. C. & Weberg, M. Implications of L1 observations for slow solar wind formation by solar reconnection, Geophys. Res. Lett., 43, 4089–97 (2017). doi: 10.1002/2016GL068607Google Scholar
Kilpua, E. K. J., Madjarska, M. S., Karna, N., Wiegelmann, T., Farrugia, C., Yu, W. & Andreeova, K. Sources of the slow solar wind during the Solar Cycle 23/24 minimum, Sol. Phys., 291, 2441–56 (2016). doi: 10.1007/s11207-016-0979-xGoogle Scholar
Kilpua, E. K. J., Balogh, A., von Steiger, R. & Liu, Y. D. Geoeffective properties of solar transients and stream interaction regions, Space Sci. Rev., 212, 12711314 (2017). doi: 10.1007/s11214-017-0411-3Google Scholar
Kopp, G. Magnitudes and timescales of total solar irradiance variability, J. Space Weather Space Clim., 6, Article A30 (2016). doi: 10.1051/swsc/2016025Google Scholar
Korhonen, H. Properties of stellar activity cycles, Proc. IAU, 11(A29A), 354–9 (2016). doi: 10.1017/S1743921316003276Google Scholar
Krivova, N. A., Solanki, S. K. & Floyd, L. Reconstruction of solar UV irradiance in cycle 23, Astron. Astrophys., 452, 631–9 (2006). doi: 10.1051/0004-6361:20064809Google Scholar
Lean, J. L., Wang, Y.-M. & Sheeley, N. R. Jr. The effect of increasing solar activity on the Sun’s total and open magnetic flux during multiple cycles: Implications for solar forcing of climate, Geophys. Res. Lett., 29(24), Article 2224 (2002). doi: 10.1029/2002GL015880Google Scholar
Leighton, R. B. A magneto-kinematic model of the solar cycle, Astrophys. J., 156, 126 (1969). doi: 10.1086/149943Google Scholar
Lemerle, A. & Charbonneau, P. A coupled 2 × 2D Babcock-Leighton solar dynamo model. II. Reference dynamo solutions, Astrophys. J., 834(2), Article 133 (2017). doi: 10.3847/1538-4357/834/2/133Google Scholar
Li, K. J., Wang, J. X., Xiong, S. Y., Liang, H. F., Yun, H. S. & Gu, X. M. Regularity of the north-south asymmetry of solar activity, Astron. Astrophys., 383, 648–52 (2002). doi: 10.1051/0004-6361:20011799Google Scholar
Linker, J. A., Mikic, Z., Biesecker, D. A., Forsyth, R. J., Gibson, S. E., Lazarus, A. J., Lecinski, V., Riley, P., Szabo, A. & Thompson, B. J. Magnetohydrodynamic modeling of the solar corona during Whole Sun Month, J. Geophys. Res., 104, 9809–30 (1999). doi: 10.1029/1998JA900159Google Scholar
Linker, J. A., Caplan, R. M., Downs, C., Riley, P., Mikic, Z., Lionello, R. Henney, C. J., Arge, C. N., Liu, Y., Derosa, M. L., Yeates, A. & Owens, M. J. The open flux problem, Astrophys. J., 848(1), Article 70 (2017). doi: 10.3847/1538-4357/aa8a70Google Scholar
Livingston, W., Penn, M. J. & Svalgaard, L. Decreasing sunspot magnetic fields explain unique 10.7 cm radio flux, Astrophys. J. Lett., 757, Article L8 (2012). doi: 10.1088/2041-8205/757/1/L8Google Scholar
Lockwood, M., Owens, M., Hawkins, E., Jones, G. S. & Usoskin, I. Frost fairs, sunspots and the Little Ice Age, Astron. Geophys., 83(2), 1723 (2017). doi: 10.1093/astrogeo/atx057Google Scholar
Lugaz, N., Temmer, M., Wang, Y. & Farrugia, C. J. The interaction of successive coronal mass ejections: A review, Sol. Phys., 292(4), Article 64 (2017). doi: 10.1007/s11207-017-1091-6Google Scholar
Luhmann, J. G., Lee, C. O., Li, Y., Arge, C. N., Galvin, A. B., Simunac, K., Russell, C. T., Howard, R. A. & Petrie, G. Solar wind sources in the late declining phase of Cycle 23: Effects of the weak solar polar field on high speed streams, Sol. Phys., 256, 285305 (2009). doi: 10.1007/s11207-009-9354-5Google Scholar
Manchester, W., IV, Kilpua, E. K. J., Liu, Y. D., Lugaz, N., Riley, P., Török, T. & Vršnak, B. The physical processes of CME/ICME evolution, Space Sci. Rev., 212, 11591219 (2017). doi: 10.1007/s11214-017-0394-0Google Scholar
Martin, S. F. Conditions for the formation and maintenance of filaments, Sol. Phys., 182, 107–37 (1998). doi: 10.1023/A:100502681Google Scholar
Maunder, E. W. Note on the distribution of sunspots in heliographic latitude, 1874 to 1902, Mon. Nat. R. Astron. Soc., 64, 747–61 (1904).Google Scholar
McComas, D. J., Elliott, H. A., Schwadron, N. A., Gosling, G. T., Skoug, R. M. & Goldstein, B. E. The three-dimensional solar wind around solar maximum, Geophys. Res. Lett., 30(10), 1517–20 (2003). doi: 10.1029/2003GL017136Google Scholar
McComas, D. J., Velli, M., Lewis, W. S., Acton, L. W., Balat-Pichelin, M., Bothmer, V., Dirling, R. B., Feldman, W. C., Gloeckler, G., Habbal, S. R., Hassler, D. M., Mann, I., Matthaeus, W. H., McNutt, R. L., Mewaldt, R. A., Murphy, N., Ofman, L., Sittler, E. C., Smith, C. W. & Zurbuchen, T. H. Understanding coronal heating and solar wind acceleration: Case for in situ near-Sun measurements, Rev. Geophys., 45(1), Article RG1004 (2007). doi: 10.1029/2006RG000195Google Scholar
