Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T23:08:57.557Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2014

Jorge Casalderrey-Solana
Affiliation:
Universitat de Barcelona
Hong Liu
Affiliation:
Massachusetts Institute of Technology
David Mateos
Affiliation:
Universitat de Barcelona
Krishna Rajagopal
Affiliation:
Massachusetts Institute of Technology
Urs Achim Wiedemann
Affiliation:
Conseil Européen de Recherches Nucléaires, Geneva
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] ATLAS Collaboration, Aad, G., et al. 2011. Measurement of the centrality dependence of J/ψ yields and observation of Z production in lead-lead collisions with the ATLAS detector at the LHC. Phys. Lett., B697, 294-312. arXiv:1012.5419 [hep-ex].Google Scholar
[2] ATLAS Collaboration, Aad, Georges, et al. 2010. Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at TeV with the ATLAS Detector at the LHC. Phys. Rev. Lett., 105, 252303. arXiv:1011.6182 [hep-ex].CrossRefGoogle ScholarPubMed
[3] ATLAS Collaboration, Aad, Georges, et al. 2013. Measurement of the jet radius and transverse momentum dependence of inclusive jet suppression in lead-lead collisions at TeV with the ATLAS detector. Phys.Lett., B719, 220-241. arXiv:1208.1967 [hep-ex].Google Scholar
[4] ALICE Collaboration, Aamodt, K., et al. 2010a. Charged-particle multiplicity density at mid-rapidity in central Pb-Pb collisions at TeV. Phys.Rev.Lett., 105, 252301. arXiv:1011.3916 [nucl-ex].CrossRefGoogle Scholar
[5] ALICE Collaboration, Aamodt, K., et al. 2010b. Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV.Phys.Rev.Lett., 105, 252302. arXiv:1011.3914 [nucl-ex].CrossRefGoogle ScholarPubMed
[6] ALICE Collaboration, Aamodt, K., et al. 2011a. Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at Te V.Phys. Rev. Lett., 107, 032301. arXiv:1105.3865 [nucl-ex].CrossRefGoogle Scholar
[7] ALICE Collaboration, Aamodt, K., et al. 2011b. Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb-Pb Collisions at TeV.Phys.Lett., B696, 30-39. arXiv:1012.10 04 [nucl-ex].Google Scholar
[8] Aarts, G., Allton, C., Kim, S., Lombardo, M.P., Oktay, M.B., et al. 2011. What happens to the Upsilon and ηb in the quark-gluon plasma? Bottomonium spectral functions from lattice QCD. JHEP, 1111, 103. arXiv:1109.4496 [hep-lat].CrossRefGoogle Scholar
[9] Aarts, Gert, and Martinez, Resco, Jose, M. 2005. Continuum and lattice meson spectral functions at nonzero momentum and high temperature. Nucl. Phys., B726, 93-108. arXiv:hep-lat/0507004.Google Scholar
[10] Aarts, Gert, and Martinez, Resco, Jose, Maria. 2002. Transport coefficients, spectral functions and the lattice. JHEP, 04, 053. arXiv:hep-ph/02 03177.CrossRefGoogle Scholar
[11] Aarts, Gert, Allton, Chris, Oktay, Mehmet Bugrahan, Peardon, Mike, and Skullerud, Jon-Ivar. 2007. Charmonium at high temperature in two-flavor QCD. Phys. Rev., D76, 094513. arXiv:0705.2198 [hep-lat].Google Scholar
[12] ALICE Collaboration, Abelev, Betty, et al. 2012. Transverse Momentum Distribution and Nuclear Modification Factor of Charged Particles in p-Pb Collisions at TeV. arXiv:1210.4520 [nucl-ex].Google Scholar
[13] Accardi, Alberto, Arleo, Francois, Brooks, William K., D'Enterria, David, and Muccifora, Valeria.2010. Parton Propagation and Fragmentation in QCD Matter. Riv. Nuovo Cim., 32, 439-553. arXiv:0907.3534 [nucl-th].Google Scholar
[14] Adams, Allan, Chesler, Paul M., and Liu, Hong. 2012. Holographic Vortex Liquids and Superfluid Turbulence. arXiv:1212.0281 [hep-th].Google Scholar
[15] STAR Collaboration, Adams, John, et al. 2003. Evidence from d+Au measurements for final-state suppression of high pT hadrons in Au+Au collisions at RHIC. Phys. Rev. Lett., 91, 072304. nucl-ex/0306024.CrossRefGoogle Scholar
[16] STAR Collaboration, Adams, John, et al. 2005a. Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR collaboration's critical assessment of the evidence from RHIC collisions. Nucl. Phys., A757, 102-183. arXiv:nucl-ex/05010 09.Google Scholar
[17] STAR Collaboration, Adams, John, et al. 2005b. Pion, kaon, proton and anti-proton transverse momentum distributions from pp and d+Au collisions at GeV. Phys. Lett., B616, 8-16. arXiv:nucl-ex/03 09 012.Google Scholar
[18] PHENIX Collaboration, Adare, A., et al. 2007a. Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at GeV. Phys. Rev. Lett., 98, 172301. nucl-ex/0611018.CrossRefGoogle Scholar
[19] PHENIX Collaboration, Adare, A., et al. 2007b. J/ψ production vs centrality, transverse momentum, and rapidity in Au+Au collisions at GeV. Phys. Rev. Lett., 98, 232301. arXiv:nucl-ex/0611020.CrossRefGoogle Scholar
[20] PHENIX Collaboration, Adare, A., et al. 2008. Quantitative Constraints on the Opacity of Hot Partonic Matter from Semi-Inclusive Single High Transverse Momentum Pion Suppression in Au+Au collisions at GeV. Phys. Rev., C77, 064907. arXiv:0801.1665 [nucl-ex].Google Scholar
[21] PHENIX Collaboration, Adare, A., et al. 2012. Medium modification of jet fragmentation in Au+Au collisions at GeV measured in direct photon-hadron correlations. arXiv:1212.3323 [nucl-ex].Google Scholar
[22] Adawi, Tom, Cederwall, Martin, Gran, Ulf, Nilsson, Bengt E. W., and Razaznejad, Behrooz. 1999. Goldstone tensor modes. JHEP, 02, 001. arXiv:hep-th/9811145.Google Scholar
[23] PHENIX Collaboration, Adler, Stephen Scott, et al. 2003. Absence of suppression in particle production at large transverse momentum in GeV d+Au collisions. Phys. Rev. Lett., 91, 072303. nucl-ex/0306021.CrossRefGoogle ScholarPubMed
[24] PHENIX Collaboration, Adler, Stephen Scott, et al. 2004a. High-pT charged hadron suppression in Au+Au collisions at GeV. Phys. Rev., C69, 034910. nucl-ex/0308006.Google Scholar
[25] PHENIX Collaboration, Adler, Stephen Scott, et al. 2004b. Identified charged particle spectra and yields in Au+Au collisions at GeV. Phys. Rev., C69, 034909. arXiv:nucl-ex/0307022.Google Scholar
[26] PHENIX Collaboration, Adler, Stephen Scott, et al. 2006. J/ψ production and nuclear effects for d+Au and pp collisions at GeV. Phys. Rev. Lett., 96, 012304. arXiv:nucl-ex/0507032.CrossRefGoogle Scholar
[27] Aharony, Ofer. 2002. The non-AdS/non-CFT correspondence, or three different paths to QCD. arXiv:hep-th/0212193.Google Scholar
[28] Aharony, Ofer, Fayyazuddin, Ansar, and Maldacena, Juan Martin. 1998. The large-N limit of N = 2, 1 field theories from three- branes in F-theory. JHEP, 07, 013. arXiv:hep-th/9806159.CrossRefGoogle Scholar
[29] Aharony, Ofer, Gubser, Steven S., Maldacena, Juan Martin, Ooguri, Hirosi, and Oz, Yaron. 2000. Large-N field theories, string theory and gravity. Phys. Rept., 323, 183-386. arXiv:hep-th/9905111.CrossRefGoogle Scholar
[30] Aharony, Ofer, Sonnenschein, Jacob, and Yankielowicz, Shimon. 2007. A holographic model of deconfinement and chiral symmetry restoration. Annals Phys., 322, 1420-1443. arXiv:hep-th/0604161.CrossRefGoogle Scholar
[31] Akamatsu, Yukinao, and Rothkopf, Alexander. 2012. Stochastic potential and quantum decoherence of heavy quarkonium in the quark-gluon plasma. Phys. Rev., D85, 105011. arXiv:1110.1203 [hep-ph].Google Scholar
[32] Akamatsu, Yukinao, Hatsuda, Tetsuo, and Hirano, Tetsufumi. 2009. Heavy Quark Diffusion with Relativistic Langevin Dynamics in the Quark-Gluon Fluid. Phys. Rev., C79, 054907. arXiv:0809.1499 [hep-ph].Google Scholar
[33] Akhmedov, Emil T. 1998. A Remark on the AdS/CFTcorrespondence and the renor-malization group flow. Phys. Lett., B442, 152-158. arXiv:hep-th/9806217 [hep-th].Google Scholar
[34] Albacete, Javier L., Kovchegov, Yuri V., and Taliotis, Anastasios. 2008a. DIS on a Large Nucleus in AdS/CFT. JHEP, 0807, 074. arXiv:0806.1484 [hep-th].CrossRefGoogle Scholar
[35] Albacete, Javier L., Kovchegov, Yuri V., and Taliotis, Anastasios. 2008b. Modeling Heavy Ion Collisions in AdS/CFT. JHEP, 0807, 100. arXiv:0805.2927 [hep-th].CrossRefGoogle Scholar
[36] Albacete, Javier L., Kovchegov, Yuri V., and Taliotis, Anastasios. 2009. Asymmetric Collision of Two Shock Waves in AdS5. JHEP, 0905, 060. arXiv:09 02.3 046 [hep-th].CrossRefGoogle Scholar
[37] Albash, Tameem, Filev, Veselin G., Johnson, Clifford V., and Kundu, Arnab. 2008a. A topology-changing phase transition and the dynamics of flavor. Phys. Rev., D77, 066004. arXiv:hep-th/0 605088.Google Scholar
[38] Albash, Tameem, Filev, Veselin G., Johnson, Clifford V., and Kundu, Arnab. 2008b. Global Currents, Phase Transitions, and Chiral Symmetry Breaking in Large-Nc Gauge Theory. JHEP, 12, 033. arXiv:hep-th/0605175.CrossRefGoogle Scholar
[39] Alberico, W. M., Beraudo, A., De Pace, A., and Molinari, A. 2005. Heavy quark bound states above Tc.Phys. Rev., D72, 114011. arXiv:hep-ph/0507084.Google Scholar
[40] Alberico, W. M., Beraudo, A., De Pace, A., and Molinari, A. 2008. Potential models and lattice correlators for quarkonia at finite temperature. Phys. Rev., D77, 017502. arXiv:0706.2846 [hep-ph].Google Scholar
[41] Alberico, W.M., Beraudo, A., DePace, A., Molinari, A., Monteno, M., et al. 2011. Heavy quark dynamics in the QGP: RA A and v2 from RHIC to LHC. Nucl.Phys., A855, 404-407. arXiv:1011.0400 [hep-ph].Google Scholar
[42] Alday, Luis F., and Maldacena, Juan. 2007. Comments on gluon scattering amplitudes via AdS/CFT. JHEP, 0711, 068. arXiv:0710.1060 [hep-th].CrossRefGoogle Scholar
[43] NA50 Collaboration, Alessandro, B., et al. 2005. A new measurement of J/ψ suppression in Pb-Pb collisions at 158 GeV per nucleon. Eur. Phys. J., C39, 335-345. arXiv:hep-ex/0412036.Google Scholar
[44] Ali-Akbari, M., and Bitaghsir Fadafan, K. 2010. Rotating mesons in the presence of higher derivative corrections from gauge—string duality. Nucl. Phys., B835, 221237. arXiv:0908.3921 [hep-th].Google Scholar
[45] Allton, C. R., Ejiri, S., Hands, S.J., Kaczmarek, O., Karsch, F., et al. 2002. The QCD thermal phase transition in the presence of a small chemical potential. Phys. Rev., D66, 074507. arXiv:hep-lat/0204010 [hep-lat].Google Scholar
[46] Allton, C. R., Doring, M., Ejiri, S., Hands, S.J., Kaczmarek, O., et al. 2005. Thermodynamics of two flavor QCD to sixth order in quark chemical potential. Phys. Rev., D71, 054508. arXiv:hep-lat/0501030 [hep-lat].Google Scholar
[47] Alvarez, Enrique, and Gomez, Cesar. 1999. Geometric holography, the renormalization group and the c-theorem. Nucl. Phys., B541, 441-460. arXiv:hep-th/9807226 [hep-th].Google Scholar
[48] Amado, Irene, Hoyos-Badajoz, Carlos, Landsteiner, Karl, and Montero, Sergio. 2008. Hydrodynamics and beyond in the strongly coupled N = 4 plasma. JHEP, 0807, 133. arXiv:0805.2570 [hep-th].CrossRefGoogle Scholar
[49] Amsel, Aaron J., and Gorbonos, Dan. 2010. The Weak Gravity Conjecture and the Viscosity Bound with Six-Derivative Corrections. JHEP, 11, 033. arXiv:1005.4718 [hep-th].CrossRefGoogle Scholar
[50] Andersen, Jens O., Braaten, Eric, and Strickland, Michael. 1999. Hardthermalloop resummation of the free energy of a hot gluon plasma. Phys. Rev. Lett., 83, 2139–2142. arXiv:hep-ph/9902327 [hep-ph].CrossRefGoogle Scholar
[51] Andersen, Jens O., Petitgirard, Emmanuel, and Strickland, Michael. 2004. Two loop HTL thermodynamics with quarks. Phys. Rev., D70, 045001. arXiv:hep-ph/0302069 [hep-ph].Google Scholar
[52] Andersen, Jens O., Leganger, Lars E., Strickland, Michael, and Su, Nan. 2011. NNLO hard-thermal-loop thermodynamics for QCD. Phys. Lett., B696, 468-472. arXiv:1009.4644 [hep-ph].Google Scholar
[53] Anderson, P. W. 1972. More is Different. Science, New Series, 177, 393-396.CrossRefGoogle ScholarPubMed
[54] Andreev, O. D., and Tseytlin, Arkady A. 1988. Partition Function Representation for the Open Superstring Effective Action: Cancellation of Mobius Infinities and Derivative Corrections to Born-Infeld Lagrangian. Nucl. Phys., B311, 205.CrossRefGoogle Scholar
[55] Andreev, Oleg, and Zakharov, Valentine I. 2006. Heavy-quark potentials and AdS/QCD. Phys. Rev., D74, 025023. arXiv:hep-ph/06042 04 [hep-ph].Google Scholar
[56] Andronic, A., Braun-Munzinger, P., and Stachel, J. 2006. Hadron production in central nucleus-nucleus collisions at chemical freeze-out. Nucl.Phys., A772, 167-199. arXiv:nucl-th/0511071.Google Scholar
[57] Anninos, Peter, Price, Richard H., Pullin, Jorge, Seidel, Edward, and Suen, Wai-Mo. 1995. Head-on collision of two black holes: Comparison of different approaches. Phys. Rev., D52, 4462-4480. arXiv:gr-qc/9505042 [gr-qc].Google Scholar
[58] Antonyan, E., Harvey, J. A., and Kutasov, D. 2007. The Gross-Neveu model from string theory. Nucl. Phys., B776, 93-117. arXiv:hep-th/0 608149.Google Scholar
[59] Aoki, Y., Endrodi, G., Fodor, Z., Katz, S. D., and Szabo, K. K. 2006. The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature, 443, 675-678. arXiv:hep-lat/0611014.CrossRefGoogle ScholarPubMed
[60] Arean, Daniel, and Ramallo, Alfonso V. 2006. Open string modes at brane intersections. JHEP, 04, 037. arXiv:hep-th/0602174.CrossRefGoogle Scholar
[61] Argyres, Philip C., Edalati, Mohammad, and Vazquez-Poritz, Justin F. 2007a. No-drag string configurations for steadily moving quark- antiquark pairs in a thermal bath. JHEP, 01, 105. arXiv:hep-th/0608118.CrossRefGoogle Scholar
[62] Argyres, Philip C., Edalati, Mohammad, and Vazquez-Poritz, Justin F. 2007b. Spacelike strings and jet quenching from a Wilson loop. JHEP, 04, 049. arXiv:hep-th/0612157.CrossRefGoogle Scholar
[63] Argyres, Philip C., Edalati, Mohammad, and Vazquez-Poritz, Justin F. 2008. Lightlike Wilson loops from AdS/CFT. JHEP, 03, 071. arXiv:0801.4594 [hep-th].CrossRefGoogle Scholar
[64] Arleo, Francois. 2006. Hard pion and prompt photon at RHIC, from single to double inclusive production. JHEP, 09, 015. arXiv:hep-ph/0601075.CrossRefGoogle Scholar