Melrose, D. B. Current-driven flare and CME models, J. Geophys. Res., 122, 7963–78 (2017). doi: 10.1002/2017JA024035Google Scholar
Miralles, M. P., Cranmer, S. R. & Kohl, J. L. Low-latitude coronal holes during solar maximum, Adv. Space Res., 33, 696700 (2004). doi: 10.1016/S0273-1177(03)00239-4Google Scholar
Mordvinov, A. V., Pevtsov, A. A., Bertello, L. & Petrie, G. J. D. The reversal of the Sun’s magnetic field in Cycle 24, Sol. Terr. Phys., 2(1), 318 (2016). doi: 10.12737/19856Google Scholar
Muñoz-Jaramillo, A., Balmaceda, L. A. & DeLuca, E. E. Using the dipolar and quadrupolar moments to improve solar-cycle predictions based on the polar magnetic fields, Phys. Rev. Lett., 111, Article 041106 (2013). doi: 10.1103/PhysRevLett.111.041106Google Scholar
Muraközy, J. & Ludmány, A. North-south differences of solar cycles, Centr. Eur. Astrophys. Bull., 34, 99107 (2010).Google Scholar
Murray, S. A., Bingham, S., Sharpe, M. & Jackson, D. R. Flare forecasting at the Met Office Space Weather Operations Centre, Space Weather, 15, 577–88 (2017). doi: 10.1002/2016SW001579Google Scholar
Nagovitsyn, Y. A. & Pevtsov, A. A. On the presence of two populations of sunspots, Astrophys. J., 833, Article 94 (2016). doi: 10.3847/1538-4357/833/1/94Google Scholar
Nagovitsyn, Y. A., Pevtsov, A. A. & Osipova, A. A. Long-term variations in sunspot magnetic field–area relation, Astron. Nachr., 338, 2634 (2017). doi: 10.1002/asna.201613035Google Scholar
Neugebauer, M. & Snyder, C. W. Solar plasma experiment, Science, 138, 1095–7 (1962).Google Scholar
Norton, A. A., Charbonneau, P. & Passos, D. Hemispheric coupling: Comparing dynamo simulations and observations, Space Sci. Rev., 186, 251–83 (2014). doi: 10.1007/s11214-014-0100-4Google Scholar
Odstrčil, D. Modeling 3-D solar wind structure, Adv. Space Res., 32, 497506 (2003). doi: 10.1016/S0273-1177(03)00332-6Google Scholar
Owens, M. J. & Forsyth, R. J. The heliospheric magnetic field, Living Rev. Sol. Phys., 10(5), 152 (2013). doi: 10.12942/lrsp-2013-5Google Scholar
Owens, M. J., Lockwood, M. & Barnard, L. A. Coronal mass ejections are not coherent magnetohydrodynamic structures, Sci. Rep., 7, Article 4152 (2017). doi: 10.1038/s41598-017-04546-3Google Scholar
Owens, M. J. & Riley, P. Probabilistic solar wind forecasting using large ensembles of near-Sun conditions with a simple one-dimensional ‘upwind’ scheme, Space Weather, 15, 1461–74 (2017). doi: 10.1002/2017SW001679Google Scholar
Pariat, E., Leake, J. E., Valori, G., Linton, M. G., Zuccarello, F. P. & Dalmasse, K. Relative magnetic helicity as a diagnostic of solar eruptivity, Astron. Astrophys., 601, Article A125 (2017). doi: 10.1051/0004-6361/201630043Google Scholar
Park, S.-H., Kusano, K., Cho, K.-S., Chae, J., Bong, S.-C., Kumar, P., Park, S.-Y. Kim, Y.-H. & Park, Y.-D. Study of magnetic helicity injection in the active region NOAA 9236 producing multiple flare-associated coronal mass ejection events, Astrophys. J., 778(1), Article 13 (2013). doi: 10.1088/0004-637X/778/1/13Google Scholar
Parker, E. N. Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 128, 664–76 (1958).Google Scholar
Parker, E. N. Extension of the solar corona into interplanetary space, J. Geophys. Res., 64, 1675–81 (1959).Google Scholar
Pesnell, W. D. Solar cycle predictions, Sol. Phys., 281, 507–32 (2012). doi: 10.1007/s11207-012-9997-5Google Scholar
Pesnell, W. D. Predicting Solar Cycle 24 using a geomagnetic precursor pair, Sol. Phys., 289, 2317–31 (2014). doi: 10.1007/s11207-013-0470-xGoogle Scholar
Pesnell, W. D. Predictions of solar cycle 24: How are we doing? Space Weather, 14, 1021 (2016). doi: 10.1002/2015SW001304Google Scholar
Petrie, G. J. D. Evolution of active and polar photospheric magnetic fields during the rise of cycle 24 compared to previous cycles, Sol. Phys., 281, 577–98 (2012). doi: 10.1007/s11207-012-0117-3Google Scholar
Petrie, G. J. D. Solar magnetic activity cycles, coronal potential field models and eruption rates, Astrophys. J., 768, Article 12 (2013). doi: 10.1088/0004-637X/768/2/162Google Scholar
Petrie, G. J. D. On the enhanced coronal mass ejection detection rate since the Solar Cycle 23 polar field reversal, Astrophys. J., 812(1), Article 74 (2015). doi: 10.1088/0004-637X/812/1/74Google Scholar
Petrie, G. High-resolution vector magnetograms of the Sun’s poles from Hinode: Flux distributions and global coronal modelling, Sol. Phys., 292, Article 13 (2017). doi: 10.1007/s11207-016-1034-7Google Scholar
Petrie, G. J. D., Canou, A. & Amari, T. Nonlinear force-free and potential-field models of active-region and global coronal fields during the Whole Heliosphere Interval, Sol. Phys., 274, 163–94 (2011). doi: 10.1007/s11207-010-9687-0Google Scholar
Petrie, G. J. D., Petrovay, K. & Schatten, K. Solar polar fields and the 22-year activity cycle: Observations and models, Space Sci. Rev., 186, 325–57 (2014). doi: 10.1007/s11214-014-0064-4Google Scholar
Petrovay, K. Solar cycle prediction, Living Rev. Sol. Phys., 7, Article 6 (2010). doi: 10.12942/lrsp-2010-6#Google Scholar
Pipin, V. V. & Kosovichev, A. G. Dependence of stellar magnetic activity cycles on rotational period in a nonlinear solar-type dynamo, Astophys. J., 823(2), Article 133 (2016). doi: 10.3847/0004-637X/823/2/133Google Scholar
Priest, E. R., Longcope, D. W. & Janvier, M. Evolution of magnetic helicity during eruptive flares and coronal mass ejections, Sol. Phys., 291, 2017–36 (2016). doi: 10.1007/s11207-016-0962-6Google Scholar
Rezaei, R., Beck, C., Lagg, A., Borrero, J. M., Schmidt, W. & Collados, M. Variation in sunspot properties between 1999 and 2014, Astron. Astrophys., 578, Article A43 (2015). doi: 10.1051/0004-6361/201425557Google Scholar
Richardson, I. G. Solar wind stream interaction regions throughout the heliosphere, Liv. Rev. Sol. Phys., 15(1), Article 1 (2018). doi: 10.1007/s41116-017-0011-zGoogle Scholar
Richardson, J. D., Belcher, J. W., Lazarus, A. J. & Paularena, K. I. Statistical prpperties of the solar wind, AIP Conf. Proc., 382, 483–6 (1996). doi: 10.1063/1.51433Google Scholar
Riley, P., Linker, J. A., Mikic, Z., Lionello, R., Ledvina, S. A. & Luhmann, J. G. A comparison between global solar magnetohydrodynamic and potential field source surface model results, Astrophys. J., 653, 1510–16 (2006). doi: 10.1086/508565Google Scholar
Sadykov, V. M. & Kosovichev, A. G. Relationships between characteristics of the line-of-sight magnetic field and solar flare forecasts, Astrophys. J., 849, Article 148 (2017). doi: 10.3847/1538-4357/aa9119Google Scholar
Schatten, K. Fair space weather for solar cycle 24, Geophys. Res. Lett., 32, Article L21106 (2005). doi: 10.1029/2005GL024363Google Scholar
Schatten, K. H., Wilcox, J. M. & Ness, N. F. A model of the interplanetary and coronal magnetic fields, Sol. Phys., 6, 442–55 (1969).Google Scholar
Schmieder, B., Archontis, V. & Pariat, E. Magnetic flux emergence along the solar cycle, Space Sci. Rev., 186, 227–50 (2014). doi: 10.1007/s11214-014-0088-9Google Scholar
Schmieder, B., Aulanier, G. & Vršnak, B. Flare-CME models: An observational perspective (invited review), Sol. Phys., 290, 3457–86 (2015). doi: 10.1007/s11207-015-0712-1Google Scholar
Schonfeld, S. J., White, S. M., Henney, C. J., Arge, C. N. & McAteer, R. T. J. Coronal sources of the F10.7 radio flux, Astrophys. J., 808, Article 29 (2015). doi: 10.1088/0004-637X/808/1/29Google Scholar
Schrijver, C. J. The nonpotentiality of coronae of solar active regions, the dynamics of the surface magnetic field, and the potential for large flares, Astrophys. J., 820, Article 103 (2016). doi: 10.3847/0004-637X/820/2/103Google Scholar
Schrijver, C. J. & DeRosa, M. L. Photospheric and heliospheric magnetic fields, Sol. Phys., 212, 165200 (2003). doi: 10.1023/A:1022908504100Google Scholar
Schrijver, C. J., De Rosa, M. L., Title, A. M. & Metcalf, T. R. The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field, Astrophys. J., 628, 501–13 (2005). doi: 10.1086/430733Google Scholar
Schulz, M. Non-spherical source-surface model of the heliosphere: A scalar formulation, Ann. Geophys., 15, 1379–87 (1997). doi: 10.1007/s00585-997-1379-1Google Scholar
Severnyi, A. B. Nonstationary processes in solar flares as a manifestation of the pinch effect, Sov. Astron., 2, 310–25 (1958).Google Scholar
Sharykin, I. N., Sadykov, V. M., Kosovichev, A. G., Vargas-Dominguez, S. & Zimovets, I. V. Flare energy release in the lower solar atmosphere near the magnetic field Polarity Inversion Line, Astrophys. J., 840, Article 84 (2017). doi: 10.3847/1538-4357/aa6dfdGoogle Scholar
Sheeley, N. R., Walters, J. H., Wang, Y.-M. & Howard, R. A. Continuous tracking of coronal outflows: Two kinds of coronal mass ejections, J. Geophys. Res., 104(A11), 24739–68 (1999). doi: 10.1029/1999JA900308Google Scholar
Sheeley, N. R. Jr & Wang, Y.-M. The recent rejuvenation of the Sun’s large-scale magnetic field: A clue for understanding past and future sunspot cycles, Astrophys. J., 809(2), Article 113 (2015). doi: 10.1088/0004-637X/809/2/113Google Scholar
Simoniello, R., Tripathy, S. C., Jain, K. & Hill, F. A new challenge to solar dynamo models from helioseismic observations: The latitudinal dependence of the progression of the solar cycle, Astrophys. J., 828, Article 41 (2016). doi: 10.3847/0004-637X/828/1/41Google Scholar
Smith, E. J. The heliospheric current sheet, J. Geophys. Res., 106, 15819–31 (2001). doi: 10.1029/2000JA000120Google Scholar