[65] Arleo, Francois, d'Enterria, , David, G., and Peressounko, Dmitri. 2007. Direct photon spectra in Pb-Pb at TeV: hydrodynamics + pQCD predictions. J. Phys. G. arXiv:0707.2357 [nucl-th].Google Scholar
[66] Armesto, Nestor, Edelstein, Jose D., and Mas, Javier. 2006. Jet quenching at finite 't Hooft coupling and chemical potential from AdS/CFT. JHEP, 09, 039. arXiv:hep-ph/0606245.CrossRefGoogle Scholar
[67] Armesto, Nestor, Cunqueiro, Leticia, and Salgado, Carlos A. 2009. Q-PYTHIA: A Medium-modified implementation of final state radiation. Eur.Phys.J., C63, 679690. arXiv:0907.1014 [hep-ph].Google Scholar
[68] Armesto, Nestor, Cacciari, Matteo, Hirano, Tetsufumi, Nagle, James L., and Salgado, Carlos A. 2010. Constraint fitting of experimental data with a jet quenching model embedded in a hydrodynamical bulk medium. J.Phys., G37, 025104. arXiv:0907.0667 [hep-ph].CrossRefGoogle Scholar
[69] Armesto, Nestor, Ma, Hao, Mehtar-Tani, Yacine, Salgado, Carlos A., and Tywoniuk, Konrad. 2012a. Coherence effects and broadening in medium-induced QCD radiation off a massive qq antenna. JHEP, 1201, 109. arXiv:1110.4343 [hep-ph].CrossRefGoogle Scholar
[70] Armesto, Nestor, Cole, Brian, Gale, Charles, Horowitz, William A., Jacobs, Peter, et al. 2012b. Comparison of Jet Quenching Formalisms for a Quark-Gluon Plasma ‘Brick’. Phys. Rev., C86, 064904. arXiv:1106.1106 [hep-ph].Google Scholar
[71] Armesto, Nestor, Ma, Hao, Martinez, Mauricio, Mehtar-Tani, Yacine, and Salgado, Carlos A. 2012c. Interference between initial and final state radiation in a QCD medium. Phys. Lett., B717, 280-286. arXiv:1207.0984 [hep-ph].Google Scholar
[72] NA60 Collaboration, Arnaldi, R., et al. 2007. J/ψ production in indium-indium collisions at 158 GeV/nucleon. Phys. Rev. Lett., 99, 132302.CrossRefGoogle ScholarPubMed
[73] Arnold, Peter, and Vaman, Diana. 2010. Jet quenching in hot strongly coupled gauge theories revisited: 3-point correlators with gauge—gravity duality. JHEP, 1010, 099. arXiv:1008.4023 [hep-th].CrossRefGoogle Scholar
[74] Arnold, Peter, and Vaman, Diana. 2011. Jet quenchingin hot strongly coupledgauge theories simplified. JHEP, 1104, 027. arXiv:1101.2 689 [hep-th].CrossRefGoogle Scholar
[75] Arnold, Peter Brockway, Moore, Guy D., and Yaffe, Laurence G. 2000. Transport coefficients in high temperature gauge theories. I: Leading-log results. JHEP, 11, 001.arXiv:hep-ph/0010177.CrossRefGoogle Scholar
[76] Arnold, Peter Brockway, Moore, Guy D., and Yaffe, Laurence G. 2002. Photon and Gluon Emission in Relativistic Plasmas. JHEP, 06, 030. arXiv:hep-ph/0204343.CrossRefGoogle Scholar
[77] Arnold, Peter Brockway, Moore, Guy D., and Yaffe, Laurence G. 2003a. Effective kinetic theory for high temperature gauge theories. JHEP, 01, 030. arXiv:hep-ph/02093 53.CrossRefGoogle Scholar
[78] Arnold, Peter Brockway, Moore, Guy D, and Yaffe, Laurence G. 2003b. Transport coefficients in high temperature gauge theories. II: Beyond leading log. JHEP, 05, 051. arXiv:hep-ph/0302165.CrossRefGoogle Scholar
[79] Arnold, Peter Brockway, Lenaghan, Jonathan, Moore, Guy D., and Yaffe, Laurence G. 2005. Apparent thermalization due to plasma instabilities in quark-gluon plasma. Phys. Rev. Lett., 94, 072302. arXiv:nucl-th/0409068 [nucl-th].CrossRefGoogle ScholarPubMed
[80] Asakawa, M., and Hatsuda, T. 2004. J/ψ and ηc in the deconfined plasma from lattice QCD. Phys. Rev. Lett., 92, 012001. arXiv:hep-lat/0308034.CrossRefGoogle Scholar
[81] Asakawa, M., Hatsuda, T., and Nakahara, Y. 2001. Maximum entropy analysis of the spectral functions in lattice QCD. Prog. Part. Nucl. Phys., 46, 459-508. arXiv:hep-lat/0011040.CrossRefGoogle Scholar
[82] Asakawa, M., Hatsuda, T., and Nakahara, Y. 2003. Hadronic spectral functions above the QCD phase transition. Nucl. Phys., A715, 863-866.arXiv:hep-lat/02 08059.Google Scholar
[83] Ashtekar, Abhay, and Krishnan, Badri. 2004. Isolated and dynamical horizons and their applications. Living Rev. Rel., 7, 10. arXiv:gr-qc/0407042 [gr-qc].CrossRefGoogle ScholarPubMed
[84] Athanasiou, Christiana, Liu, Hong, and Rajagopal, Krishna. 2008. Velocity Dependence of Baryon Screening in a Hot Strongly Coupled Plasma. JHEP, 05, 083. arXiv:0801.1117 [hep-th].CrossRefGoogle Scholar
[85] Athanasiou, Christiana, Chesler, Paul M., Liu, Hong, Nickel, Dominik, and Rajagopal, Krishna. 2010. Synchrotron radiation in strongly coupled conformal field theories. Phys. Rev., D81, 126001. arXiv:1001.3880 [hep-th].Google Scholar
[86] Avdeev, L. V., Tarasov, O. V., and Vladimirov, A. A. 1980. Vanishing of the Three Loop Charge Renormalization Function in a Supersymmetric Gauge Theory. Phys. Lett., B96, 94-96.Google Scholar
[87] Avramis, Spyros D., and Sfetsos, Konstadinos. 2007. Supergravity and the jet quenching parameter in the presence of R-charge densities. JHEP, 01, 065. arXiv:hep-th/0606190.CrossRefGoogle Scholar
[88] Avramis, Spyros D., Sfetsos, Konstadinos, and Zoakos, Dimitrios. 2007a. On the velocity and chemical-potential dependence of the heavy-quark interaction in N= 4 SYM plasmas. Phys. Rev., D75, 025009. arXiv:hep-th/0609079.Google Scholar
[89] Avramis, Spyros D., Sfetsos, Konstadinos, and Siampos, Konstadinos. 2007b. Stability of strings dual to flux tubes between static quarks in N = 4 SYM. Nucl. Phys., B769, 44-78. arXiv:hep-th/0 61213 9.Google Scholar
[90] Avramis, Spyros D., Sfetsos, Konstadinos, and Siampos, Konstadinos. 2008. Stability of string configurations dual to quarkonium states in AdS/CFT. Nucl. Phys., B793, 1-33. arXiv:0706.2655 [hep-th].Google Scholar
[91] Avsar, E., Iancu, E., McLerran, L., and Triantafyllopoulos, D. N. 2009. Shockwaves and deep inelastic scattering within the gauge/gravity duality. JHEP, 0911, 105. arXiv:0907.4604 [hep-th].CrossRefGoogle Scholar
[92] Babington, J., Erdmenger, J., Evans, Nick J., Guralnik, Z., and Kirsch, I. 2004. Chiral symmetry breaking and pions in non-supersymmetric gauge/gravity duals. Phys. Rev., D69, 066007. arXiv:hep-th/0306018.Google Scholar
[93] Bachas, Constantin P., Bain, Pascal, and Green, Michael B. 1999. Curvature terms in D-brane actions and their M-theory origin. JHEP, 05, 011. arXiv:hep-th/9903210.CrossRefGoogle Scholar
[94] PHOBOS Collaboration, Back, B. B., et al. 2003. The significance of the fragmentation region in ultrarelativistic heavy ion collisions. Phys. Rev. Lett., 91, 052303. arXiv:nucl-ex/0210015.CrossRefGoogle ScholarPubMed
[95] PHOBOS Collaboration, Back, B. B., et al. 2005. The PHOBOS perspective on discoveries at RHIC. Nucl. Phys., A757, 28-101. arXiv:nucl-ex/0410022.Google Scholar
[96] PHOBOS Collaboration, Back, B. B., et al. 2006. Charged-particle pseudorapidity distributions in Au + Au collisions at GeV. Phys. Rev., C74, 021901. nucl-ex/0509034.Google Scholar
[97] Baier, R. 2003. Jet quenching. Nucl. Phys., A715, 209-218. arXiv:hep-ph/0209038.Google Scholar
[98] Baier, R., Dokshitzer, Yuri L., Mueller, Alfred H., Peigne, S., and Schiff, D. 1997a. Radiative energy loss and pT-broadening of high energy partons in nuclei. Nucl. Phys., B484, 265-282. arXiv:hep-ph/9608322.Google Scholar
[99] Baier, R., Dokshitzer, Yuri L., Mueller, Alfred H., Peigne, S., and Schiff, D. 1997b. Radiative energy loss of high energy quarks and gluons in a finite-volume quark-gluonplasma. Nucl. Phys., B483, 291-320. arXiv:hep-ph/9607355.Google Scholar
[100] Baier, R., Dokshitzer, Yuri L., Mueller, Alfred H., and Schiff, D. 1998. Radiative energy loss of high energy partons traversing an expanding QCD plasma. Phys. Rev., C58, 1706-1713. arXiv:hep-ph/9803473.Google Scholar
[101] Baier, R., Schiff, D., and Zakharov, B. G. 2000. Energy loss in perturbative QCD. Ann. Rev. Nucl. Part. Sci., 50, 37-69. arXiv:hep-ph/0002198.CrossRefGoogle Scholar
[102] Baier, R., Mueller, Alfred H., Schiff, D., and Son, D.T. 2001a. ‘Bottom up’ thermalization in heavy ion collisions. Phys. Lett., B502, 51-58. arXiv:hep-ph/0009237 [hep-ph].Google Scholar
[103] Baier, R., Dokshitzer, Yuri L., Mueller, Alfred H., and Schiff, D. 2001b. Quenching of hadron spectra in media. JHEP, 09, 033. arXiv:hep-ph/0106347.CrossRefGoogle Scholar
[104] Baier, Rudolf. 2012. On radiation by a heavy quark in N = 4 SYM. Adv.High Energy Phys., 2012, 592854. arXiv:1107.42 50 [hep-th].CrossRefGoogle Scholar
[105] Baier, Rudolf, and Romatschke, Paul. 2007. Causal viscous hydrodynamics for central heavy-ion collisions. Eur. Phys. J., C51, 677-687. arXiv:nucl-th/0 61010 8.Google Scholar
[106] Baier, Rudolf, Romatschke, Paul, and Wiedemann, Urs Achim. 2006. Dis-sipative hydrodynamics and heavy ion collisions. Phys. Rev., C73, 064903. arXiv:hep-ph/0602249 [hep-ph].Google Scholar
[107] Baier, Rudolf, Romatschke, Paul, Son, Dam Thanh, Starinets, Andrei O., and Stephanov, Mikhail A. 2008. Relativistic viscous hydrodynamics, conformal invariance, and holography. JHEP, 0804, 100. arXiv:0712.2451 [hep-th].CrossRefGoogle Scholar
[108] Bak, Dongsu, Karch, Andreas, and Yaffe, Laurence G. 2007. Debye screening in strongly coupled N = 4 supersymmetric Yang-Mills plasma. JHEP, 08, 049. arXiv:0705.0994 [hep-th].CrossRefGoogle Scholar
[109] Balasubramanian, V., Bernamonti, A., de Boer, J., Copland, N., Craps, B., et al. 2011a. Holographic Thermalization. Phys. Rev, D84, 026010. arXiv:1103.2683 [hep-th].Google Scholar
[110] Balasubramanian, V., Bernamonti, A., de Boer, J., Copland, N., Craps, B., et al. 2011b. Thermalization ofStrongly Coupled Field Theories. Phys. Rev. Lett., 106, 191601. arXiv:1012.4753 [hep-th].CrossRefGoogle ScholarPubMed
[111] Balasubramanian, Vijay, and Kraus, Per. 1999a. A Stress tensor for Anti-de Sitter gravity. Commun. Math. Phys., 208, 413-428. arXiv:hep-th/9902121 [hep-th].CrossRefGoogle Scholar
[112] Balasubramanian, Vijay, and Kraus, Per. 1999b. Space-time and the holographic renormalization group. Phys. Rev. Lett., 83, 3605-3608. arXiv:hep-th/9903190 [hep-th].CrossRefGoogle Scholar
[113] Balasubramanian, Vijay, Kraus, Per, and Lawrence, Albion E. 1999a. Bulk vs. boundary dynamics in anti-de Sitter spacetime. Phys. Rev., D59, 046003. arXiv:hep-th/9805171.Google Scholar
[114] Balasubramanian, Vijay, Kraus, Per, Lawrence, Albion E., and Trivedi, Sandip P. 1999b. Holographic probes of anti-de Sitter space-times. Phys. Rev., D59, 104021. arXiv:hep-th/9808017.Google Scholar
[115] Ballon Bayona, C.A., Boschi-Filho, HenriqueBraga, Nelson R.F., and Pando, Zayas, Leopoldo, A. 2008. On a Holographic Model for Confinement/Deconfinement. Phys. Rev., D77, 046002. arXiv:0705.1529 [hep-th].Google Scholar
[116] Bando, Masako, Sugamoto, Akio, and Terunuma, Sachiko. 2006. Mesonstringsand flavor branes. Prog. Theor. Phys., 115, 1111-1127. arXiv:hep-ph/0602203.CrossRefGoogle Scholar
[117] Banerjee, Nabamita, Bhattacharya, Jyotirmoy, Bhattacharyya, Sayantani, Dutta, Suvankar, Loganayagam, R., et al. 2011. Hydrodynamics from charged black branes. JHEP, 1101, 094. arXiv:0809.2596 [hep-th].CrossRefGoogle Scholar
[118] Banks, Tom, Douglas, Michael R., Horowitz, Gary T., and Martinec, Emil J. 1998. AdS dynamics from conformal field theory. arXiv:hep-th/9808016.Google Scholar
[119] Bantilan, Hans, Pretorius, Frans, and Gubser, Steven S. 2012. Simulation of Asymptotically AdS5 Spacetimes with a Generalized Harmonic Evolution Scheme. Phys. Rev., D85, 084038. arXiv:12 01.2132 [hep-th].Google Scholar
[120] Barnes, Edwin, Vaman, Diana, Wu, Chaolun, and Arnold, Peter. 2010. Realtime finite-temperature correlators from AdS/CFT. Phys. Rev., D82, 025019. arXiv:1004.1179 [hep-th].Google Scholar
[121] Bass, S. A., and Dumitru, A. 2000. Dynamics of hot bulk QCD matter: From the quark-gluon plasma to hadronic freeze-out. Phys. Rev., C61, 064909. arXiv:nucl-th/0001033.Google Scholar
[122] Bass, Steffen A., et al. 2009. Systematic Comparison of Jet Energy-Loss Schemes in a realistic hydrodynamic medium. Phys. Rev., C79, 024901. arXiv:0808.0908 [nucl-th].Google Scholar
[123] Bauer, Christian W., and Stewart, Iain W. 2001. Invariant operators in collinear effective theory. Phys. Lett., B516, 134-142. arXiv:hep-ph/0107001.Google Scholar
[124] Bauer, Christian W., Fleming, Sean, and Luke, Michael E. 2000. Summing Sudakov logarithms in B → Xs γ in effective field theory. Phys. Rev., D63, 014006. arXiv:hep-ph/0005275.Google Scholar
[125] Bauer, Christian W., Fleming, Sean, Pirjol, Dan, and Stewart, Iain W. 2001. An effective field theory for collinear and soft gluons: Heavy to light decays. Phys. Rev., D63, 114020. arXiv:hep-ph/0011336.Google Scholar
[126] Bauer, Christian W., Fleming, Sean, Pirjol, Dan, Rothstein, Ira Z., and Stewart, Iain W. 2002a. Hard scattering factorization from effective field theory. Phys. Rev., D66, 014017. arXiv:hep-ph/0202088.Google Scholar
[127] Bauer, Christian W., Pirjol, Dan, and Stewart, Iain W. 2002b. Soft-Collinear Factorization in Effective Field Theory. Phys. Rev., D65, 054022. arXiv:hep-ph/0109045.Google Scholar
[128] Bayona, C. A. Ballon, Boschi-Filho, Henrique, and Braga, Nelson R. F. 2010. Deep inelastic scattering off a plasma with flavor from D3-D7 brane model. Phys. Rev., D81, 086003. arXiv:0912.0231 [hep-th].Google Scholar
[129] Bazavov, A., et al. 2009. Equation of state and QCD transition at finite temperature. Phys. Rev., D80, 014504. arXiv:09 03.4379 [hep-lat].Google Scholar
[130] Bazavov, A., Bhattacharya, T., Cheng, M., DeTar, C., Ding, H.T., et al. 2012. The chiral and deconfinement aspects of the QCD transition. Phys. Rev., D85, 054503. arXiv:1111.1710 [hep-lat].Google Scholar
[131] Bazavov, Alexei, Petreczky, Peter, and Velytsky, Alexander. Quark-Gluon Plasma 4. Eds. Rudolph, C. Hwa and Xin-Nian, Wang. Singapore: World Scientific. Chap. Quarkonium at Finite Temperature, arXiv:0904.1748 [hep-ph].