Smith, E. J. & Balogh, A. Ulysses observations of the radial magnetic field, Geophys. Res. Lett., 22, 3317–20 (1995). doi: 10.1029/95GL02826Google Scholar
Solanki, S. K. Sunspots: An overview, Astron. Astrophys. Rev., 11(2–3), 153286 (2003). doi: 10.1007/s00159-003-0018-4Google Scholar
Solanki, S. K., Krivova, N. A. & Haigh, J. D. Solar irradiance variability and climate, Annu. Rev. Astron. Astrophys., 51, 311–51 (2013). doi: 10.1146/annurev-astro-082812-141007Google Scholar
Stakhiv, M., Landi, E., Lepri, S. T., Oran, R. & Zurbuchen, T. H. On the origin of mid-latitude fast wind: Challenging the two-state solar wind paradigm, Astrophys. J., 801, Article 100 (2015). doi: 10.1088/0004-637X/801/2/100Google Scholar
Stejko, A. M., Guerrero, G. G. & Kosovichev, A. G. 3D global modelling of the solar dynamo, eprint arXiv:1701.08450 (2017).Google Scholar
Strassmeier, K. G. Starspots, Astron. Astrophys. Rev., 17, 251308 (2009). doi: 10.1007/s00159-009-0020-6Google Scholar
Sun, X., Hoeksema, J. T., Liu, Y. & Zhao, J. On polar magnetic field reversal and surface flux transport during Solar Cycle 24, Astrophys. J., 798, Article 114 (2015). doi: 10.1088/0004-637X/798/2/114Google Scholar
Svalgaard, L., Cliver, E. W. & Kamide, Y. Sunspot cycle 24: Smallest cycle in 100 years? Geophys. Res. Lett., 32, Article L01104 (2004). doi: 10.1029/2004GL021664Google Scholar
Tapping, K. F. The 10.7 cm solar radio flux (F10.7), Space Weather, 11, 394406 (2013). doi: 10.1002/swe.20064Google Scholar
Tapping, K. F. & Morgan, C. Changing relationships between sunspot number, total sunspot area and F10.7 in Cycles 23 and 24, Sol. Phys., 292, Article 73 (2017). doi: 10.1007/s11207-017-1111-6Google Scholar
Temmer, M., Rybák, J., Bendík, P., Veronig, A., Vogler, F., Otruba, W., Pötzi, W. & Hanslmeier, A. Hemispheric sunspot numbers Rn and Rs from 1945–2004: Catalogue and N-S asymmetry analysis for solar cycles 18–23, Astron. Astrophys., 447, 735–43 (2006). doi: 10.1051/0004-6361:20054060Google Scholar
Temmer, M., Thalmann, J. K., Dissauer, K., Veronig, A. M., Tschernitz, J., Hinterreiter, J. & Rodriguez, L. On flare-CME characteristics from Sun to Earth combining remote-sensing image data with in situ measurements supported by modelling, Sol. Phys., 292, Article 93 (2017a). doi: 10.1007/s11207-017-1112-5Google Scholar
Temmer, M., Reiss, M. A., Nikolic, L., Hofmeister, S. J. & Veronig, A. M. Preconditioning of interplanetary space due to transient CME disturbances, Astrophys. J., 835, Article 141 (2017b). doi: 10.3847/1538-4357/835/2/141Google Scholar
Török, T., Downs, C., Linker, J. A., Lionello, R., Titov, V. S., Mikić, Z., Riley, P., Caplan, R. M. & Wijaya, J. Sun-to-earth MHD simulation of the 2000 July 14 ‘Bastille Day’ eruption, Astrophys. J., 856, Article 75 (2018). doi: 10.3847/1538-4357/aab36dGoogle Scholar
Usoskin, I. G. A history of solar activity over millennia, Living Rev. Sol. Phys., 14, Article 3 (2017). doi: 10.1007/s41116-017-0006-9Google Scholar
van Driel-Gesztelyi, L. & Green, L. M. Evolution of active regions, Living Rev. Sol. Phys., 12, Article 1 (2015). doi: 10.1007/lrsp-2015-1Google Scholar
Wang, Y. M. The Sun’s large-scale magnetic field and its long-term evolution, Sol. Phys., 224, 2135 (2004). doi: 10.1007/s11207-005-4982-xGoogle Scholar
Wang, Y.-M. Coronal holes and open magnetic flux, Space Sci. Rev., 144, 383–99 (2009). doi: 10.1007/s11214-008-9434-0Google Scholar
Wang, Y.-M. Solar cycle variation of the Sun’s low-order magnetic multipoles: Heliospheric consequences, Space Sci. Rev., 186, 387407 (2014). doi: 10.1007/s11214-014-0051-9Google Scholar
Wang, Y.-M. & Colaninno, R. Is Solar Cycle 24 producing more coronal mass ejections than Cycle 23? Astrophys. J. Lett., 784, Article L27 (2014). doi: 10.1088/2041-8205/784/2/L27Google Scholar
Wang, Y.-M. & Muglach, K. On the formation of filament channels, Astrophys. J., 666, 1284–95 (2007). doi: 10.1086/520623Google Scholar
Wang, Y.-M. & Sheeley, N. R. Jr. Solar wind speed and coronal flux-tube expansion, Astrophys. J., 355, 726–32 (1990). doi: 10.1086/168805Google Scholar
Wang, Y.-M. & Sheeley, N. R. Jr. Magnetic flux transport and the sun’s dipole moment – New twists to the Babcock-Leighton model, Astrophys. J., 375, 761–70 (1991). doi: 10.1086/170240Google Scholar
Wang, Y.-M. & Sheeley, N. R. Jr. On potential field models of the solar corona, Astrophys. J., 392, 310–19 (1992). doi: 10.1086/171430Google Scholar
Wang, Y.-M. & Sheeley, N. R. Jr., Global evolution of interplanetary sector structure, coronal holes, and solar wind streams during 1976–1993: Stackplot displays based on solar magnetic observations, J. Geophys. Res., 99(A4), 6597–608 (1994). doi: 10.1029/93JA02105Google Scholar