[132] BRAHMS Collaboration, Bearden, I. G., et al. 2004. Nuclear stopping in Au + Au collisions at GeV. Phys. Rev. Lett., 93, 102301. nucl-ex/0312023.CrossRefGoogle ScholarPubMed
[133] Becker, K., Becker, M., and Schwarz, J. H. 2007. String theory and M-theory: A modern introduction. Cambridge University Press.Google Scholar
[134] Benincasa, Paolo, Buchel, Alex, and Starinets, Andrei O. 2006. Sound waves in strongly coupled nonconformal gauge theory plasma. Nucl. Phys., B733, 160-187. arXiv:hep-th/0507026.Google Scholar
[135] Benincasa, Paolo, Buchel, Alex, Heller, Michal P., and Janik, Romuald A. 2008. On the supergravity description of boost invariant conformal plasma at strong coupling. Phys. Rev., D77, 046006. arXiv:0712.2025 [hep-th].Google Scholar
[136] Benini, Francesco, Canoura, Felipe, Cremonesi, Stefano, Nunez, Carlos, and Ramallo, Alfonso V. 2007. Unquenched flavors in the Klebanov–Witten model. JHEP, 02, 090. arXiv:hep-th/0612118.CrossRefGoogle Scholar
[137] Beraudo, A., Blaizot, J. P., and Ratti, C. 2008. Real and imaginary-time QQ correlators in a thermal medium. Nucl. Phys., A806, 312-338. arXiv:0712.43 94 [nucl-th].Google Scholar
[138] Beraudo, A., De Pace, A., Alberico, W. M., and Molinari, A. 2009. Transport properties and Langevin dynamics of heavy quarks and quarkonia in the Quark Gluon Plasma. Nucl. Phys., A831, 59-90. arXiv:09 02.0741 [hep-ph].Google Scholar
[139] Beraudo, Andrea, Milhano, Jose Guilherme, and Wiedemann, Urs Achim. 2012a. Medium-induced color flow softens hadronization. Phys. Rev., C85, 031901. arXiv:1109.5025 [hep-ph].Google Scholar
[140] Beraudo, Andrea, Milhano, Jose Guilherme, and Wiedemann, Urs Achim. 2012b. The Contribution of Medium-Modified Color Flow to Jet Quenching. JHEP, 1207, 144. arXiv:1204.4342 [hep-ph].CrossRefGoogle Scholar
[141] Bergman, Oren, Lifschytz, Gilad, and Lippert, Matthew. 2007. Holographic Nuclear Physics. JHEP, 11, 056. arXiv:0708.0326 [hep-th].CrossRefGoogle Scholar
[142] Berkooz, Micha, Sever, Amit, and Shomer, Assaf. 2002. Double-trace deformations, boundary conditions and spacetime singularities. JHEP, 05, 034. arXiv:hep-th/0112264.CrossRefGoogle Scholar
[143] Bernamonti, Alice, and Peschanski, Robi. 2011. Time-dependent AdS/CFT correspondence and the Quark-Gluon plasma. Nucl. Phys. Proc. Suppl., 216, 94-120. arXiv:1102.0725 [hep-th].CrossRefGoogle Scholar
[144] Bertoldi, G., Bigazzi, F., Cotrone, A.L., and Edelstein, Jose D. 2007. Holography and unquenched quark-gluon plasmas. Phys. Rev., D76, 065007. arXiv:hep-th/0702225 [hep-th].Google Scholar
[145] Betz, Barbara, and Gyulassy, Miklos. 2012a. Examining a reduced jet-medium coupling in Pb + Pb collisions at the Large Hadron Collider. Phys. Rev., C86, 024903. arXiv:1201.0281 [nucl-th].Google Scholar
[146] Betz, Barbara, and Gyulassy, Miklos. 2012b. Quantifying a Possibly Reduced Jet-Medium Coupling of the sQGP at the LHC. arXiv:1211.0804 [nucl-th].Google Scholar
[147] Betz, Barbara, Gyulassy, Miklos, Noronha, Jorge, and Torrieri, Giorgio. 2009. Anomalous Conical Dijet Correlations in pQCD vs AdS/CFT. Phys. Lett., B675, 340-346. arXiv:0807.4526 [hep-ph].Google Scholar
[148] Betz, Barbara, et al. 2009. Universality of the Diffusion Wake from Stopped and Punch- Through Jets in Heavy-Ion Collisions. Phys. Rev., C79, 034902. arXiv:0812.4401 [nucl-th].Google Scholar
[149] Betz, Barbara, Noronha, Jorge, Torrieri, Giorgio, Gyulassy, Miklos, and Rischke, Dirk H. 2010. Universal Flow-Driven Conical Emission in Ultrarelativistic Heavy-Ion Collisions. Phys. Rev. Lett., 105, 222301. arXiv:1005.5461 [nucl-th].CrossRefGoogle ScholarPubMed
[150] Beuf, Guillaume. 2010. Gravity dual of N = 4 SYM theory with fast moving sources. Phys. Lett., B686, 55-58. arXiv:0903.1047 [hep-th].Google Scholar
[151] Beuf, Guillaume, Heller, Michal P., Janik, Romuald A., and Peschanski, Robi. 2009. Boost-invariant early time dynamics from AdS/CFT. JHEP, 0910, 043. arXiv:0906.4423 [hep-th].CrossRefGoogle Scholar
[152] Bhattacharyya, Sayantani, and Minwalla, Shiraz. 2009. Weak Field Black Hole Formationin Asymptotically AdS Spacetimes. JHEP, 0909, 034. arXiv:0904.0464 [hep-th].CrossRefGoogle Scholar
[153] Bhattacharyya, Sayantani, Loganayagam, R., Mandal, Ipsita, Minwalla, Shiraz, and Sharma, Ankit. 2008a. Conformal Nonlinear Fluid Dynamics from Gravity in Arbitrary Dimensions. JHEP, 0812, 116. arXiv:0809.4272 [hep-th].CrossRefGoogle Scholar
[154] Bhattacharyya, Sayantani, Hubeny, Veronika E., Loganayagam, R., Mandal, Gautam, Minwalla, Shiraz, et al. 2008b. Local Fluid Dynamical Entropy from Gravity. JHEP, 0806, 055. arXiv:0803.2526 [hep-th].CrossRefGoogle Scholar
[155] Bhattacharyya, Sayantani, Hubeny, Veronika E, Minwalla, Shiraz, and Rangamani, Mukund. 2008c. Nonlinear Fluid Dynamics from Gravity. JHEP, 0802, 045. arXiv:0712.2456 [hep-th].CrossRefGoogle Scholar
[156] Bialas, A., Bleszynski, M., and Czyz, W. 1976. Multiplicity Distributions in Nucleus-Nucleus Collisions at High-Energies. Nucl. Phys., B111, 461.CrossRefGoogle Scholar
[157] Bialas, A., Janik, R.A., and Peschanski, Robert B. 2007. Unified description of Bjorken and Landau 1+1 hydrodynamics. Phys. Rev., C76, 054901. arXiv:0706.2108 [nucl-th].Google Scholar
[158] Bianchi, Massimo, Freedman, Daniel Z., and Skenderis, Kostas. 2002. Holographic Renormalization. Nucl. Phys., B631, 159-194. arXiv:hep-th/0112119.Google Scholar
[159] Bigazzi, F., and Cotrone, A. L. 2006. New predictions on meson decays from string splitting. JHEP, 11, 066. arXiv:hep-th/0 606059.CrossRefGoogle Scholar
[160] Bigazzi, Francesco, and Cotrone, Aldo L. 2010. An elementary stringy estimate of transport coefficients of large temperature QCD. JHEP, 1008, 128. arXiv:1006.4634 [hep-ph].CrossRefGoogle Scholar
[161] Bigazzi, Francesco, Cotrone, Aldo L., Mas, Javier, Paredes, Angel, Ramallo, Alfonso V., et al. 2009. D3-D7 Quark-Gluon Plasmas. JHEP, 0911, 117. arXiv:0909.2865 [hep-th].CrossRefGoogle Scholar
[162] Bigazzi, Francesco, Cotrone, Aldo L., and Tarrio, Javier. 2010. Hydrodynamics of fundamental matter. JHEP, 1002, 083. arXiv:0912.3256 [hep-th].CrossRefGoogle Scholar
[163] Birukou, M., Husain, V., Kunstatter, G., Vaz, E., and Olivier, M. 2002. Scalar field collapse in any dimension. Phys. Rev., D65, 104036. arXiv:gr-qc/0201026 [gr-qc].Google Scholar
[164] Bizon, Piotr, and Rostworowski, Andrzej. 2011. On weakly turbulent instability of anti-de Sitter space. Phys. Rev. Lett., 107, 031102. arXiv:1104.3702 [gr-qc].CrossRefGoogle Scholar
[165] Bjorken, J. D. 1983. Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region. Phys. Rev., D27, 140-151.Google Scholar
[166] Blaizot, J. P., Iancu, Edmond, and Rebhan, A. 1999. The entropy of the QCD plasma. Phys. Rev. Lett., 83, 2906-2909. arXiv:hep-ph/9906340.CrossRefGoogle Scholar
[167] Blaizot, Jean Paul, and Iancu, Edmond. 1993. Kinetic equations for long wavelength excitations of the quark-gluon plasma. Phys. Rev. Lett., 70, 3376-3379. arXiv:hep-ph/9301236.CrossRefGoogle ScholarPubMed
[168] Blaizot, Jean-Paul, and Iancu, Edmond. 1999. A Boltzmann equation for the QCD plasma. Nucl. Phys., B557, 183-236. arXiv:hep-ph/9903389 [hep-ph].Google Scholar
[169] Blaizot, Jean-Paul, and Iancu, Edmond. 2002. The quark-gluon plasma: Collective dynamics and hard thermal loops. Phys. Rept., 359, 355-528. arXiv:hep-ph/0101103.CrossRefGoogle Scholar
[170] Blaizot, J.P., Iancu, Edmond, and Rebhan, A. 2001. Quark number susceptibilities from HTL resummed thermodynamics. Phys. Lett., B523, 143-150. arXiv:hep-ph/0110369 [hep-ph].Google Scholar
[171] Bluhm, M., and Kampfer, Burkhard. 2008. Flavor Diagonal and Off-Diagonal Susceptibilities in a Quasiparticle Model of the Quark-Gluon Plasma. Phys. Rev., D77, 114016. arXiv:0801.4147 [hep-ph].Google Scholar
[172] Booth, Ivan. 2005. Black hole boundaries. Can. J. Phys., 83, 1073-1099. arXiv:gr-qc/0508107[gr-qc].CrossRefGoogle Scholar
[173] Booth, Ivan, Heller, Michal P., and Spalinski, Michal. 2009. Black brane entropy and hydrodynamics: The Boost-invariant case. Phys. Rev., D80, 126013. arXiv:0910.0748 [hep-th].Google Scholar
[174] Booth, Ivan, Heller, Michal P., and Spalinski, Michal. 2011a. Black Brane Entropy and Hydrodynamics. Phys. Rev., D83, 061901. arXiv:1010.6301 [hep-th].Google Scholar
[175] Booth, Ivan, Heller, Michal P., Plewa, Grzegorz, and Spalinski, Michal. 2011b. On the apparent horizon in fluid-gravity duality. Phys. Rev., D83, 106005. arXiv:1102.2885 [hep-th].Google Scholar
[176] Borghini, Nicolas, and Gombeaud, Clement. 2012. Heavy quarkonia in a medium as a quantum dissipative system: Master equation approach. Eur. Phys. J., C72, 2000. arXiv:1109.4271 [nucl-th].Google Scholar
[177] Borghini, Nicolas, Dinh, Phuong Mai, and Ollitrault, Jean-Yves. 2001. Anew method for measuring azimuthal distributions in nucleus-nucleus collisions. Phys. Rev., C63, 054906. arXiv:nucl-th/0007063.Google Scholar
[178] Wuppertal-Budapest Collaboration, Borsanyi, Szabolcs, et al. 2010. Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III. JHEP, 09, 073. arXiv:1005.3508 [hep-lat].CrossRefGoogle Scholar
[179] Borsanyi, Szabolcs, Endrodi, Gergely, Fodor, Zoltan, Jakovac, Antal, Katz, Sandor D., et al. 2010. The QCD equation of state with dynamical quarks. JHEP, 1011, 077. arXiv:1007.2580 [hep-lat].CrossRefGoogle Scholar
[180] Borsanyi, Szabolcs, Fodor, Zoltan, Katz, Sandor D., Krieg, Stefan, Ratti, Claudia, et al. 2012. Fluctuations of conserved charges at finite temperature from lattice QCD. JHEP, 1201, 138. arXiv:1112.4416 [hep-lat].CrossRefGoogle Scholar
[181] Boschi-Filho, Henrique, and Braga, Nelson R.F. 2003. Gauge/string duality and scalar glueball mass ratios. JHEP, 0305, 009. arXiv:hep-th/0212207 [hep-th].CrossRefGoogle Scholar
[182] Boschi-Filho, Henrique, and Braga, Nelson R.F. 2004. QCD/string holographic mapping and glueball mass spectrum. Eur.Phys.J., C32, 529-533. arXiv:hep-th/0209080 [hep-th].Google Scholar
[183] Bousso, Raphael. 2002. The holographic principle. Rev. Mod. Phys., 74, 825-874. arXiv:hep-th/02 03101.CrossRefGoogle Scholar
[184] Boyd, G., et al. 1996. Thermodynamics of SU(3) Lattice Gauge Theory. Nucl. Phys., B469, 419-444. arXiv:hep-lat/9602007.Google Scholar
[185] Braaten, Eric, and Nieto, Agustin. 1996. Free Energy of QCD at High Temperature. Phys. Rev., D53, 3421-3437. arXiv:hep-ph/9510408.Google Scholar
[186] Braaten, Eric, and Pisarski, Robert D. 1990a. Resummation and Gauge Invariance of the Gluon Damping Rate in Hot QCD. Phys. Rev. Lett., 64, 1338.CrossRefGoogle ScholarPubMed
[187] Braaten, Eric, and Pisarski, Robert D. 1990b. Soft Amplitudes in Hot Gauge Theories: A General Analysis. Nucl. Phys., B337, 569.CrossRefGoogle Scholar
[188] Brambilla, Nora, Pineda, Antonio, Soto, Joan, and Vairo, Antonio. 2000. Potential NRQCD: An effective theory for heavy quarkonium. Nucl. Phys., B566, 275. arXiv:hep-ph/9907240.CrossRefGoogle Scholar
[189] Brambilla, Nora, Ghiglieri, Jacopo, Vairo, Antonio, and Petreczky, Peter. 2008. Static quark-antiquark pairs at finite temperature. Phys. Rev., D78, 014017. arXiv:0804.0993 [hep-ph].Google Scholar
[190] Brandhuber, A., Itzhaki, N., Sonnenschein, J., and Yankielowicz, S. 1998. Wilson loops in the large-N limit at finite temperature. Phys. Lett., B434, 36-40. arXiv:hep-th/9803137.Google Scholar
[191] Brandt, Bastian B., Francis, Anthony, Meyer, Harvey B., and Wittig, Hartmut. 2013a. Thermal Correlators in the ρ channel of two-flavor QCD. JHEP, 1303, 100. arXiv:1212.4200 [hep-lat].CrossRefGoogle Scholar
[192] Brandt, Bastian B., Francis, Anthony, Meyer, Harvey B., and Wittig, Hartmut. 2013b. Two-flavor lattice QCD correlation functions in the deconfinement transition region. arXiv:1302.0675 [hep-lat].Google Scholar
[193] Braun-Munzinger, Peter, Redlich, Krzysztof, and Stachel, Johanna. 2003. Particle production in heavyion collisions. arXiv:nucl-th/0304013.Google Scholar
[194] Breitenlohner, Peter, and Freedman, Daniel Z. 1982a. Positive Energy in anti-De Sitter Backgrounds and Gauged Extended Super gravity. Phys. Lett., B115, 197.CrossRefGoogle Scholar
[195] Breitenlohner, Peter, and Freedman, Daniel Z. 1982b. Stability in Gauged Extended Supergravity. Ann. Phys., 144, 249.CrossRefGoogle Scholar
[196] Brigante, Mauro, Liu, Hong, Myers, Robert C., Shenker, Stephen, and Yaida, Sho. 2008a. The Viscosity Bound and Causality Violation. Phys. Rev. Lett., 100, 191601. arXiv:0802.3318 [hep-th].CrossRefGoogle ScholarPubMed
[197] Brigante, Mauro, Liu, Hong, Myers, Robert C., Shenker, Stephen, and Yaida, Sho. 2008b. Viscosity Bound Violation in Higher Derivative Gravity. Phys. Rev., D77, 126006. arXiv:0712.0805 [hep-th].Google Scholar
[198] Bringoltz, Barak, and Teper, Michael. 2005. The Pressure of the SU(N) lattice gauge theory at large-N. Phys. Lett., B628, 113-124. arXiv:hep-lat/0506034 [hep-lat].Google Scholar
[199] Brink, Lars, Schwarz, John H., and Scherk, Joel. 1977. Supersymmetric Yang-Mills Theories. Nucl. Phys., B121, 77.CrossRefGoogle Scholar
[200] Brink, Lars, Lindgren, Olof, and Nilsson, Bengt E. W. 1983. The Ultraviolet Finiteness of the N = 4 Yang-Mills Theory. Phys. Lett., B123, 323.CrossRefGoogle Scholar
[201] Brodsky, Stanley J., and De, Teramond, Guy, F. 2008. Light-Front Dynamics and AdS/QCD Correspondence: The Pion Form Factor in the Space- and Time-Like Regions. Phys. Rev., D77, 056007. arXiv:07 07.3 859 [hep-ph].Google Scholar
[202] Brodsky, Stanley J., and Mueller, Alfred H. 1988. Using Nuclei to Probe Hadronizationin QCD. Phys. Lett., B206, 685.CrossRefGoogle Scholar
[203] Brustein, Ram, and Medved, A. J. M. 2009a. The ratio of shear viscosity to entropy density in generalized theories of gravity. Phys. Rev., D79, 021901. arXiv:0808.3498 [hep-th].Google Scholar
[204] Brustein, Ram, and Medved, A. J. M. 2009b. The shear diffusion coefficient for generalizedtheories of gravity. Phys. Lett., B671, 119-122. arXiv:0810.2193 [hep-th].Google Scholar
[205] Brustein, Ram, and Medved, A.J.M. 2011. Unitarity constraints on the ratio of shear viscosity to entropy density in higher derivative gravity. Phys. Rev., D83, 126005. arXiv:1005.5274 [hep-th].Google Scholar
[206] Buchel, Alex. 2005a. On universality of stress-energy tensor correlation functions in supergravity. Phys. Lett., B609, 392-401. arXiv:hep-th/0408095 [hep-th].Google Scholar
[207] Buchel, Alex. 2005b. Transport properties of cascading gauge theories. Phys. Rev., D72, 106002. arXiv:hep-th/0509083.Google Scholar
[208] Buchel, Alex. 2006. On jet quenching parameters in strongly coupled non-conformalgauge theories. Phys. Rev., D74, 046006. arXiv:hep-th/0605178.Google Scholar
[209] Buchel, Alex. 2008a. Bulk viscosity of gauge theory plasma at strong coupling. Phys. Lett., B663, 286-289. arXiv:0708.3459 [hep-th].Google Scholar
[210] Buchel, Alex. 2008b. Resolving disagreement for η/s in a CFT plasma at finite coupling. Nucl. Phys., B803, 166-170. arXiv:0805.2683 [hep-th].Google Scholar
[211] Buchel, Alex. 2008c. Shear viscosity of boost invariant plasma at finite coupling. Nucl. Phys., B802, 281-306. arXiv:0801.4421 [hep-th].Google Scholar
[212] Buchel, Alex, and Liu, James T. 2004. Universality of the shear viscosity in super-gravity. Phys. Rev. Lett., 93, 090602. arXiv:hep-th/0311175 [hep-th].CrossRefGoogle Scholar
[213] Buchel, Alex, and Pagnutti, Chris. 2009. Bulk viscosity of N = 2* plasma. Nucl. Phys., B816, 62-72. arXiv:0812.3623 [hep-th].Google Scholar
[214] Buchel, Alex, and Paulos, Miguel. 2008. Relaxation time of a CFT plasma at finite coupling. Nucl. Phys., B805, 59-71. arXiv:0806.0788 [hep-th].Google Scholar
[215] Buchel, Alex, Liu, James T., and Starinets, Andrei O. 2005. Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory. Nucl. Phys., B707, 56-68. arXiv:hep-th/0406264.Google Scholar
[216] Buchel, Alex, Myers, Robert C., Paulos, Miguel F., and Sinha, Aninda. 2008. Universal holographic hydrodynamics at finite coupling. Phys. Lett., B669, 364-370. arXiv:0808.1837 [hep-th].Google Scholar
[217] Buchel, Alex, Myers, Robert C., and Sinha, Aninda. 2009. Beyond η/s = 1/4π. JHEP, 03, 084. arXiv:0812.2521 [hep-th].CrossRefGoogle Scholar
[218] Buchel, Alex, Lehner, Luis, and Liebling, Steven L. 2012. Scalar Collapse in AdS. Phys. Rev., D86, 123011. arXiv:1210.0890 [gr-qc].Google Scholar
[219] Burnier, Y., Laine, M., and Vepsalainen, M. 2008. Heavy quarkonium in any channel in resummedhot QCD. JHEP, 0801, 043. arXiv:0711.1743 [hep-ph].CrossRefGoogle Scholar
[220] Burnier, Y., Kharzeev, D. E., Liao, J., and Yee, H.-U. 2012. From the chiral magnetic wave to the charge dependence of elliptic flow. arXiv:1208.2537 [hep-ph].Google Scholar
[221] Burnier, Yannis, and Rothkopf, Alexander. 2012. Disentangling the timescales behind the non-perturbative heavy quark potential. Phys.Rev., D86, 051503. arXiv:1208.1899 [hep-ph].Google Scholar
[222] Burnier, Yannis, Kharzeev, Dmitri E., Liao, Jinfeng, and Yee, Ho-Ung. 2011. Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions. Phys. Rev. Lett., 107, 052303. arXiv:1103.1307 [hep-ph].CrossRefGoogle Scholar
[223] Burrington, Benjamin A., Liu, James T., Pando, Zayas, Leopoldo, A., and Vaman, Diana. 2005. Holographic duals of flavored N = 1 super Yang-Mills: Beyond the probe approximation. JHEP, 02, 022. arXiv:hep-th/0406207.CrossRefGoogle Scholar
[224] Caceres, Elena, and Guijosa, Alberto. 2006a. Drag force in charged N = 4 SYM plasma. JHEP, 11, 077. arXiv:hep-th/0605235.CrossRefGoogle Scholar
[225] Caceres, Elena, and Guijosa, Alberto. 2006b. On Drag Forces and Jet Quenching in Strongly Coupled Plasmas. JHEP, 12, 068. arXiv:hep-th/0606134.CrossRefGoogle Scholar
[226] Caceres, Elena, Natsuume, Makoto, and Okamura, Takashi. 2006. Screening length in plasma winds. JHEP, 10, 011. arXiv:hep-th/0607233.CrossRefGoogle Scholar
[227] Caceres, Elena, Chernicoff, Mariano, Guijosa, Alberto, and Pedraza, Juan F. 2010. Quantum Fluctuations and the Unruh Effect in Strongly- Coupled Conformal Field Theories. JHEP, 06, 078. arXiv:1003.5332 [hep-th].CrossRefGoogle Scholar
[228] Cai, Rong-Gen, and Soh, Kwang-Sup. 1999. Critical behavior in the rotating D-branes. Mod. Phys. Lett., A14, 1895-1908. arXiv:hep-th/9812121.Google Scholar
[229] Cai, Rong-Gen, Nie, Zhang-Yu, and Sun, Ya-Wen. 2008. Shear Viscosity from Effective Couplings of Gravitons. Phys. Rev., D78, 126007. arXiv:0811.1665 [hep-th].Google Scholar
[230] Caines, Helen. 2011. Jets and Jet-like Correlations at RHIC. arXiv:1110.1878 [nucl-ex].Google Scholar
[231] Callan, Curtis G. Jr., Harvey, Jeffrey A., and Strominger, Andrew. 1991. World-brane actions for string solitons. Nucl. Phys., B367, 60-82.Google Scholar
[232] Calzetta, E., and Hu, B. L. 1988. Nonequilibrium Quantum Fields: Closed Time Path Effective Action, Wigner Function and Boltzmann Equation. Phys. Rev., D37, 2878.Google Scholar
[233] Calzetta, E. A., Hu, B. L., and Ramsey, S. A. 2000. Hydrodynamic transport functions from quantum kinetic field theory. Phys. Rev., D61, 125013. arXiv:hep-ph/9910334.Google Scholar
[234] Camanho, Xian O., Edelstein, Jose D., and Paulos, Miguel F. 2011. Lovelock theories, holography and the fate of the viscosity bound. JHEP, 1105, 127. arXiv:1010.1682 [hep-th].CrossRefGoogle Scholar
[235] Cao, C., Elliott, E., Joseph, J., Wu, H., Petricka, J., et al. 2011. Universal Quantum Viscosity in a Unitary Fermi Gas. Science, 331, 58. arXiv:1007.2625 [cond-mat.quant-gas].CrossRefGoogle Scholar
[236] Caron-Huot, Simon. 2011. Loops and trees. JHEP, 1105, 080. arXiv:1007.3224 [hep-ph].CrossRefGoogle Scholar
[237] Caron-Huot, Simon, and Moore, Guy D. 2008a. Heavy quark diffusion in perturbative QCD at next-to-leading order. Phys. Rev. Lett., 100, 052301. arXiv:0708.4232 [hep-ph].CrossRefGoogle ScholarPubMed
[238] Caron-Huot, Simon, and Moore, Guy D. 2008b. Heavy quark diffusion in QCD and N = 4 SYM at next- to-leading order. JHEP, 02, 081. arXiv:0801.2173 [hep-ph].CrossRefGoogle Scholar
[239] Caron-Huot, Simon, Kovtun, Pavel, Moore, Guy D., Starinets, Andrei, and Yaffe, Laurence G. 2006. Photon and dilepton production in supersymmetric Yang-Mills plasma. JHEP, 12, 015. arXiv:hep-th/0607237.CrossRefGoogle Scholar
[240] Caron-Huot, Simon, Laine, Mikko, and Moore, Guy D. 2009. A Way to estimate the heavy quark thermalization rate from the lattice. JHEP, 0904, 053. arXiv:0901.1195 [hep-lat].CrossRefGoogle Scholar
[241] Caron-Huot, Simon, Chesler, Paul M., and Teaney, Derek. 2011. Fluctuation, dissipation, and thermalization in non-equilibrium AdS5 black hole geometries. Phys. Rev., D84, 026012. arXiv:1102.1073 [hep-th].Google Scholar
[242] Casalbuoni, R., Gomis, J., and Longhi, G. 1974. The Relativistic Point Revisited in the Light of the String Model. Nuovo Cim., A24, 249.CrossRefGoogle Scholar
[243] Casalderrey-Solana, J., and Iancu, E. 2011. Interference effects in medium-induced gluon radiation. JHEP, 1108, 015. arXiv:1105.1760 [hep-ph].CrossRefGoogle Scholar
[244] Casalderrey-Solana, J., and Shuryak, E. V. 2005. Conical flow in a medium with variable speed of sound. arXiv:hep-ph/0511263.Google Scholar
[245] Casalderrey-Solana, J., Shuryak, E. V., and Teaney, D. 2005. Conical flow induced by quenched QCD jets. J. Phys. Conf. Ser., 27, 22-31. arXiv:hep-ph/0411315.CrossRefGoogle Scholar
[246] Casalderrey-Solana, J., Shuryak, E. V., and Teaney, D. 2006. Hydrodynamic flow from fast particles. arXiv:hep-ph/0602183.Google Scholar
[247] Casalderrey-Solana, J., Milhano, J.G., and Wiedemann, U. 2011a. Jet quenching via jet collimation. J. Phys., G38, 124086. arXiv:1107.1964 [hep-ph].CrossRefGoogle Scholar
[248] Casalderrey-Solana, Jorge. 2013. Dynamical Quarkonia Suppression in a QGP-Brick. JHEP, 1303, 091. arXiv:1208.2602 [hep-ph].CrossRefGoogle Scholar
[249] Casalderrey-Solana, Jorge, and Mateos, David. 2009. Prediction of a Photon Peak in Relativistic Heavy Ion Collisions. Phys. Rev. Lett., 102, 192302. arXiv:0806.4172 [hep-ph].CrossRefGoogle ScholarPubMed
[250] Casalderrey-Solana, Jorge, and Mateos, David. 2012. Off-diagonal Flavour Susceptibilities from AdS/CFT. JHEP, 1208, 165. arXiv:1202.2533 [hep-ph].CrossRefGoogle Scholar
[251] Casalderrey-Solana, Jorge, and Salgado, Carlos A. 2007. Introductory lectures on jet quenching in heavy ion collisions. Acta Phys. Polon., B38, 3731-3794. arXiv:0712.3443 [hep-ph].Google Scholar
[252] Casalderrey-Solana, Jorge, and Teaney, Derek. 2006. Heavy quark diffusion in strongly coupled N = 4 Yang-Mills. Phys. Rev., D74, 085012. arXiv:hep-ph/0605199.Google Scholar
[253] Casalderrey-Solana, Jorge, and Teaney, Derek. 2007. Transverse momentum broadening of a fast quark in a N = 4 Yang Mills plasma. JHEP, 04, 039. arXiv:hep-th/0701123.CrossRefGoogle Scholar
[254] Casalderrey-Solana, Jorge, Kim, Keun-Young, and Teaney, Derek. 2009. Stochastic String Motion Above and Below the World Sheet Horizon. JHEP, 12, 066. arXiv:0908.1470 [hep-th].CrossRefGoogle Scholar
[255] Casalderrey-Solana, Jorge, Fernandez, Daniel, and Mateos, David. 2010a. A New Mechanism of Quark Energy Loss. Phys. Rev. Lett., 104, 172301. arXiv:0912.3717 [hep-ph].CrossRefGoogle ScholarPubMed
[256] Casalderrey-Solana, Jorge, Fernandez, Daniel, and Mateos, David. 2010b. Cherenkov mesons as in-medium quark energy loss. JHEP, 1011, 091. arXiv:1009.5937 [hep-th].CrossRefGoogle Scholar
[257] Casalderrey-Solana, Jorge, Milhano, Jose Guilherme, and Wiedemann, Urs Achim. 2011b. Jet Quenching via Jet Collimation. J. Phys., G38, 035006. arXiv:1012.0745 [hep-ph].CrossRefGoogle Scholar
[258] Casalderrey-Solana, Jorge, Milhano, Jose Guilherme, and Arias, Paloma Quiroga. 2012. Out of Medium Fragmentation from Long-Lived Jet Showers. Phys. Lett., B710, 175-181. arXiv:1111.0310 [hep-ph].Google Scholar
[259] Caswell, William E., and Zanon, Daniela. 1981. Zero Three Loop Beta Function in the N = 4 Supersymmetric Yang-Mills Theory. Nucl. Phys., B182, 125.CrossRefGoogle Scholar
[260] Chalmers, Gordon, Nastase, Horatiu, Schalm, Koenraad, and Siebelink, Ruud. 1999. R-current correlators in N = 4 super Yang-Mills theory from anti-de Sitter supergravity. Nucl. Phys., B540, 247-270. arXiv:hep-th/9805105.Google Scholar
[261] Chamblin, Andrew, Emparan, Roberto, Johnson, Clifford V., and Myers, Robert C. 1999a. Charged AdS black holes and catastrophic holography. Phys. Rev., D60, 064018. arXiv:hep-th/9902170.Google Scholar
[262] Chamblin, Andrew, Emparan, Roberto, Johnson, Clifford V., and Myers, Robert C. 1999b. Holography, thermodynamics and fluctuations of charged AdS black holes. Phys. Rev., D60, 104026. arXiv:hep-th/9904197.Google Scholar
[263] CMS Collaboration, Chatrchyan, Serguei, et al. 2011a. Dependence on pseudorapidity and centrality of charged hadron production in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV. JHEP, 08, 141. arXiv:1107.4800[nucl-ex].CrossRefGoogle Scholar
[264] CMS Collaboration, Chatrchyan, Serguei, et al. 2011b. Observation and studies of jet quenching in PbPb collisions at TeV. Phys. Rev., C84, 024906. arXiv:1102.1957 [nucl-ex].Google Scholar
[265] CMS Collaboration, Chatrchyan, Serguei, et al. 2011c. Study of Z boson production in PbPb collisions at TeV. Phys. Rev. Lett., 106, 212301. arXiv:1102.5435 [nucl-ex].CrossRefGoogle Scholar
[266] CMS Collaboration, Chatrchyan, Serguei, et al. 2012a. Jet momentum dependence of jet quenching in PbPb collisions at TeV. Phys. Lett., B712, 176-197. arXiv:1202.5022 [nucl-ex].Google Scholar
[267] CMS Collaboration, Chatrchyan, Serguei, et al. 2012b. Measurement of isolated photon production in pp and PbPb collisions at TeV. Phys. Lett., B710, 256-277. arXiv:1201.3093 [nucl-ex].Google Scholar
[268] CMS Collaboration, Chatrchyan, Serguei, et al. 2012c. Measurement of jet fragmentation into charged particles in pp and PbPb collisions at TeV. JHEP, 1210, 087. arXiv:1205.5872 [nucl-ex].CrossRefGoogle Scholar
[269] CMS Collaboration, Chatrchyan, Serguei, et al. 2012d. Observation of sequential Upsilon suppression in PbPb collisions. Phys. Rev. Lett., 109, 222301. arXiv:1208.2826 [nucl-ex].CrossRefGoogle ScholarPubMed
[270] CMS Collaboration, Chatrchyan, Serguei, et al. 2012e. Study of high- pT charged particle suppression in PbPb compared to pp collisions at Te V. Eur. Phys. J., C72, 1945. arXiv:12 02.2 554 [nucl-ex].Google Scholar
[271] CMS Collaboration, Chatrchyan, Serguei, et al. 2012f. Study of W boson production in PbPb and pp collisions at TeV. Phys. Lett., B715, 66-87. arXiv:1205.6334 [nucl-ex].Google Scholar
[272] CMS Collaboration, Chatrchyan, Serguei, et al. 2012g. Suppression of non-prompt J/ψ, prompt J/ψ, and Y (1S) in PbPb collisions at TeV. JHEP, 1205, 063. arXiv:1201.5069 [nucl-ex].CrossRefGoogle Scholar
[273] CMS Collaboration, Chatrchyan, Serguei, et al. 2013. Studies of jet quenching using isolated-photon + jet correlations in PbPb and pp collisions at TeV. Phys. Lett., B718, 773-794. arXiv:12 05.02 0 6 [nucl-ex].Google Scholar
[274] Chen, Jiunn-Wei, and Nakano, Eiji. 2007. Shear viscosity to entropy density ratio of QCD below the deconfinement temperature. Phys. Lett., B647, 371-375. arXiv:hep-ph/0604138 [hep-ph].Google Scholar
[275] Chen, Jiunn-Wei, Li, Yen-Han, Liu, Yen-Fu, and Nakano, Eiji. 2007. QCD viscosity to entropy density ratio in the hadronic phase. Phys. Rev., D76, 114011. arXiv:hep-ph/0703230 [hep-ph].Google Scholar