Wang, Y.-M., Sheeley, N. R. Jr & Lean, J. Understanding the evolution of the Sun’s open magnetic flux, Geophys. Res. Lett., 27, 505–8 (2000). doi: 10.1029/1999GL010744Google Scholar
Wang, Y.-M., Sheeley, N. R. Jr & Andrews, M. D. Polarity reversal of the solar magnetic field during cycle 23, J. Geophys. Res., 107(A12), Article 1465 (2002). doi: 10.1029/2002JA009463Google Scholar
Wang, Y. M. & Sheeley, N. R. Jr. Sources of the solar wind at Ulysses during 1990–2006, Astrophys. J., 653, 708–18 (2006). doi: 10.1086/508929Google Scholar
Wang, Y.-M. & Sheeley, N. R. Jr. Understanding the geomagnetic precursor of the solar cycle, Astrophys. J., 694, L1115 (2009). doi: 10.1088/0004-637X/694/1/L11Google Scholar
Wang, Y.-M., Robrecht, E. & Sheeley, N. R. Jr. On the weakening of the polar magnetic fields during solar cycle 23, Astrophys. J., 707, 1372–86 (2009). doi: 10.1088/0004-637X/707/2/1372Google Scholar
Weiss, N. O. & Tobias, S. M. Physical causes of solar activity, Space Sci. Rev., 94, 99112 (2000). doi: 10.1023/A:1026790416627Google Scholar
Weiss, N. O. & Thompson, M. J. The solar dynamo, Space Sci. Rev., 144, 5366 (2009).Google Scholar
Wiegelmann, T., Petrie, G. J. D. & Riley, P. Coronal magnetic field models, Space Sci. Rev., 210, 249–74 (2017). doi: 10.1007/s11214-015-0178-3Google Scholar
Wimmer-Schweingruber, R. F. & Hassler, D. M. Tracing heliospheric structures to their solar origin, AIP Conf. Proc., 1720, Article 100002 (2016). doi: 10.1063/1.4943857Google Scholar
Wimmer-Schweingruber, R. F., von Steiger, R. & Paerli, R. Solar wind stream interfaces in corotating interaction regions: New SWICS/Ulysses results, J. Geophys. Res., 104, 9933–46 (1999). doi: 10.1029/1999JA900038Google Scholar
Wood, B. E., Wu, C. C., Lepping, R. P., Nieves-Chinchilla, T., Howard, R. A., Linton, M. G. & Socker, D. G. A STEREO survey of magnetic cloud coronal mass ejections observed at Earth in 2008–2012, Astrophys. J. Suppl. Ser., 229(2), Article 29 (2017). doi: 10.3847/1538-4365/229/2/29Google Scholar
Wyper, P. E., Antiochos, S. & DeVore, C. R. A universal model for solar eruptions, Nature, 544, 452–9 (2017). doi: 10.1038/nature22050Google Scholar
Xie, H., Mäkelä, P., St. Cyr, O. C. & Gopalswamy, N. Comparison of the coronal mass ejection shock acceleration of three widespread SEP events during solar cycle 24, J. Geophys. Res., 122, 7021–41 (2017). doi: 10.1002/2017JA024218Google Scholar
Yeo, K. L., Krivova, N. A. & Solanki, S. K. Solar cycle variation in solar irradiance, Space Sci. Rev., 186, 137–67 (2014). doi: 10.1007/s11214-014-0061-7Google Scholar
Yeo, K. L., Krivova, N. A. & Solanki, S. K. EMPIRE: A robust empirical reconstruction of solar irradiance variability, J. Geophys. Res., 122, 38883914 (2017a). doi: 10.1002/2016JA023733Google Scholar
Yeo, K. L., Solanki, S. K., Norris, C. M., Beeck, B., Unruh, Y. C. & Krivova, N. A. Solar irradiance variability is caused by the magnetic activity on the solar surface, Phys. Rev. Lett., 119(9), Article 091102 (2017b). doi: 10.1103/PhysRevLett.119.091102Google Scholar
Yurchyshyn, V., Yashiro, S., Abramenko, V., Wang, H. & Gopalswamy, N. Statistical distributions of speeds of coronal mass ejections, Astrophys. J., 619, 599603 (2005). doi: 10.1086/426129Google Scholar
Zacharias, P. An independent review of existing total solar irradiance records, Surv. Geophys., 35, 897912 (2014). doi: 10.1007/s10712-014-9294-yGoogle Scholar
Zerbo, J.-L. & Richardson, J. D. The solar wind during current and past solar minima and maxima, J. Geophys. Res., 120, 10250–56 (2015). doi: 10.1002/2015JA021407.Google Scholar
Zhang, J., Woch, J., Solanki, S. K., von Steiger, R. & Forsyth, R. Interplanetary and solar surface properties of coronal holes observed during solar maximum, J. Geophys. Res., 108, Article 1144 (2003). doi: 10.1029/2002JA009538Google Scholar
Zhao, L., Landi, E., Lepri, S. T., Kocher, M., Zurbuchen, T. H., Fisk, L. A. & Raines, J. M. An anomalous composition in slow solar wind as a signature of magnetic reconnection in its source region, Astrophys. J. Suppl. Ser., 228(1), Article 4 (2017). doi: 10.3847/1538-4365/228/1/4Google Scholar
Zheng, Y., Macneice, P., Odstrcil, D., Mays, M. L., Rastaetter, L., Pulkkinen, A., Taktakishvili, A., Hesse, M., Kuznetsova, M., Lee, H. & Chulaki, A. Forecasting propagation and evolution of CMEs in an operational setting: What has been learned, Space Weather, 11, 557–74 (2013). doi: 10.1002/swe.20096Google Scholar

References

Aubert, J. 2014. Earth’s core internal dynamics 18402010 imaged by inverse geodynamo modelling. Geophys. J. Int., 197, 1321–34.Google Scholar
Aubert, J. and Fournier, A. 2011. Inferring internal properties of Earth’s core dynamics and their evolution from surface observations and a numerical geodynamo model. Nonlinear Process. Geophys., 18, 657‒74.Google Scholar