[276] Chen, Xiao-Fang, Greiner, Carsten, Wang, Enke, Wang, Xin-Nian, and Xu, Zhe. 2010. Bulk matter evolution and extraction of jet transport parameter in heavy ion collisions at RHIC. Phys. Rev., C81, 064908. arXiv:1002.1165 [nucl-th].Google Scholar
[277] Cheng, M., Christ, N.H., Datta, S., van der Heide, J., Jung, C., et al. 2008. The QCD equation of state with almost physical quark masses<. Phys. Rev., D77, 014511. arXiv:0710.0354 [hep-lat].Google Scholar
[278] Cherkis, Sergey A., and Hashimoto, Akikazu. 2002. Supergravity solution of intersecting branes and AdS/CFT with flavor. JHEP, 11, 036. arXiv:hep-th/0210105.CrossRefGoogle Scholar
[279] Chernicoff, Mariano, and Guijosa, Alberto. 2007. Energy Loss of Gluons, Baryons and k-Quarks in an N = 4 SYM Plasma. JHEP, 02, 084. arXiv:hep-th/0611155.CrossRefGoogle Scholar
[280] Chernicoff, Mariano, and Guijosa, Alberto. 2008. Acceleration, Energy Loss and Screening in Strongly-Coupled Gauge Theories. JHEP, 0806, 005. arXiv:0803.3070 [hep-th].CrossRefGoogle Scholar
[281] Chernicoff, Mariano, Garcia, J. Antonio, and Guijosa, Alberto. 2006. The energy of a moving quark-antiquark pair in an N = 4 SYM plasma. JHEP, 09, 068. arXiv:hep-th/0607089.CrossRefGoogle Scholar
[282] Chernicoff, Mariano, Garcia, J. Antonio, and Guijosa, Alberto. 2009a. A Tail of a Quark in N = 4 SYM. JHEP, 0909, 080. arXiv:0906.1592 [hep-th].CrossRefGoogle Scholar
[283] Chernicoff, Mariano, Garcia, J. Antonio, and Guijosa, Alberto. 2009b. Generalized Lorentz-Dirac Equation for a Strongly-Coupled Gauge Theory. Phys. Rev. Lett., 102, 241601. arXiv:0903.2047 [hep-th].CrossRefGoogle ScholarPubMed
[284] Chernicoff, Mariano, Guijosa, Alberto, and Pedraza, Juan F. 2011. The Gluonic Field of a Heavy Quark in Conformal Field Theories at Strong Coupling. JHEP, 1110, 041. arXiv:1106.4059 [hep-th].CrossRefGoogle Scholar
[285] Chernicoff, Mariano, Garcia, J. Antonio, Guijosa, Alberto, and Pedraza, Juan F. 2012. Holographic Lessons for Quark Dynamics. J. Phys., G39, 054002. arXiv:1111.0872 [hep-th].CrossRefGoogle Scholar
[286] Chesler, Paul M., and Teaney, Derek. 2011. Dynamical Hawking Radiation and Holographic Thermalization. arXiv:1112.6196 [hep-th].Google Scholar
[287] Chesler, Paul M., and Teaney, Derek. 2012. Dilaton emission and absorption from far-from-equilibrium non-abelian plasma. arXiv:1211.0343 [hep-th].Google Scholar
[288] Chesler, Paul M., and Yaffe, Laurence G. 2007. The wake of a quark moving through a strongly-coupled N = 4 supersymmetric Yang-Mills plasma. Phys. Rev. Lett., 99, 152001. arXiv:0706.0368 [hep-th].CrossRefGoogle ScholarPubMed
[289] Chesler, Paul M., and Yaffe, Laurence G. 2008. The stress-energy tensor of a quark moving through a strongly-coupled N = 4 supersymmetric Yang–Mills plasma: comparing hydrodynamics and AdS/CFT. Phys. Rev., D78, 045013. arXiv:0712.0050 [hep-th].Google Scholar
[290] Chesler, Paul M., and Yaffe, Laurence G. 2009. Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma. Phys. Rev. Lett., 102, 211601. arXiv:0812.2053 [hep-th].CrossRefGoogle ScholarPubMed
[291] Chesler, Paul M., and Yaffe, Laurence G. 2010. Boost invariant flow, black hole formation, and far-from-equilibrium dynamics in N = 4 supersymmetric Yang–Mills theory. Phys. Rev., D82, 026006. arXiv:0906.4426 [hep-th].Google Scholar
[292] Chesler, Paul M., and Yaffe, Laurence G. 2011. Holography and colliding gravitational shock waves in a symptotically AdS5 spacetime. Phys. Rev. Lett., 106, 021601. arXiv:1011.3562 [hep-th].CrossRefGoogle Scholar
[293] Chesler, Paul M., Jensen, Kristan, and Karch, Andreas. 2009a. Jets in strongly-coupled N = 4 super Yang-Mills theory. Phys. Rev., D79, 025021. arXiv:0804.3110 [hep-th].Google Scholar
[294] Chesler, Paul M., Jensen, Kristan, Karch, Andreas, and Yaffe, Laurence G. 2009b. Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma. Phys. Rev., D79, 125015. arXiv:0810.1985 [hep-th].Google Scholar
[295] Chesler, Paul M., Ho, Ying-Yu, and Rajagopal, Krishna. 2012. Shining a Gluon Beam Through Quark-Gluon Plasma. Phys. Rev., D85, 126006. arXiv:1111.1691 [hep-th].Google Scholar
[296] Chu, M. C., and Matsui, T. 1989. Dynamic Debye Screening for a Heavy Quark Anti-Quark Pair Traversing a Quark-Gluon Plasma. Phys. Rev., D39, 1892.Google Scholar
[297] Coleman, Sidney. 1985. Aspects of symmetry. Cambridge University Press.CrossRefGoogle Scholar
[298] Coleman, Sidney R. 1977. Classical Lumps and their Quantum Descendents. Subnucl. Ser., 13, 297.Google Scholar
[299] Cooper, Fred, and Frye, Graham. 1974. Comment on the Single Particle Distribution in the Hydrodynamic and Statistical Thermodynamic Models of Multiparticle Production. Phys. Rev., D10, 186.Google Scholar
[300] Cornalba, Lorenzo, and Costa, Miguel S. 2008. Saturation in Deep Inelastic Scattering from AdS/CFT. Phys. Rev., D78, 096010. arXiv:0804.1562 [hep-ph].Google Scholar
[301] Cotrone, A. L., Martucci, L., and Troost, W. 2006. String splitting and strong coupling meson decay. Phys. Rev. Lett., 96, 141601. arXiv:hep-th/0511045.CrossRefGoogle ScholarPubMed
[302] Cvetic, Mirjam, and Gubser, Steven S. 1999a. Phases of R-charged black holes, spinning branes and strongly coupled gauge theories. JHEP, 04, 024. arXiv:hep-th/9902195.CrossRefGoogle Scholar
[303] Cvetic, Mirjam, and Gubser, Steven S. 1999b. Thermodynamic Stability and Phases of General Spinning Branes. JHEP, 07, 010. arXiv:hep-th/9903132.CrossRefGoogle Scholar
[304] Da Rold, Leandro, and Pomarol, Alex. 2005. Chiral symmetry breaking from five dimensional spaces. Nucl. Phys., B721, 79-97. arXiv:hep-ph/0501218.Google Scholar
[305] Dainese, A., Loizides, C., and Paic, G. 2005. Leading-particle suppression in high energy nucleus nucleus collisions. Eur. Phys. J., C38, 461-474. arXiv:hep-ph/0406201.Google Scholar
[306] Datta, Saumen, and Gupta, Sourendu. 2009. Exploring the gluoNc plasma. Nucl. Phys., A830, 749C-752C. arXiv:0906.3929 [hep-lat].Google Scholar
[307] Datta, Saumen, and Petreczky, Peter. 2008. Zero mode contribution in quarkonium correlators and in- medium properties of heavy quarks. J. Phys., G35, 104114. arXiv:0805.1174 [hep-lat].CrossRefGoogle Scholar
[308] Datta, Saumen, Karsch, Frithjof, Petreczky, Peter, and Wetzorke, Ines. 2004. Behavior of charmonium systems after deconfinement. Phys. Rev., D69, 094507. arXiv:hep-lat/0312037.Google Scholar
[309] Davis, Joshua L., Gutperle, Michael, Kraus, Per, and Sachs, Ivo. 2007. Stringy NJL and Gross-Neveu models at finite density and temperature. JHEP, 10, 049. arXiv:0708.0589 [hep-th].CrossRefGoogle Scholar
[310] de Boer, Jan, Verlinde, Erik P., and Verlinde, Herman L. 2000. On the holographic renormalization group. JHEP, 0008, 003. arXiv:hep-th/9912012 [hep-th].CrossRefGoogle Scholar
[311] de Boer, Jan, Hubeny, Veronika E., Rangamani, Mukund, and Shigemori, Masaki. 2009. Brownian motion in AdS/CFT. JHEP, 07, 094. arXiv:0812.5112 [hep-th].CrossRefGoogle Scholar
[312] de Forcrand, Philippe, and Philipsen, Owe. 2002. The QCD phase diagram for small densities from imaginary chemical potential. Nucl. Phys., B642, 290-306. arXiv:hep-lat/0205016 [hep-lat].Google Scholar
[313] de Forcrand, Philippe, and Philipsen, Owe. 2008. The Chiral critical point of Nf = 3 QCD at finite density to the order (μ/T)4. JHEP, 0811, 012. arXiv:0808.1096 [hep-lat].CrossRefGoogle Scholar
[314] de Haro, Sebastian, Solodukhin, Sergey N., and Skenderis, Kostas. 2001. Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence. Commun. Math. Phys., 217, 595-622. arXiv:hep-th/0002230.CrossRefGoogle Scholar
[315] D'Elia, Massimo, and Lombardo, Maria-Paola. 2003. Finite density QCD via imaginary chemical potential. Phys. Rev., D67, 014505. arXiv:hep-lat/0209146 [hep-lat].Google Scholar
[316] Demir, Nasser, and Bass, Steffen A. 2009. Shear-Viscosity to Entropy-Density Ratio of a Relativistic Hadron Gas. Phys. Rev. Lett., 102, 172302. arXiv:0812.2 42 2 [nucl-th].CrossRefGoogle ScholarPubMed
[317] D'Eramo, Francesco, Liu, Hong, and Rajagopal, Krishna. 2011. Transverse Momentum Broadening and the Jet Quenching Parameter, Redux. Phys. Rev., D84, 065015. arXiv:1006.1367 [hep-ph].Google Scholar
[318] D'Eramo, Francesco, Lekaveckas, Mindaugas, Liu, Hong, and Rajagopal, Krishna. 2012. Momentum Broadening in Weakly Coupled Quark-Gluon Plasma (with a view to finding the quasiparticles within liquid quark-gluon plasma). arXiv:1211.1922 [hep-ph].Google Scholar
[319] D'Hoker, Eric, and Freedman, Daniel Z. 2002. Supersymmetric gauge theories and the AdS/CFT correspondence. arXiv:hep-th/0201253.Google Scholar
[320] D'Hoker, Eric, and Guo, Yu. 2010. Rigidity of SU(2, 2∣2)-symmetric solutions in Type IIB. JHEP, 05, 088. arXiv:1001.4808 [hep-th].CrossRefGoogle Scholar
[321] Dine, M. 2007. Supersymmetry and string theory: Beyond the standard model. Cambridge University Press.CrossRefGoogle Scholar
[322] Ding, H.-T., Kaczmarek, O., Karsch, F., Satz, H., and Soldner, W. 2009. Charmonium correlators and spectral functions at finite temperature. PoS, LAT2009, 169. arXiv:0910.3098 [hep-lat].Google Scholar
[323] Ding, H.-T., Francis, A., Kaczmarek, O., Karsch, F., Laermann, E., et al. 2011. Thermal dilepton rate and electrical conductivity: An analysis of vector current correlation functions in quenched lattice QCD. Phys. Rev., D83, 034504. arXiv:1012.4963 [hep-lat].Google Scholar
[324] Ding, H.-T., Francis, A., Kaczmarek, O., Karsch, F., Laermann, E., et al. 2013. Thermal dilepton rates from quenched lattice QCD. arXiv:1301.7436 [hep-lat].Google Scholar
[325] Ding, H. T., Francis, A., Kaczmarek, O., Karsch, F., Satz, H., et al. 2012. Charmonium properties in hot quenched lattice QCD. Phys. Rev., D86, 014509. arXiv:1204.4945 [hep-lat].Google Scholar
[326] Distler, Jacques, and Zamora, Frederic. 1999. Nonsupersymmetric conformal field theories from stable anti-de Sitter spaces. Adv. Theor. Math. Phys., 2, 1405-1439. arXiv:hep-th/9810206 [hep-th].Google Scholar
[327] Dokshitzer, Yuri L., and Kharzeev, D. E. 2001. Heavy quark colorimetry of QCD matter. Phys. Lett., B519, 199-206. arXiv:hep-ph/0106202 [hep-ph].Google Scholar
[328] Dominguez, Fabio, Marquet, C., Mueller, A. H., Wu, Bin, and Xiao, Bo-Wen. 2008. Comparing energy loss and p⊥-broadening in perturbative QCD with strong coupling N = 4 SYM theory. Nucl. Phys., A811, 197-222. arXiv:0803.3234 [nucl-th].Google Scholar
[329] Douglas, Michael R., Mazzucato, Luca, and Razamat, Shlomo S. 2011. Holographic dual of free field theory. Phys. Rev., D83, 071701. arXiv:1011.4926 [hep-th].Google Scholar
[330] Drukker, Nadav, Gross, David J., and Ooguri, Hirosi. 1999. Wilson loops and minimal surfaces. Phys. Rev., D60, 125006. arXiv:hep-th/9904191 [hep-th].Google Scholar
[331] Drukker, Nadav, Gross, David J., and Tseytlin, Arkady A. 2000. Green-Schwarz string in AdS5 × S5: Semiclassical partition function. JHEP, 0004, 021. arXiv:hep-th/0001204 [hep-th].CrossRefGoogle Scholar
[332] Durr, S., et al. 2008. Ab-initio Determination of Light Hadron Masses. Science, 322, 1224-1227. arXiv:0906.3599 [hep-lat].CrossRefGoogle ScholarPubMed
[333] Dusling, K., and Teaney, D. 2008. Simulating elliptic flow with viscous hydrody-namics. Phys. Rev., C77, 034905. arXiv:0710.5932 [nucl-th].Google Scholar
[334] Dusling, Kevin, et al. 2008. Quarkonium transport in thermal AdS/CFT. JHEP, 10, 098. arXiv:0808.0957 [hep-th].CrossRefGoogle Scholar
[335] Eichten, E., Gottfried, K., Kinoshita, T., Lane, K. D., and Yan, Tung-Mow. 1980. Charmonium: Comparison with Experiment. Phys. Rev., D21, 203.Google Scholar
[336] Ejaz, Qudsia J., Faulkner, Thomas, Liu, Hong, Rajagopal, Krishna, and Wiedemann, Urs Achim. 2008. A limiting velocity for quarkonium propagation in a strongly coupled plasma via AdS/CFT. JHEP, 04, 089. arXiv:0712.0590 [hep-th].CrossRefGoogle Scholar
[337] Emerick, A., Zhao, X., and Rapp, R. 2012. Bottomonia in the Quark-Gluon Plasma and their Production at RHiC and LHC. Eur. Phys. J., A48, 72. arXiv:1111.6537 [hep-ph].CrossRefGoogle Scholar
[338] Emparan, Roberto, Johnson, Clifford V., and Myers, Robert C. 1999. Surface terms as counterterms in the AdS/CFT correspondence. Phys. Rev., D60, 104001. arXiv:hep-th/9903238.Google Scholar
[339] Erdmenger, Johanna, and Kirsch, Ingo. 2004. Mesons in gauge/gravity dual with large number of fundamental fields. JHEP, 12, 025. arXiv:hep-th/0408113.CrossRefGoogle Scholar
[340] Erdmenger, Johanna, Evans, Nick, Kirsch, Ingo, and Threlfall, , Ed. 2008. Mesons in Gauge/Gravity Duals – A Review. Eur. Phys. J., A35, 81-133. arXiv:0711.4467 [hep-th].Google Scholar
[341] Erdmenger, Johanna, Haack, Michael, Kaminski, Matthias, and Yarom, Amos. 2009. Fluid dynamics of R-charged black holes. JHEP, 0901, 055. arXiv:0809.2488 [hep-th].CrossRefGoogle Scholar
[342] Erickson, J. K., Semenoff, G. W., Szabo, R. J., and Zarembo, K. 2000. Static potential in N = 4 supersymmetric Yang-Mills theory. Phys. Rev., D61, 105006. arXiv:hep-th/9911088.Google Scholar
[343] Erlich, Joshua, Katz, Emanuel, Son, Dam T., and Stephanov, Mikhail A. 2005. QCD and a holographic model of hadrons. Phys. Rev. Lett., 95, 261602. arXiv:hep-ph/0501128 [hep-ph].CrossRefGoogle Scholar
[344] Escobedo, Miguel Angel, and Soto, Joan. 2008. Non-relativistic bound states at finite temperature (I): The Hydrogen atom. Phys. Rev., A78, 032520. arXiv:0804.0691 [hep-ph].CrossRefGoogle Scholar
[345] Evans, Nick, and Threlfall, , Ed. 2008. Mesonic quasinormal modes of the Sakai-Sugimoto model at high temperature. Phys. Rev., D77, 126008. arXiv:0802.0775 [hep-th].
[346] Fadafan, Kazem Bitaghsir, Liu, Hong, Rajagopal, Krishna, and Wiedemann, Urs Achim. 2009. Stirring Strongly Coupled Plasma. Eur. Phys. J., C61, 553-567. arXiv:0809.2869 [hep-ph].Google Scholar
[347] Faulkner, Thomas, and Liu, Hong. 2009. Meson widths from string worldsheet instantons. Phys. Lett., B673, 161-165. arXiv:0807.0063 [hep-th].Google Scholar
[348] Faulkner, Thomas, Liu, Hong, and Rangamani, Mukund. 2011. integrating out geometry: Holographic Wilsonian RG and the membrane paradigm. JHEP, 1108, 051. arXiv:1010.4036 [hep-th].Google Scholar
[349] Festuccia, Guido, and Liu, Hong. 2009. A Bohr-Sommerfeld quantization formula for quasinormal frequencies of AdS black holes. Adv. Sci. Lett., 2, 221-235. arXiv:0811.1033 [gr-qc].CrossRefGoogle Scholar
[350] Figueras, Pau, Hubeny, Veronika E., Rangamani, Mukund, and Ross, Simon F. 2009. Dynamical black holes and expanding plasmas. JHEP, 0904, 137. arXiv:0902.4696 [hep-th].CrossRefGoogle Scholar
[351] Filev, Veselin G., Johnson, Clifford V., Rashkov, R. C., and Viswanathan, K. S. 2007. Flavored large-N gauge theory in an external magnetic field. JHEP, 10, 019. arXiv:hep-th/07 01001.CrossRefGoogle Scholar
[352] Fodor, Z., and Katz, S. D. 2002. Lattice determination of the critical point of QCD at finite T and μ. JHEP, 0203, 014. arXiv:hep-lat/010 60 02 [hep-lat].CrossRefGoogle Scholar
[353] Fodor, Z., and Katz, S. D. 2004. Critical point of QCD at finite T and μ, lattice results for physical quark masses. JHEP, 0404, 050. arXiv:hep-lat/0402006 [hep-lat].CrossRefGoogle Scholar
[354] Fodor, Zoltan. 2007. QCD Thermodynamics. PoS, LAT2007, 011. arXiv:0711.0336 [hep-lat].Google Scholar
[355] Forster, Dieter. 1975. Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions. W. A. Benjamin, Inc.Google Scholar
[356] Francesco, Scardina, Di Toro, Massimo, Greco, Vincenzo, Di Toro, Massimo, and Greco, Vincenzo. 2010. Sensitivity of the Jet Quenching Observables to the Temperature Dependence of the Energy Loss. arXiv:1009.1261 [nucl-th].Google Scholar
[357] Francis, A., Kaczmarek, O., Laine, M., and Langelage, J. 2011. Towards a non-perturbative measurement of the heavy quark momentum diffusion coefficient. PoS, LATTICE2011, 202. arXiv:1109.3941 [hep-lat].Google Scholar
[358] Freedman, Daniel Z., Mathur, Samir D., Matusis, Alec, and Rastelli, Leonardo. 1999a. Correlation functions in the CFT(d)/AdS(d + 1) correspondence. Nucl. Phys., B546, 96-118. arXiv:hep-th/9804058.Google Scholar
[359] Freedman, D. Z., Gubser, S. S., Pilch, K., and Warner, N. P. 1999b. Renormalization group flows from holography supersymmetry and a c-theorem. Adv. Theor. Math. Phys., 3, 363-417. arXiv:hep-th/9904017 [hep-th].CrossRefGoogle Scholar
[360] Frenkel, J., and Taylor, J. C. 1990. High Temperature Limit of Thermal QCD. Nucl. Phys., B334, 199.CrossRefGoogle Scholar
[361] Friess, Joshua J., Gubser, Steven S., Michalogiorgakis, Georgios, and Pufu, Silviu S. 2007a. Expanding plasmas and quasinormal modes of anti-de Sitter black holes. JHEP, 0704, 080. arXiv:hep-th/0 6110 05 [hep-th].CrossRefGoogle Scholar
[362] Friess, Joshua J., Gubser, Steven S., Michalogiorgakis, Georgios, and Pufu, Silviu S. 2007b. Stability of strings binding heavy-quark mesons. JHEP, 04, 079. arXiv:hep-th/0 609137.CrossRefGoogle Scholar
[363] Friess, Joshua J., Gubser, Steven S., Michalogiorgakis, Georgios, and Pufu, Silviu S. 2007c. The stress tensor of a quark moving through N = 4 thermal plasma. Phys. Rev., D75, 106003. arXiv:hep-th/0607022.Google Scholar
[364] Fujita, Mitsutoshi. 2008. Non-equilibrium thermodynamics near the horizon and holography. JHEP, 10, 031. arXiv:0712.22 89 [hep-th].CrossRefGoogle Scholar
[365] Fukushima, Kenji, Kharzeev, Dmitri E., and Warringa, Harmen J. 2008. The Chiral Magnetic Effect. Phys. Rev., D78, 074033. arXiv:0808.3382 [hep-ph].Google Scholar
[366] Gao, Jian-Hua, Liang, Zuo-Tang, Pu, Shi, Wang, Qun, and Wang, Xin-Nian. 2012. Chiral Anomaly and Local Polarization Effect from Quantum Kinetic Approach. Phys. Rev. Lett., 109, 232301. arXiv:12 03. 0725 [hep-ph].CrossRefGoogle ScholarPubMed
[367] Gao, Yi-hong, Xu, Wei-shui, and Zeng, Dingfang. 2006. NGN, QCD(2)and chiral phase transition from string theory. JHEP, 08, 018. arXiv:hep-th/0605138.CrossRefGoogle Scholar
[368] Garfinkle, David, and Pando, Zayas, Leopoldo, A. 2011. Rapid Thermalization in Field Theory from Gravitational Collapse. Phys. Rev., D84, 066006. arXiv:1106.2339 [hep-th].Google Scholar
[369] Garfinkle, David, Horowitz, Gary T., and Strominger, Andrew. 1991. Chargedblack holes in string theory. Phys. Rev., D43, 3140.Google Scholar
[370] Garfinkle, David, Pando, Zayas, Leopoldo, A., and Reichmann, Dori. 2012. On Field Theory Thermalization from Gravitational Collapse. JHEP, 1202, 119. arXiv:1110.5823 [hep-th].CrossRefGoogle Scholar
[371] Gavai, R. V., and Gupta, Sourendu. 2005. The Critical end point of QCD. Phys. Rev., D71, 114014. arXiv:hep-lat/0412035 [hep-lat].Google Scholar
[372] Gavai, R. V., and Gupta, Sourendu. 2008. QCD at finite chemical potential with six time slices. Phys. Rev., D78, 114503. arXiv:0806.2233 [hep-lat].Google Scholar
[373] Ge, Xian-Hui, Sin, Sang-Jin, Wu, Shao-Feng, and Yang, Guo-Hong. 2009. Shear viscosity and instability from third order Lovelock gravity. Phys. Rev., D80, 104019. arXiv:0905.2675 [hep-th].Google Scholar
[374] Gelis, Francois, Iancu, Edmond, Jalilian-Marian, Jamal, and Venugopalan, Raju. 2010. The Color Glass Condensate. Ann. Rev. Nucl. Part. Sci., 60, 463-489. arXiv:1002.0333 [hep-ph].CrossRefGoogle Scholar
[375] Ghoroku, Kazuo, Ishihara, Masafumi, and Nakamura, Akihiro. 2007. D3/D7 holographic Gauge theory and Chemical potential. Phys. Rev., D76, 124006. arXiv:0708.3706 [hep-th].Google Scholar
[376] Gibbons, G. W., and Hawking, S. W. 1977. Action integrals and Partition Functions in Quantum Gravity. Phys. Rev., D15, 2752-2756.Google Scholar
[377] Gibbons, G. W., and Maeda, Kei-ichi. 1988. Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields. Nucl. Phys., B298, 741.CrossRefGoogle Scholar
[378] Giecold, G. C., Iancu, E., and Mueller, A. H. 2009. Stochastic trailing string and Langevin dynamics from AdS/CFT. JHEP, 07, 033. arXiv:0903.1840[hep-th].CrossRefGoogle Scholar
[379] Girardello, L., Petrini, M., Porrati, M., and Zaffaroni, A. 1998. Novel local CFT and exact results on perturbations of N = 4 super Yang Mills from AdS dynamics. JHEP, 9812, 022. arXiv:hep-th/9810126 [hep-th].CrossRefGoogle Scholar
[380] Gliozzi, F., Scherk, Joel, and Olive, David I. 1977. Supersymmetry, Supergravity Theories and the Dual Spinor Model. Nucl. Phys., B122, 253-290.Google Scholar
[381] Golkar, Siavash, and Son, Dam T. 2012. Non-Renormalization of the Chiral Vortical Effect Coefficient. arXiv:1207.5806 [hep-th].Google Scholar
[382] Gomez-Reino, Marta, Naculich, Stephen G., and Schnitzer, Howard. 2005. Thermodynamics of the localized D2-D6 system. Nucl. Phys., B713, 263-277. arXiv:hep-th/0412 015.Google Scholar
[383] Grana, Mariana, and Polchinski, Joseph. 2002. Gauge/gravity duals with holomorphic dilaton. Phys. Rev., D65, 126005. arXiv:hep-th/0106014.Google Scholar
[384] Green, Michael B., and Gutperle, Michael. 2000. D-instanton induced interactions on a D3-brane. JHEP, 02, 014. arXiv:hep-th/0002011.CrossRefGoogle Scholar
[385] Green, Michael B., and Schwarz, John H. 1982. Supersymmetrical String Theories. Phys. Lett., B109, 444-448.Google Scholar
[386] Green, Michael B., Schwarz, J. H., and Witten, Edward. 1987. Superstring Theory. Vol. 1 & 2. Cambridge University Press.Google Scholar
[387] Grisaru, Marcus T., Rocek, Martin, and Siegel, Warren. 1980. Zero Three Loop beta Function in N = 4 Superyang-Mills Theory. Phys. Rev. Lett., 45, 1063-1066.CrossRefGoogle Scholar
[388] Gross, David J., Pisarski, Robert D., and Yaffe, Laurence G. 1981. QCD and instantons at Finite Temperature. Rev. Mod. Phys., 53, 43.CrossRefGoogle Scholar
[389] ALICE Collaboration, Grosse-Oetringhaus, Jan Fiete. 2012. Hadron Correlations Measured with ALICE. arXiv:1208.1445 [nucl-ex].Google Scholar
[390] Grumiller, Daniel, and Romatschke, Paul. 2008. On the collision of two shockwaves in AdS5. JHEP, 0808, 027. arXiv:0803.3226 [hep-th].CrossRefGoogle Scholar
[391] Gubser, S. S., Klebanov, Igor R., and Peet, A. W. 1996. Entropy and Temperature of Black 3-Branes. Phys. Rev., D54, 3915-3919. arXiv:hep-th/9602135.Google Scholar
[392] Gubser, S. S., Klebanov, Igor R., and Polyakov, Alexander M. 1998a. Gauge theory correlators from non-critical string theory. Phys. Lett., B428, 105-114. arXiv:hep-th/9802109.Google Scholar
[393] Gubser, Steven S. 1999. Thermodynamics of spinning D3-branes. Nucl. Phys., B551, 667-684. arXiv:hep-th/9810225.Google Scholar
[394] Gubser, Steven S. 2006. Drag force in AdS/CFT. Phys. Rev., D74, 126005. arXiv:hep-th/0605182.Google Scholar
[395] Gubser, Steven S. 2007. Comparing the drag force on heavy quarks in N = 4 super-Yang-Mills theory and QCD. Phys. Rev., D76, 126003. arXiv:hep-th/0611272.Google Scholar
[396] Gubser, Steven S. 2008. Momentum fluctuations of heavy quarks in the gauge-string duality. Nucl. Phys., B790, 175-199. arXiv:hep-th/0612143.Google Scholar
[397] Gubser, Steven S. 2010. Symmetry constraints on generalizations of Bjorken flow. Phys. Rev., D82, 085027. arXiv:1006.0006 [hep-th].Google Scholar
[398] Gubser, Steven S., and Karch, Andreas. 2009. From gauge-string duality to strong interactions: a Pedestrian's Guide. Ann. Rev. Nucl. Part. Sci., 59, 145-168. arXiv:0901.0935 [hep-th].CrossRefGoogle Scholar
[399] Gubser, Steven S., and Pufu, Silviu S. 2008. Master field treatment of metric perturbations sourced by the trailing string. Nucl. Phys., B790, 42-71. arXiv:hep-th/0703090.Google Scholar
[400] Gubser, Steven S., and Yarom, Amos. 2008. Universality of the diffusion wake in the gauge-string duality. Phys. Rev., D77, 066007. arXiv:0709.1089 [hep-th].Google Scholar
[401] Gubser, Steven S., and Yarom, Amos. 2009. Linearized hydrodynamics from probe sources in the gauge-string duality. Nucl. Phys., B813, 188-219. arXiv:0803.0081 [hep-th].Google Scholar
[402] Gubser, Steven S., Klebanov, Igor R., and Tseytlin, Arkady A. 1998b. Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory. Nucl. Phys., B534, 202-222. arXiv:hep-th/9805156.Google Scholar
[403] Gubser, Steven S., Pufu, Silviu S., and Yarom, Amos. 2007. Energy disturbances due to a moving quark from gauge-string duality. JHEP, 09, 108. arXiv:0706.0213 [hep-th].CrossRefGoogle Scholar
[404] Gubser, Steven S., Pufu, Silviu S., and Rocha, Fabio D. 2008a. Bulk viscosity of strongly coupled plasmas with holographic duals. JHEP, 08, 085. arXiv:0806.0407 [hep-th].CrossRefGoogle Scholar
[405] Gubser, Steven S., Pufu, Silviu S., and Yarom, Amos. 2008b. Entropy production in collisions of gravitational shockwaves and of heavy ions. Phys. Rev., D78, 066014. arXiv:0805.1551 [hep-th].Google Scholar
[406] Gubser, Steven S., Gulotta, Daniel R., Pufu, Silviu S., and Rocha, Fabio D. 2008c. Gluon energy loss in the gauge-string duality. JHEP, 10, 052. arXiv:0803.1470 [hep-th].CrossRefGoogle Scholar
[407] Gubser, Steven S., Pufu, Silviu S., and Yarom, Amos. 2008d. Shock waves from heavy-quark mesons in AdS/CFT. JHEP, 07, 108. arXiv:0711.1415 [hep-th].CrossRefGoogle Scholar
[408] Gubser, Steven S., Pufu, Silviu S., and Yarom, Amos. 2008e. Sonic booms and diffusion wakes generated by a heavy quark in thermal AdS/CFT. Phys. Rev. Lett., 100, 012301. arXiv:0706.4307 [hep-th].CrossRefGoogle Scholar
[409] Gubser, Steven S., Nellore, Abhinav, Pufu, Silviu S., and Rocha, Fabio D. 2008f. Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics. Phys. Rev. Lett., 101, 131601. arXiv:0804.1950 [hep-th].CrossRefGoogle ScholarPubMed
[410] Gubser, Steven S., Pufu, Silviu S., Rocha, Fabio D., and Yarom, Amos. 2009a. Energy loss in a strongly coupled thermal medium and the gauge-string duality. arXiv:0902.4041 [hep-th].Google Scholar
[411] Gubser, Steven S., Pufu, Silviu S., and Yarom, Amos. 2009b. Off-center collisions in AdS5 with applications to multiplicity estimates in heavy-ion collisions. JHEP, 0911, 050. arXiv:0902.4062 [hep-th].CrossRefGoogle Scholar
[412] Gunji, T., Hamagaki, H., Hatsuda, T., and Hirano, T. 2007. Onset of J/ψ melting in quark-gluon fluid at RHIC. Phys. Rev., C76, 051901. arXiv:hep-ph/0703061.Google Scholar
[413] Gunji, T., Hamagaki, H., Hatsuda, T., and Hirano, T. 2008. Onset of J/ψ melting in quark-gluon fluid at RHIC. J. Phys. G: Nucl. Part. Phys., 35, 104137.CrossRefGoogle Scholar
[414] Guo, Xiao-Feng, and Wang, Xin-Nian. 2000. Multiple Scattering, Parton Energy Loss and Modified Fragmentation Functions in Deeply Inelastic eA Scattering. Phys. Rev. Lett., 85, 3591-3594. arXiv:hep-ph/0005044.CrossRefGoogle ScholarPubMed
[415] Gursoy, U., and Kiritsis, E. 2008. Exploring improved holographic theories for QCD: Part I. JHEP, 0802, 032. arXiv:0707.1324 [hep-th].CrossRefGoogle Scholar
[416] Gursoy, U., Kiritsis, E., and Nitti, F. 2008a. Exploring improved holographic theories for QCD: Part II. JHEP, 0802, 019. arXiv:0707.1349 [hep-th].CrossRefGoogle Scholar
[417] Gursoy, Umut, Kiritsis, Elias, Mazzanti, Liuba, and Nitti, Francesco. 2008b. Deconfinement and Gluon Plasma Dynamics in Improved Holographic QCD. Phys. Rev. Lett., 101, 181601. arXiv:0804.0899 [hep-th].CrossRefGoogle ScholarPubMed
[418] Gursoy, Umut, Kiritsis, Elias, Michalogiorgakis, Georgios, and Nitti, Francesco. 2009. Thermal Transport and Drag Force in Improved Holographic QCD. JHEP, 12, 056. arXiv:0906.1890 [hep-ph].CrossRefGoogle Scholar
[419] Gursoy, Umut, Kiritsis, Elias, Mazzanti, Liuba, and Nitti, Francesco. 2010. Langevin diffusion of heavy quarks in nonconformal holographic backgrounds. JHEP, 1012, 088. arXiv:1006.3261 [hep-th].CrossRefGoogle Scholar
[420] Gyulassy, M., Levai, P., and Vitev, I. 2001. Reaction operator approach to non-Abelian energyloss. Nucl. Phys., B594, 371-419. arXiv:nucl-th/0006010.Google Scholar
[421] Gyulassy, Miklos, and Wang, Xin-Nian. 1994. Multiple collisions and induced gluon Bremsstrahlung in QCD. Nucl. Phys., B420, 583-614. arXiv:nucl-th/9306003.Google Scholar
[422] Gyulassy, Miklos, Vitev, Ivan, Wang, Xin-Nian, and Zhang, Ben-Wei. 2003. Jet quenching and radiative energy loss in dense nuclear matter. arXiv:nucl-th/0302077.Google Scholar
[423] Gyulassy, Miklos, Noronha, Jorge, and Torrieri, Giorgio. 2008. Conical Di-jet Correlations from a Chromo-Viscous Neck in AdS/CFT. arXiv:0807.2235 [hep-ph].Google Scholar