Aubert, J., Gastine, T. and Fournier, A. 2017. Spherical convective dynamos in the rapidly rotating asymptotic regime. J. Fluid. Mech., 813, 558–93.Google Scholar
Barrois, O., Gillet, N. and Aubert, J. 2017. Contributions to the geomagnetic secular variation from a reanalysis of core surface dynamics. Geophys. J. Int., 211, 5068.Google Scholar
Beggan, C. D. and Whaler, K. A. 2009. Forecasting change of the magnetic field using core surface flows and ensemble Kalman filtering. Geophys. Res. Lett., doi: 10.1029/2009GL039927.Google Scholar
Bouligand, C., Gillet, N., Jault, D., Schaeffer, N. Fournier, A. and Aubert, J. 2016. Frequency spectrum of the geomagnetic field harmonic coefficients from dynamo simulations. Geophys. J. Int., 207, 1142‒57.Google Scholar
Canet, E., Fournier, A. and Jault, D. 2009. Forward and adjoint quasi-geostrophic models of the geomagnetic secular variation. J. Geophys. Res., doi: 10.1029/2008JB006189.Google Scholar
Christensen, U. R., Aubert, J., Cardin, P., Dormy, E., Gibbons, S., Glatzmaier, G. A., Grote, E., Honkura, Y., Jones, C., Kono, M., Matsushima, M., Sakuraba, A., Takahashi, F., Tilgner, A., Wicht, J. and Zhang, K. 2001. A numerical dynamo benchmark. Phys. Earth Planet. Inter., 128, 2534.Google Scholar
Christensen, U. R., Aubert, J. and Hulot, G. 2010. Conditions for Earth-like geodynamo models. Earth Planet. Sci. Lett., 296, 487‒96.Google Scholar
Colosi, J. A. and Munk, W. 2006. Tales of the Venerable Honolulu Tide Gauge. J. Phys. Oceanogr., 36, 967‒96.Google Scholar
Donadini, F., Korte, M. and Constable, C. G. 2009. Geomagnetic field for 0–3 ka: 1. New data sets for global modeling. Geochem. Geophys. Geosys., 10, Q06007, doi: 10.1029/2008GC002295.Google Scholar
Egbert, G. P. and Ray, R. D. 2017. Tidal prediction. J. Mar. Res., 189237, 149.Google Scholar
Finlay, C. C., Lesur, V., Thébault, E., Vervelidou, F., Morschhauser, A. and Shore, R. 2017. Challenges handling magnetospheric and ionospheric signals in internal geomagnetic field modeling. Space Sci. Rev., 206, 157–89, doi: 10.10007/s11214-016-0285-9.Google Scholar
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N. and Toffner-Clausen, L. 2016. Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model. Earth Planets Space, 68, doi: 10.1186/s40623-016-0486-1.Google Scholar
Fournier, A., Eymin, C. and Alboussiere, T. 2007. A case for variational geomagnetic data assimilation: insights from a one-dimensional, nonlinear, and sparsely observed MHD system. Nonlin. Process. Geophys., 14, 163‒80.Google Scholar
Fournier, A., Hulot, G., Jault, D., Kuang, W., Tangborn, A., Gillet, N., Canet, E., Aubert, J. and Lhuillier, F. 2010. An introduction to data assimilation and predictability in geomagnetism. Space Sci. Rev., 155, 247‒91.Google Scholar
Fournier, A., Aubert, J. and Thébault, E. 2011. Inference on core surface flow from observations and 3-D dynamo modelling. Geophys. J. Int., 186, 118‒36.Google Scholar
Fournier, A., Nerger, L. and Aubert, J. 2013. An ensemble Kalman filter for the time-dependent analysis of the geomagnetic field. Geochem. Geophys. Geosyst., doi: 10.1002/ggge.20252.Google Scholar
Fournier, A., Aubert, J. and Thébaut, E. 2015. A candidate secular variation model for IGRF-12 based on Swarm data and inverse geodynamo modeling. Earth Planets Space, 67, doi: 10.1186/s40623-015-0245-8.Google Scholar
Gillet, N., Jault, D., Canet, E. and Fournier, A. 2010. Fast torsional waves and strong magnetic field within the Earth’s core. Nature, doi: 10.1038/nature09010.Google Scholar
Gillet, N., Jault, D., Finlay, C. C. and Olsen, N. 2013. Stochastic modeling of the Earth’s magnetic field: Inversion for covariances over the observatory era. Geochem. Geophys. Geosyst., doi: 10.1002/ggge.20041.Google Scholar
Gillet, N., Barrois, O. and Finlay, C. C. 2015. Stochastic forecasting of the geomagnetic field from the COV-Obs.x1 geomagnetic field model, and candidate models for IGRF-12. Earth Planets Space, doi: 10.1186/s40623-015-0225-z.Google Scholar
Grayver, A. V., Schnepf, N. R., Kuvshinov, A. V., Sabaka, T. J., Manoj, C. and Olsen, N. 2016 Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary. Sci. Adv., doi: 10.1126/sciadv.1600798.Google Scholar
Grayver, A. V., Munch, F. D., Kuvshinov, A. V., Khan, A., Sabaka, T. J. and Tøffner-Clausen, L. 2017. Joint inversion of satellite-detected tidal and magnetospheric signals constrains electrical conductivity and water content of the upper mantle and transition zone. Geophys. Res. Lett., doi: 10.1002/2017GL073446.Google Scholar
Hammill, T. M., Snyder, C. 2000. A Hybrid Ensemble Kalman Filter–3D Variational Analysis Scheme. Mon. Weather Rev., 128, 2905–15.Google Scholar