[424] Hama, Yogiro, et al. 2006. 3D relativistic hydrodynamic computations using lattice- QCD inspired equations of state. Nucl. Phys., A774, 169-178. arXiv:hep-ph/0510096.Google Scholar
[425] Hart, A., Laine, M., and Philipsen, O. 2000. Static correlation lengths in QCD at high temperatures and finite densities. Nucl. Phys., B586, 443-474. arXiv:hep-ph/0004060.Google Scholar
[426] Hartnoll, Sean A. 2009. Lectures on holographic methods for condensed matter physics. Class. Quant. Grav., 26, 224002. arXiv:0903.3246 [hep-th].CrossRefGoogle Scholar
[427] Hartnoll, Sean A., Kovtun, Pavel K., Mueller, Markus, and Sachdev, Subir. 2007. Theory of Nernst effect near quantum phase transitions in condensed matter physics, and in dyonic black holes. Phys. Rev., B76, 144502. arXiv:0706.3215 [cond-mat. str-el].CrossRefGoogle Scholar
[428] Hassanain, Babiker, and Schvellinger, Martin. 2010a. Holographic current correlators at finite coupling and scattering off a supersymmetric plasma. JHEP, 1004, 012. arXiv:0912.4704 [hep-th].CrossRefGoogle Scholar
[429] Hassanain, Babiker, and Schvellinger, Martin. 2010b. Towards 't Hooft parameter corrections to charge transport in strongly-coupled plasma. JHEP, 1010, 068. arXiv:1006.5480 [hep-th].CrossRefGoogle Scholar
[430] Hatsuda, Tetsuo. 2006. Hadrons above Tc. Int. J. Mod. Phys., A21, 688-693. arXiv:hep-ph/0509306.Google Scholar
[431] Hatta, Y., Iancu, E., and Mueller, A. H. 2008a. Deep inelastic scattering at strong coupling from gauge/string duality: The Saturation line. JHEP, 0801, 026. arXiv:0710.2148 [hep-th].CrossRefGoogle Scholar
[432] Hatta, Y., Iancu, E., and Mueller, A. H. 2008b. Deep inelastic scattering off a N = 4 SYM plasma at strong coupling. JHEP, 0801, 063. arXiv:0710.5297 [hep-th].CrossRefGoogle Scholar
[433] Hatta, Y., Iancu, E., and Mueller, A. H. 2008c. Jet evolution in the N = 4 SYM plasma at strongcoupling. JHEP, 0805, 037. arXiv:0803.2481 [hep-th].CrossRefGoogle Scholar
[434] Hatta, Y., Iancu, E., Mueller, A. H., and Triantafyllopoulos, D. N. 2011a. Aspects of the UV/IR correspondence: energy broadening and string fluctuations. JHEP, 1102, 065. arXiv:1011.3763 [hep-th].CrossRefGoogle Scholar
[435] Hatta, Y., Iancu, E., Mueller, A. H., and Triantafyllopoulos, D. N. 2011b. Radiation by a heavy quark in N = 4 SYM at strong coupling. Nucl. Phys., B850, 31-52. arXiv:1102.0232 [hep-th].Google Scholar
[436] Hawking, S. W., and Ellis, G. F. R. 1973. The Large scale structure of space-time. Cambridge University Press.CrossRefGoogle Scholar
[437] Hawking, S. W., and Page, Don N. 1983. Thermodynamics of Black Holes in anti-De Sitter Space. Commun. Math. Phys., 87, 577.CrossRefGoogle Scholar
[438] Heemskerk, Idse, and Polchinski, Joseph. 2011. Holographic and Wilsonian Renor-malization Groups. JHEP, 1106, 031. arXiv:1010.1264 [hep-th].CrossRefGoogle Scholar
[439] Heinz, Ulrich W. 1983. Kinetic Theory for Nonabelian Plasmas. Phys. Rev. Lett., 51, 351.CrossRefGoogle Scholar
[440] Heinz, Ulrich W. 2005a. ‘RHIC serves the perfect fluid’: Hydrodynamic flow of the QGP. arXiv:nucl-th/0512051.Google Scholar
[441] Heinz, Ulrich W. 2005b. Thermalization at RHIC. AIP Conf. Proc., 739, 163-180. arXiv:nucl-th/0407067 [nucl-th].Google Scholar
[442] Heinz, Ulrich W. 2009. Early collective expansion: Relativistic hydrodynamics and the transport properties of QCD matter. arXiv:0901.4355 [nucl-th].Google Scholar
[443] Heinz, Ulrich W., and Kolb, Peter F. 2002. Early thermalization at RHIC. Nucl. Phys., A702, 269-280. arXiv:hep-ph/0111075 [hep-ph].Google Scholar
[444] Heller, Michal P., and Janik, Romuald A. 2007. Viscous hydrodynamics relaxation time from AdS/CFT. Phys. Rev., D76, 025027. arXiv:hep-th/0703243 [HEP-TH].Google Scholar
[445] Heller, Michal P., Surowka, Piotr, Loganayagam, R., Spalinski, Michal, and Vazquez, Samuel E. 2009. Consistent Holographic Description of Boost-Invariant Plasma. Phys. Rev. Lett., 102, 041601. arXiv:0805.3774 [hep-th].CrossRefGoogle ScholarPubMed
[446] Heller, Michal P., Janik, Romuald A., and Witaszczyk, Przemyslaw. 2012a. A numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalization - an ADM formulation. Phys. Rev., D85, 126002. arXiv:1203.0755 [hep-th].Google Scholar
[447] Heller, Michal P., Mateos, David, van der Schee, Wilke, and Trancanelli, Diego. 2012b. Strong Coupling Isotropization of Non-Abelian Plasmas Simplified. Phys. Rev. Lett., 108, 191601. arXiv:1202.0981 [hep-th].CrossRefGoogle ScholarPubMed
[448] Heller, Michal P., Janik, Romuald A., and Witaszczyk, Przemyslaw. 2012c. The characteristics of thermalization of boost-invariant plasma from holography. Phys. Rev. Lett., 108, 201602. arXiv:1103.3452 [hep-th].CrossRefGoogle ScholarPubMed
[449] Heller, Michal P., Mateos, David, van der Schee, Wilke, and Triana, Miquel. 2013. Holographic isotropization linearized. arXiv:1304.5172 [hep-th].Google Scholar
[450] Henningson, M., and Skenderis, K. 1998. The Holographic Weyl anomaly. JHEP, 9807, 023. arXiv:hep-th/9806087 [hep-th].CrossRefGoogle Scholar
[451] Herzog, C. P., and Son, D. T. 2003. Schwinger-Keldysh propagators from AdS/CFT correspondence. JHEP, 03, 046. arXiv:hep-th/0212072.CrossRefGoogle Scholar
[452] Herzog, C. P., Karch, A., Kovtun, P., Kozcaz, C., and Yaffe, L. G. 2006. Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma. JHEP, 07, 013. arXiv:hep-th/0605158.CrossRefGoogle Scholar
[453] Herzog, Christopher P. 2006. Energy loss of heavy quarks from asymptotically AdS geometries. JHEP, 09, 032. arXiv:hep-th/0605191.CrossRefGoogle Scholar
[454] Hietanen, A., Kajantie, K., Laine, M., Rummukainen, K., and Schroder, Y. 2009. Three-dimensional physics and the pressure of hot QCD. Phys. Rev., D79, 045018. arXiv:0811.4664 [hep-lat].Google Scholar
[455] Hirano, Tetsufumi, and Tsuda, Keiichi. 2002. Collective flow and two pion correlations from a relativistic hydrodynamic model with early chemical freeze out. Phys. Rev., C66, 054905. arXiv:nucl-th/0205043.Google Scholar
[456] Hirano, Tetsufumi, Heinz, Ulrich W., Kharzeev, Dmitri, Lacey, Roy, and Nara, Yasushi. 2006. Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy ion collisions. Phys. Lett., B636, 299-304. arXiv:nucl-th/0511046.Google Scholar
[457] Hofman, Diego M., and Maldacena, Juan. 2008. Conformal collider physics: Energy and charge correlations. JHEP, 05, 012. arXiv:0803.1467 [hep-th].CrossRefGoogle Scholar
[458] Holopainen, Hannu, Niemi, Harri, and Eskola, Kari J. 2011. Event-by-event hydrodynamics and elliptic flow from fluctuating initial state. Phys. Rev., C83, 034901. arXiv:1007.0368 [hep-ph].Google Scholar
[459] Hong, Juhee, and Teaney, Derek. 2010. Spectral densities for hot QCD plasmas in a leading log approximation. Phys. Rev., C82, 044908. arXiv:1003.0699 [nucl-th].Google Scholar
[460] Hong, Sungho, Yoon, Sukjin, and Strassler, Matthew J. 2004. Quarkonium from the fifth dimension. JHEP, 04, 046. arXiv:hep-th/0312 071.CrossRefGoogle Scholar
[461] Horigome, Norio, and Tanii, Yoshiaki. 2007. Holographic chiral phase transition withchemical potential. JHEP, 01, 072. arXiv:hep-th/0608198.CrossRefGoogle Scholar
[462] Horowitz, Gary T., and Strominger, Andrew. 1991. Black strings and P-branes. Nucl. Phys., B360, 197-209.Google Scholar
[463] Horowitz, W. A., and Cole, B. A. 2010. Systematic theoretical uncertainties in jet quenching due to gluon kinematics. Phys. Rev., C81, 024909. arXiv:0910.1823 [hep-ph].Google Scholar
[464] Horowitz, W. A., and Gyulassy, M. 2008. Heavy quark jet tomography of Pb + Pb at LHC: AdS/CFT drag or pQCD energy loss?Phys. Lett., B666, 320-323. arXiv:0706.2336 [nucl-th].Google Scholar
[465] Hovdebo, J. L., Kruczenski, M., Mateos, David, Myers, Robert C., and Winters, D. J. 2005. Holographic mesons: Adding flavor to the AdS/CFT duality. Int. J. Mod. Phys., A20, 3428-3433.Google Scholar
[466] Howe, Paul S., Stelle, K. S., and Townsend, P. K. 1984. Miraculous Ultraviolet Cancellations in Supersymmetry Made Manifest. Nucl. Phys., B236, 125.CrossRefGoogle Scholar
[467] Hoyos, Carlos, Nishioka, Tatsuma, and O'Bannon, Andy. 2011. A Chiral Magnetic Effect from AdS/CFT with Flavor. JHEP, 1110, 084. arXiv:1106.4030 [hep-th].CrossRefGoogle Scholar
[468] Hoyos-Badajoz, Carlos. 2009. Drag and jet quenching of heavy quarks in a strongly coupled N = 2* plasma. JHEP, 09, 068. arXiv:0907.5036 [hep-th].CrossRefGoogle Scholar
[469] Hoyos-Badajoz, Carlos, Landsteiner, Karl, and Montero, Sergio. 2007. Holographic Meson Melting. JHEP, 04, 031. arXiv:hep-th/0612169.CrossRefGoogle Scholar
[470] Hubeny, Veronika E. 2010. Relativistic Beaming in AdS/CFT. arXiv:1011.1270 [hep-th].Google Scholar
[471] Hubeny, Veronika E. 2011. Holographic dual of collimated radiation. New J. Phys., 13, 035006. arXiv:1012.3561 [hep-th].CrossRefGoogle Scholar
[472] Hubeny, Veronika E., and Rangamani, Mukund. 2010. A Holographic view on physics out of equilibrium. Adv. High Energy Phys., 2010, 297916. arXiv:1006.3675 [hep-th].CrossRefGoogle Scholar
[473] Hubeny, Veronika E., Minwalla, Shiraz, and Rangamani, Mukund. 2011. The fluid/gravity correspondence. arXiv:1107.5780 [hep-th].Google Scholar
[474] Huot, Simon C., Jeon, Sangyong, and Moore, Guy D. 2007. Shear viscosity in weakly coupled N = 4 super Yang-Mills theory compared to QCD. Phys. Rev. Lett., 98, 172303. arXiv:hep-ph/0608062 [hep-ph].CrossRefGoogle Scholar
[475] Huovinen, Pasi, and Petreczky, Pter. 2010. QCD Equation of State and Hadron Resonance Gas. Nucl. Phys., A837, 26-53. arXiv:0912.2541 [hep-ph].Google Scholar
[476] Husain, V., Kunstatter, G., Preston, B., and Birukou, M. 2003. Anti-de Sitter gravitational collapse. Class. Quant. Grav., 20, L23-L30. arXiv:gr-qc/0210011 [gr-qc].CrossRefGoogle Scholar
[477] Husain, Viqar, and Olivier, Michel. 2001. Scalar field collapse in three-dimensional AdS space-time. Class. Quant. Grav., 18, L1-L10. arXiv:gr-qc/0008060 [gr-qc].CrossRefGoogle Scholar
[478] Hwang, Dong-il, Kim, Hong-Bin, and Yeom, Dong-han. 2012. Dynamical formation and evolution of (2+1)-dimensional charged black holes. Class. Quant. Grav., 29, 055003. arXiv:1105.1371 [gr-qc].CrossRefGoogle Scholar
[479] Iancu, E., and Mueller, A. H. 2010. Light-like mesons and deep inelastic scattering infinite-temperature AdS/CFT with flavor-. JHEP, 02, 023. arXiv:0912.223 8 [hep-th].CrossRefGoogle Scholar
[480] Idilbi, Ahmad, and Majumder, Abhijit. 2009. Extending Soft-Collinear-Effective-Theory to describe hard jets in dense QCD media. Phys. Rev., D80, 054022. arXiv:0808.1087 [hep-ph].Google Scholar
[481] Iqbal, Nabil, and Liu, Hong. 2009a. Real-time response in AdS/CFT with application to spinors. Fortsch. Phys., 57, 367-384. arXiv:0903.2596 [hep-th].CrossRefGoogle Scholar
[482] Iqbal, Nabil, and Liu, Hong. 2009b. Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm. Phys. Rev., D79, 025023. arXiv:0809.3808 [hep-th].Google Scholar
[483] Iqbal, Nabil, Liu, Hong, and Mezei, Mark. 2011. Lectures on holographic non Fermi liquids andquantum phase transitions. arXiv:1110.3814 [hep-th].Google Scholar
[484] PHENIX Collaboration, Isobe, Tadaaki. 2007. Systematic study of high- pT direct photon production with the PHENIX experiment at RHIC. J. Phys., G34, S1015-1018. arXiv:nucl-ex/0701040.Google Scholar
[485] Israel, W. 1976. Nonstationary irreversible thermodynamics: A Causal relativistic theory. Ann. Phys., 100, 310-331.CrossRefGoogle Scholar
[486] Israel, W., and Stewart, J. M. 1979. Transient relativistic thermodynamics and kinetic theory. Ann. Phys., 118, 341-372.CrossRefGoogle Scholar
[487] Itzhaki, Nissan, Maldacena, Juan Martin, Sonnenschein, Jacob, and Yankielowicz, Shimon. 1998. Supergravity and the large-N limit of theories with sixteen supercharges. Phys. Rev., D58, 046004. arXiv:hep-th/9802042.Google Scholar
[488] Itzykson, Claude, and Zuber, Jean-Bernard. 1980. Quantum Field Theory. McGraw-Hill.Google Scholar
[489] Jackiw, R. 1977. Quantum Meaning ofClassical Field Theory. Rev. Mod. Phys., 49, 681-706.CrossRefGoogle Scholar
[490] Jacobs, Peter, and Wang, Xin-Nian. 2005. Matter in extremis: Ultrarela-tivistic nuclear collisions at RHIC. Prog. Part. Nucl. Phys., 54, 443-534. arXiv:hep-ph/0405125.CrossRefGoogle Scholar
[491] Jakovac, A., Petreczky, P., Petrov, K., and Velytsky, A. 2007. Quarkonium correlators and spectral functions at zero and finite temperature. Phys. Rev., D75, 014506. arXiv:hep-lat/0 611017.Google Scholar
[492] Jalmuzna, Joanna, Rostworowski, Andrzej, and Bizon, Piotr. 2011. A Comment on AdS collapse of a scalar field in higher dimensions. Phys. Rev., D84, 085021. arXiv:1108.4539 [gr-qc].Google Scholar
[493] Janik, Romuald A. 2007. Viscous plasma evolution from gravity using AdS/CFT. Phys. Rev. Lett., 98, 022302. arXiv:hep-th/0610144 [hep-th].CrossRefGoogle Scholar
[494] Janik, Romuald A. 2011. The Dynamics of Quark-Gluon Plasma and AdS/CFT. Lect. Notes Phys., 828, 147-181. arXiv:1003.3291 [hep-th].Google Scholar
[495] Janik, Romuald A., and Peschanski, Robert B. 2006a. Asymptotic perfect fluid dynamics as a consequence of AdS/CFT. Phys. Rev., D73, 045013. arXiv:hep-th/0512162 [hep-th].Google Scholar
[496] Janik, Romuald A., and Peschanski, Robert B. 2006b. Gauge/gravity duality and thermalization of a boost-invariant perfect fluid. Phys. Rev., D74, 046007. arXiv:hep-th/0606149 [hep-th].Google Scholar
[497] Jensen, Kristan, Loganayagam, R., and Yarom, Amos. 2013. Thermodynamics, gravitational anomalies and cones. JHEP, 1302, 088. arXiv:1207.5824 [hep-th].CrossRefGoogle Scholar
[498] Jia, Jiangyong. 2012. Azimuthal anisotropy in a jet absorption model with fluctuating initial geometryin heavyion collisions. arXiv:1203.3265 [nucl-th].Google Scholar
[499] Jia, Jiangyong, and Wei, Rui. 2010. Dissecting the role of initial collision geometry for jet quenching observables in relativistic heavy ion collisions. Phys. Rev., C82, 024902. arXiv:1005.0645 [nucl-th].Google Scholar
[500] Jia, Jiangyong, Horowitz, W. A., and Liao, Jinfeng. 2011. A study of the correlations between jet quenching observables at RHIC. Phys. Rev., C84, 034904. arXiv:1101.0290 [nucl-th].Google Scholar
[501] Johnson, C. V. 2003. D-branes. Cambridge University Press.Google Scholar
[502] Kaczmarek, O., Karsch, F., Petreczky, P., and Zantow, F. 2002. Heavy Quark Anti-Quark Free Energy and the Renormalized Polyakov Loop. Phys. Lett., B543, 41-47. arXiv:hep-lat/0207002.Google Scholar