Holme, R. and Whaler, K. A. 2001. Steady core flow in an azimuthally drifting reference frame. Geophys. J. Int., 145, 560‒69.Google Scholar
Hulot, G., Lhuillier, F. and Aubert, J. 2010. Earth’s dynamo limit of predictability. Geophys. Res. Lett., 37, doi: 10.1029/2009GL041869.Google Scholar
Jackson, A., Jonkers, A. R. T. and Walker, M. R. 2000. Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. London, A358, 957‒90.Google Scholar
Jault, D., Gire, C. and LeMouël, J.-L. 1988. Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature, 333, 353‒6.Google Scholar
Jault, D. 2008. Axial invariance of rapidly varying diffusionless motions in the Earth?s core interior. Phys. Earth Planet. Inter., 166, 6776.Google Scholar
Jiang, W. and Kuang, W. 2008. An MPI-based MoSST core dynamics model. Phys. Earth Planet. Inter., 170, 4651.Google Scholar
Jones, C. A., Boronski, P., Brun, A. S. Glatzmaier, G. A., Gastine, T., Miesch, M. S. and Wicht, J. 2011. Anelastic convection-driven dynamo benchmarks. Icarus, 216, 120‒35.Google Scholar
Kalnay, E. 2011. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge.Google Scholar
Korte, M. and Constable, C. G. 2011. Improving geomagnetic field reconstructions for 0‒3 ka. Phys. Earth Planet. Inter., 188, 247‒59.Google Scholar
Kuang, W. and Bloxham, J. 1997. An Earth like numerical dynamo model. Nature, 389, 371‒4.Google Scholar
Kuang, W. and Bloxham, J. 1999. Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: Weak and strong dynamo action. J. Comput. Phys., 153, 5181.Google Scholar
Kuang, W. and Chao, B. F. 2003. Geodynamo modeling and core-mantle interactions, in Earth’s Core: Dynamics, Structure, Rotation, Geodynamics Series 31, ed. Dehant, V., Kreager, K. C., Karato, S. and Zatman, S. American Geophysical Union, Washington, DC.Google Scholar
Kuang, W. and Tangborn, A. 2015. Dynamic responses of the Earth’s outer core to assimilation of observed geomagnetic secular variation. Prog. Earth Planet. Sci., doi: 10.1186/s40645-015-0071-4.Google Scholar
Kuang, W., Tangborn, A., Jiang, W., Liu, D., Sun, Z., Bloxham, J. and Wei, Z. 2008. MoSSTDAS: The first generation geomagnetic data assimilation framework. Commun. Comput. Phys., 3, 85108.Google Scholar
Kuang, W., Wei, Z., Holme, R. and Tangborn, A. 2010. Constraining a numerical geodynamo model with 100 years of surface observations. Geophys. J. Int., doi: 10.1111/j.1365-246X.2009.04376.x.Google Scholar
Kuang, W., Tangborn, A., Wei, Z. and Sabaka, T. 2009. Prediction of geomagnetic field with data assimilation: a candidate secular variation model for IGRF-11. Earth Planets Space, 62, 775‒85.Google Scholar
Kuang, W., Chao, B. F. and Chen, J. 2017. Decadal polar motion of the Earth excited by the convective outer core from geodynamo simulations. J. Geophys. Res., in press.Google Scholar
Langel, R. A. 1987. The main geomagnetic field, in Geomagnetism, vol. 1, ed. Jacobs, J. A., Academic Press, London.Google Scholar
Lesur, V., Wardinski, I., Rother, M. and Mandea, M. 2008. GRIMM: The GFZ Reference Internal Magnetic Model based on vector satellite and observatory data. Geophys. J. Int., 173, 382‒94.Google Scholar
Lesur, V., Rother, M., Wardinski, I., Schachtschneider, R., Hamoudi, M. and Chambodut, A. 2015a. Parent magnetic field models for the IGRF-12: GFZ-candidates. Earth Planets Space, doi: 10.1186/s40623-015-0239-6.Google Scholar
Lesur, V., Whaler, K. and Wardinski, I. 2015b. Are geomagnetic data consistent with stably stratified flow at the core–mantle boundary? Geophys. J. Int., DOI: 10.1093/gji/ggv031.Google Scholar
Li, K., Jackson, A. and Livermore, P. W. 2011. Variational data assimilation for the initial-value dynamo problem. Phys. Rev. E, 84, doi: 10.1103/PhysRevE.84.056321.Google Scholar
Li, K., Jackson, A. and Livermore, P. W. 2014. Variational data assimilation for a forced, inertia-free magnetohydrodynamic dynamo model. Geophys. J. Int., 199, 1662–76.Google Scholar
Licht, A., Hulot, G., Gallet, Y. and Thébault, E. 2013. Ensembles of low degree archeomagnetic field models for the past three millennia. Phys. Earth Planet. Inter., 224, 3867.Google Scholar
Liu, D., Tangborn, A. and Kuang, W. 2007. Observing system simulation experiments in geomagnetic data assimilation. J. Geophys. Res., 112, doi: 10.1029/2006JB004691.Google Scholar
Love, J. J. and Rigler, E. J. 2014. The magnetic tides of Honolulu. Geophys. J. Int., 197, 1335‒53.Google Scholar
Matsui, H., Heien, E., Aubert, J., Aurnou, J. M., Avery, M., Brown, B., Buffett, B. A., Busse, F., Christensen, U. R., Davies, C. J., Featherstone, N., Gastine, T., Glatzmaier, G. A., Gubbins, D., Guermond, J.-L., Hayashi, Y., Hollerbach, R., Hwang, L. J., Jackson, A., Jones, C. A., Jiang, W., Kellogg, L. H., Kuang, W., Landeau, M., Marti, P., Olson, P., Ribeiro, A., Sasaki, Y., Schaeffer, N., Simitev, R. D., Sheyko, A., Silva, L., Stanley, S., Takahashi, F., Takehiro, S., Wicht, J. and Willis, A. P. 2016. Performance benchmarks for a next generation numerical dynamo model. Geochem. Geophys. Geosyst., doi: 10.1002/2015GC006159Google Scholar
Maus, S., Macmillan, S., Lowes, F. and Bondar, T. 2005. Evaluation of candidate geomagnetic field models for the 10th generation of IGRF. Earth Planets Space, 57, 1173‒81.Google Scholar
Maus, S., Rother, M., Stolle, C., Mai, W., Choi, S., Lühr, H., Cooke, D. and Roth, C. 2006. Third generation of the Potsdam Magnetic Model of the Earth (POMME). Geochem. Geophy. Geosyst., doi: 10.1029/2006GC001269.Google Scholar
Maus, S., Silva, L. and Hulot, G. 2008. Can core-surface flow models be used to improve the forecast of the Earth’s main magnetic field? J. Geophys. Res., doi: 10.1029/2007JB005199.Google Scholar
Morzfeld, M., Fournier, A. and Hulot, G. 2017. Coarse predictions of dipole reversals by low-dimensional modeling and data assimilation. Phys. Earth Planet. Inter., 262, 827.Google Scholar
Nilsson, A., Holme, R., Korte, M., Suttie, N. and Hill, M. 2014. Reconstructing Holocene geomagnetic field variation: new methods, models and implications. Geophys. J. Int., doi: 10.1093/gji/ggu120.Google Scholar
Olsen, N. and Stolle, C. 2017. Magnetic signatures of ionospheric and magnetospheric current systems during geomagnetic quiet conditions ‒ an overview. Space Sci. Rev., 206, 525, doi: 10.1007/s11214-016-0279-7.Google Scholar
Olsen, N., Lühr, H., Finlay, C. C., Sabaka, T. J., Michaelis, I., Rauberg, J. and Tøffner-Clausen, L. 2014. The CHAOS-4 geomagnetic field model. Geophys. J. Int., 197, 815‒27.Google Scholar
Sabaka, T. J. and Olsen, N. 2006. Enhancing comprehensive inversions using the Swarm constellation. Earth Planets Space, 58, 371‒95.Google Scholar
Sabaka, T. J., Olsen, N. and Langel, R. A. 2002. A comprehensive model of the quiet-time, near-Earth magnetic field: phase 3. Geophys. J. Int., 151, 3268.Google Scholar
Sabaka, T. J., Olsen, N. and Purucker, M. E. 2004. Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int., 159, 521‒47.Google Scholar
Sabaka, T. J., Tøffner-Clausen, L. and Olsen, N. 2013. Use of the comprehensive inversion method for Swarm satellite data analysis. Earth Planets Space, 65, 1201‒22.Google Scholar
Sabaka, T. J., Olsen, N., Tyler, R. H. and Kushinov, A. 2015. CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data. Geophys. J. Int., 200, 15961626.Google Scholar
Sabaka, T. J., Tyler, R. H. and Olsen, N. 2016. Extracting ocean-generated tidal magnetic signals from Swarm data through satellite gradiometry. Geophys. Res. Lett., doi: 10.1002/2016GL068180.Google Scholar
Sakuraba, A. and Roberts, P. H. 2009. Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nat. Geosci., doi: 10.1038/NGEO643.Google Scholar
Sanchez, S., Fournier, A., Aubert, J. and Gallrt, Y. 2016. Modelling the archaeomagnetic field under spatial constraints from dynamo simulations: A resolution analysis. Geophy. J. Int., 207, 9831002.Google Scholar
Schnepf, N. R., Kuvshinov, A. and Sabaka, T. J. 2015. Can we probe the conductivity of the lithosphere and upper mantle using satellite tidal magnetic signals? Geophys. Res. Lett., doi: 10.1002/2015GL063540.Google Scholar
Sun, Z., Tangborn, A. and Kuang, W. 2007. Data assimilation in a sparsely observed one-dimensional modeled MHD system. Nonlinear Process. Geophys., 14, 181‒92.Google Scholar
Sun, Z. and Kuang, W. 2015. An ensemble algorithm based component for geomagnetic data assimilation. Terr. Atmos. Ocean. Sci., 26, 5361.Google Scholar
Tangborn, A. and Kuang, W. 2015. Geodynamo model and error parameter estimation using geomagnetic data assimilation. Geophys. J. Int., 200, 664‒75.Google Scholar
Tangborn, A. and Kuang, W. 2018. Impact of archeomagnetic field model data on modern era geomagnetic forecasts. Phys. Earth Planet. Inter., 276, 29.Google Scholar
Tyler, R. H. 2013. Magnetic remote sensing of ocean flow variability, presented at IAGA 12th Scientific Assembly, Living on a Magnetic Planet, Merida, 26–31 August.Google Scholar
Tyler, R. H., Maus, S. and Lühr, H. 2003. Satellite observations of magnetic fields due to ocean tidal flow, Science, 299, 239‒41.Google Scholar
Tyler, R. H., Boyer, T. P., Minami, T., Zweng, M. M. and Reagan, J. R. 2017. Electrical conductivity of the global ocean. Earth Planets Space, doi: 10.1186/s40623-017-0739-7Google Scholar
Whaler, K. A. and Beggan, C. D. 2015. Derivation and use of core surface flows for forecasting secular variation. J. Geophys. Res., doi: 10.1002/2014JB011697.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×