[503] Kaczmarek, O., Karsch, F., Petreczky, P., and Zantow, F. 2004a. Heavy quark free energies, potentials and the renormalized Polyakov loop. Nucl. Phys. Proc. Suppl., 129, 560-562. arXiv:hep-lat/0309121.Google Scholar
[504] Kaczmarek, O., Karsch, F., Zantow, F., and Petreczky, P. 2004b. Static quark antiquark free energy and the running coupling at finite temperature. Phys. Rev., D70, 074505. arXiv:hep-lat/0406036.Google Scholar
[505] Kaczmarek, Olaf. 2007. Screening at finite temperature and density. PoS, CPOD07, 043. arXiv:0710.0498 [hep-lat].Google Scholar
[506] Kaczmarek, Olaf, and Zantow, Felix. 2005. Static quark anti-quark interactions in zero and finite temperature QCD. I: Heavy quark free energies, running coupling and quarkonium binding. Phys. Rev., D71, 114510. arXiv:hep-lat/0503017.Google Scholar
[507] Kajantie, K., Laine, M., Rummukainen, K., and Schroder, Y. 2003. The pressure of hot QCD up to g6 1n(1/g). Phys. Rev., D67, 105008. arXiv:hep-ph/0211321.Google Scholar
[508] Kajantie, K., Tahkokallio, T., and Yee, Jung-Tay. 2007. Thermodynamics of AdS/QCD. JHEP, 0701, 019. arXiv:hep-ph/0609254 [hep-ph].CrossRefGoogle Scholar
[509] Kaminski, Matthias, Landsteiner, Karl, Mas, Javier, Shock, Jonathan P., and Tarrio, Javier. 2010. Holographic Operator Mixing and Quasinormal Modes on the Brane. JHEP, 02, 021. arXiv:0911.3610 [hep-th].CrossRefGoogle Scholar
[510] Kaminski, Matthias, et al. 2010. Quasinormal modes of massive charged flavor branes. JHEP, 03, 117. arXiv:0911.3544 [hep-th].CrossRefGoogle Scholar
[511] Kanitscheider, Ingmar, and Skenderis, Kostas. 2009. Universal hydrodynamics of nonconformal branes. JHEP, 04, 062. arXiv:0901.1487 [hep-th].CrossRefGoogle Scholar
[512] Kaplan, David M., and Michelson, Jeremy. 1996. Zero Modes for the D=11 Membrane and Five-Brane. Phys. Rev., D53, 3474-3476. arXiv:hep-th/9 510 053.Google Scholar
[513] Karch, Andreas, and Katz, Emanuel. 2002. Adding flavor to AdS/CFT. JHEP, 06, 043. arXiv:hep-th/0205236.CrossRefGoogle Scholar
[514] Karch, Andreas, and O'Bannon, Andy. 2006. Chiral transition of N = 4 super Yang-Mills with flavor on a 3-sphere. Phys. Rev., D74, 085033. arXiv:hep-th/0605120.Google Scholar
[515] Karch, Andreas, and O'Bannon, Andy. 2007a. Holographic Thermodynamics at Finite Baryon Density: Some Exact Results. JHEP, 11, 074. arXiv:0709.0570 [hep-th].CrossRefGoogle Scholar
[516] Karch, Andreas, and O'Bannon, Andy. 2007b. Metallic AdS/CFT. JHEP, 09, 024. arXiv:0705.3870 [hep-th].CrossRefGoogle Scholar
[517] Karch, Andreas, and Randall, Lisa. 2001. Open and closed string interpretation of SUSY CFT's on branes with boundaries. JHEP, 06, 063. arXiv:hep-th/0105132.CrossRefGoogle Scholar
[518] Karch, Andreas, Katz, Emanuel, Son, Dam T., and Stephanov, Mikhail A. 2006. Linear confinement and AdS/QCD. Phys. Rev., D74, 015005. arXiv:hep-ph/0602229 [hep-ph].Google Scholar
[519] Karsch, F., and Petronzio, R. 1988. χ and J/ψ Suppression in Heavy Ion Collisions and a Model for its Momentum Dependence. Z. Phys., C37, 627.Google Scholar
[520] Karsch, F., Mehr, M. T., and Satz, H. 1988. Color Screening and Deconfinement for Bound States of Heavy Quarks. Z. Phys., C37, 617.Google Scholar
[521] Karsch, F., Kharzeev, D., and Satz, H. 2006. Sequential charmonium dissociation. Phys. Lett., B637, 75-80. arXiv:hep-ph/0512239.Google Scholar
[522] Karsch, Frithjof. 2007. Properties of the Quark Gluon Plasma: A lattice perspective. Nucl. Phys., A783, 13-22. arXiv:hep-ph/0610024.Google Scholar
[523] Kats, Yevgeny, and Petrov, Pavel. 2009. Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory. JHEP, 01, 044. arXiv:0712.0743 [hep-th].CrossRefGoogle Scholar
[524] Kelly, P. F., Liu, Q., Lucchesi, C., and Manuel, C. 1994. Classical transport theory and hard thermal loops in the quark-gluon plasma. Phys. Rev., D50, 4209-4218. arXiv:hep-ph/9406285.Google Scholar
[525] Kharzeev, D., and Satz, H. 1995. Charmonium interaction in nuclear matter. Phys. Lett., B356, 365-372. arXiv:hep-ph/9504397.Google Scholar
[526] Kharzeev, D., and Zhitnitsky, A. 2007. Charge separation induced by P-odd bubbles in QCD matter. Nucl. Phys., A797, 67-79. arXiv:0706.1026 [hep-ph].Google Scholar
[527] Kharzeev, Dmitri. 2006. Parity violation in hot QCD: Why it can happen, and how to look for it. Phys. Lett., B633, 260-264. arXiv:hep-ph/0406125 [hep-ph].Google Scholar
[528] Kharzeev, Dmitri E., McLerran, Larry D., and Warringa, Harmen J. 2008. The Effects of topological charge change in heavy ion collisions: ‘Event by event P and CP violation’. Nucl. Phys., A803, 227-253. arXiv:0711.0950 [hep-ph].Google Scholar
[529] Kim, Keun-Young, Sin, Sang-Jin, and Zahed, Ismail. 2006. Dense hadronic matter in holographic QCD. arXiv:hep-th/0608046.Google Scholar
[530] Kinoshita, Shunichiro, Mukohyama, Shinji, Nakamura, Shin, and Oda, Kin-ya. 2009a. A Holographic Dual of Bjorken Flow. Prog. Theor. Phys., 121, 121-164. arXiv:0807.3797 [hep-th].CrossRefGoogle Scholar
[531] Kinoshita, Shunichiro, Mukohyama, Shinji, Nakamura, Shin, and Oda, Kin-ya. 2009b. Consistent Anti-de Sitter-Space/Conformal-Field-Theory Dual for a Time-Dependent Finite Temperature System. Phys. Rev. Lett., 102, 031601. arXiv:0901.4834 [hep-th].CrossRefGoogle ScholarPubMed
[532] Kiritsis, Elias. 2007. String theory in a nutshell. Princeton University Press.Google Scholar
[533] Kiritsis, Elias, and Taliotis, Anastasios. 2012. Multiplicities from black-hole formation in heavy-ion collisions. JHEP, 1204, 065. arXiv:1111.1931 [hep-ph].CrossRefGoogle Scholar
[534] Kirsch, Ingo. 2004. Generalizations of the AdS/CFT correspondence. Fortsch. Phys., 52, 727-826. arXiv:hep-th/0406274.CrossRefGoogle Scholar
[535] Kirsch, Ingo, and Vaman, Diana. 2005. The D3/D7 background and flavor dependence of Regge trajectories. Phys. Rev., D72, 026007. arXiv:hep-th/0505164.Google Scholar
[536] Kitazawa, Yoshihisa. 1987. Effective Lagrangian for Open Superstring from Five Point Function. Nucl. Phys., B289, 599.CrossRefGoogle Scholar
[537] Klebanov, Igor R., and Strassler, Matthew J. 2000. Supergravity and a confining gauge theory: Duality cascades and χSB-resolution of naked singularities. JHEP, 08, 052. arXiv:hep-th/0007191.CrossRefGoogle Scholar
[538] Klebanov, Igor R., and Witten, Edward. 1999. AdS/CFT correspondence and symmetrybreaking. Nucl. Phys., B556, 89-114. arXiv:hep-th/9905104.Google Scholar
[539] Kobayashi, Shinpei, Mateos, David, Matsuura, Shunji, Myers, Robert C., and Thomson, Rowan M. 2007. Holographic phase transitions at finite baryon density. JHEP, 02, 016. arXiv:hep-th/0611099.CrossRefGoogle Scholar
[540] Koch, V., Majumder, A., and Randrup, J. 2005. Baryon-strangeness correlations: A diagnostic of strongly interacting matter. Phys. Rev. Lett., 95, 182301. arXiv:nucl-th/0505052.CrossRefGoogle ScholarPubMed
[541] Kogut, J. B., and Stephanov, M. A. 2004. The phases of quantum chromodynamics: From confinement to extreme environments. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 21, 1-364.Google Scholar
[542] Kolb, P. F., Heinz, Ulrich W., Huovinen, P., Eskola, K. J., and Tuominen, K. 2001. Centrality dependence of multiplicity, transverse energy, and elliptic flow from hydrodynamics. Nucl. Phys., A696, 197-215. arXiv:hep-ph/0103234.Google Scholar
[543] Kolb, Peter F., and Heinz, Ulrich W. 2003. Hydrodynamic description of ultrarela-tivistic heavy-ion collisions. arXiv:nucl-th/0305084.Google Scholar
[544] Kopeliovich, Boris Z., Tarasov, Alexander V., and Schafer, Andreas. 1999. Bremsstrahlung of a quark propagating through a nucleus. Phys. Rev., C59, 1609-1619. arXiv:hep-ph/9808378.Google Scholar
[545] Kovacs, Stefano. 1999. N= 4 supersymmetric Yang-Mills theory and the AdS/SCFT correspondence. arXiv:hep-th/9908171.Google Scholar
[546] Kovchegov, Yuri V. 2009. Early Time Dynamics in Heavy Ion Collisions from CGC and from AdS/CFT. Nucl. Phys., A830, 395C-402C. arXiv:0907.4938 [hep-ph].Google Scholar
[547] Kovchegov, Yuri V., and Lin, Shu. 2010. Toward Thermalization in Heavy Ion Collisions at Strong Coupling. JHEP, 1003, 057. arXiv:0911.4707 [hep-th].CrossRefGoogle Scholar
[548] Kovchegov, Yuri V., and Mueller, Alfred H. 1998. Gluon production in current nucleus and nucleon nucleus collisions in a quasi-classical approximation. Nucl. Phys., B529, 451-479. arXiv:hep-ph/9802440.Google Scholar
[549] Kovchegov, Yuri V., and Taliotis, Anastasios. 2007. Early Time Dynamics in Heavy Ion Collisions from AdS/CFT Correspondence. Phys. Rev., C76, 014905. arXiv:0705.1234 [hep-ph].Google Scholar
[550] Kovner, Alex, and Wiedemann, Urs|Achim. 2001. Eikonal evolution and gluon radiation. Phys. Rev., D64, 114002. arXiv:hep-ph/0106240.Google Scholar
[551] Kovner, Alexander, and Wiedemann, UrsAchim. 2003. Gluon radiation and parton energyloss. arXiv:hep-ph/0304151.Google Scholar
[552] Kovtun, P., Son, D. T., and Starinets, A. O. 2005. Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett., 94, 111601. arXiv:hep-th/0405231 [hep-th].CrossRefGoogle ScholarPubMed
[553] Kovtun, Pavel, and Starinets, Andrei. 2006. Thermal spectral functions of strongly coupled N = 4 supersymmetric Yang-Mills theory. Phys. Rev. Lett., 96, 131601. arXiv:hep-th/0602059.CrossRefGoogle ScholarPubMed
[554] Kovtun, Pavel, Son, Dam T., and Starinets, Andrei O. 2003. Holography and hydrodynamics: Diffusion on stretched horizons. JHEP, 10, 064. arXiv:hep-th/0309213.CrossRefGoogle Scholar
[555] Kovtun, Pavel K., and Starinets, Andrei O. 2005. Quasinormal modes and holography. Phys. Rev., D72, 086009. arXiv:hep-th/0506184 [hep-th].Google Scholar
[556] Kraemmer, Ulrike, and Rebhan, Anton. 2004. Advances in perturbative thermal field theory. Rept. Prog. Phys., 67, 351. arXiv:hep-ph/0310337.CrossRefGoogle Scholar
[557] Kraus, Per, Larsen, Finn, and Trivedi, Sandip P. 1999a. The Coulomb branch of gauge theory from rotating branes. JHEP, 03, 003. arXiv:hep-th/9811120.CrossRefGoogle Scholar
[558] Kraus, Per, Larsen, Finn, and Siebelink, Ruud. 1999b. The gravitational action in asymptotically AdS and flat spacetimes. Nucl. Phys., B563, 259-278. arXiv:hep-th/9906127.Google Scholar
[559] Kruczenski, Martin, Mateos, David, Myers, Robert C., and Winters, David J. 2003. Meson spectroscopy in AdS/CFT with flavor. JHEP, 07, 049. arXiv:hep-th/0304032.CrossRefGoogle Scholar
[560] Kruczenski, Martin, Mateos, David, Myers, Robert C., and Winters, David J. 2004. Towards a holographic dual of large-Nc QCD. JHEP, 05, 041. arXiv:hep-th/0311270.CrossRefGoogle Scholar
[561] Kruczenski, Martin Zayas, Leopoldo, A. Pando, Sonnenschein, Jacob, and Vaman, Diana. 2005. Regge trajectories for mesons in the holographic dual of large-Nc QCD. JHEP, 06, 046. arXiv:hep-th/0410035.CrossRefGoogle Scholar
[562] Laine, M. 2009. How to compute the thermal quarkonium spectral function from first principles?Nucl. Phys., A820, 25C-32C. arXiv:0810.1112 [hep-ph].Google Scholar
[563] Laine, M., Philipsen, O., Romatschke, P., and Tassler, M. 2007. Real-time static potential in hot QCD. JHEP, 03, 054. arXiv:hep-ph/0611300.CrossRefGoogle Scholar
[564] Laine, Mikko, Moore, Guy D., Philipsen, Owe, and Tassler, Marcus. 2009. Heavy Quark Thermalization in Classical Lattice Gauge Theory: Lessons for Strongly-Coupled QCD. JHEP, 0905, 014. arXiv:0902.2856 [hep-ph].CrossRefGoogle Scholar
[565] Landau, L. D. 1953. On the multiparticle production in high-energy collisions. Izv. Akad. NaukSer. Fiz., 17, 51.Google Scholar
[566] Landau, L. D., and Lifshitz, E. M. 1976. Course of Theoretical Physics. Vol. 1: Mechanics, 3rd edition. Butterworth-Heinemann.Google Scholar
[567] Landau, L. D., and Lifshitz, E. M. 1987. Course of Theoretical Physics. Vol. 6: Fluid Mechanics, 2nd edition. Butterworth-Heinemann.Google Scholar
[568] Landsteiner, Karl, Megias, Eugenio, and Pena-Benitez, Francisco. 2011a. Gravitational Anomaly and Transport. Phys. Rev. Lett., 107, 021601. arXiv:1103.5006 [hep-ph].CrossRefGoogle ScholarPubMed
[569] Landsteiner, Karl, Megias, Eugenio, Melgar, Luis, and Pena-Benitez, Francisco. 2011b. Holographic Gravitational Anomaly and Chiral Vortical Effect. JHEP, 1109, 121. arXiv:1107.0368 [hep-th].CrossRefGoogle Scholar
[570] Landsteiner, Karl, Megias, Eugenio, and Pena-Benitez, Francisco. 2012. Anomalous Transport from Kubo Formulae. arXiv:1207.5808 [hep-th].Google Scholar
[571] LeBellac, M. 1996. Thermal Field Theory. Cambridge University Press.CrossRefGoogle Scholar
[572] Lee, Sung-Sik. 2010. Holographic description of quantum field theory. Nucl. Phys., B832, 567-585. arXiv:0912.5223 [hep-th].Google Scholar
[573] Lee, Sung-Sik. 2012a. Background independent holographic description: From matrix field theory to quantum gravity. JHEP, 1210, 160. arXiv:1204.1780 [hep-th].CrossRefGoogle Scholar
[574] Lee, Sung-Sik. 2012b. Holographic Matter: Deconfined String at Criticality. Nucl. Phys., B862, 781-820. arXiv:1108.2253 [hep-th].Google Scholar
[575] Leigh, R. G. 1989. Dirac-Born-Infeld Action from Dirichlet Sigma Model. Mod. Phys. Lett., A4, 2767.Google Scholar
[576] Liang, Zuo-tang, Wang, Xin-Nian, and Zhou, Jian. 2008. The Transverse-momentum-dependent Parton Distribution Function and Jet Transport in Medium. Phys. Rev., D77, 125010. arXiv:0801.0434 [hep-ph].Google Scholar
[577] Liao, Jinfeng, and Shuryak, Edward. 2009. Angular Dependence of Jet Quenching Indicates Its Strong Enhancement Near the QCD Phase Transition. Phys. Rev. Lett., 102, 202302. arXiv:0810.4116 [nucl-th].CrossRefGoogle ScholarPubMed
[578] Lifshitz, E. M., and Pitaevskii, L. P. 1981. Physical Kinetics. Butterworth Heinemann.Google Scholar
[579] Lin, Feng-Li, and Matsuo, Toshihiro. 2006. Jet quenching parameter in medium with chemical potential from AdS/CFT. Phys. Lett., B641, 45-49. arXiv:hep-th/0606136.Google Scholar
[580] Lin, Shu, and Shuryak, Edward. 2009. Grazing Collisions of Gravitational Shock Waves and Entropy Production in Heavy Ion Collision. Phys. Rev., D79, 124015. arXiv:0902.1508 [hep-th].Google Scholar
[581] Liu, Hong, and Tseytlin, Arkady A. 1998. D = 4 super Yang-Mills, D = 5 gauged supergravity, and D = 4 conformal supergravity. Nucl. Phys., B533, 88-108. arXiv:hep-th/9804083.Google Scholar
[582] Liu, Hong, Rajagopal, Krishna, and Wiedemann, Urs|Achim. 2006. Calculating the jet quenching parameter from AdS/CFT. Phys. Rev. Lett., 97, 182301. arXiv:hep-ph/0 605178.CrossRefGoogle Scholar
[583] Liu, Hong, Rajagopal, Krishna, and Wiedemann, Urs|Achim. 2007a. An AdS/CFT calculation of screening in a hot wind. Phys. Rev. Lett., 98, 182301. arXiv:hep-ph/0607062.CrossRefGoogle Scholar
[584] Liu, Hong, Rajagopal, Krishna, and Wiedemann, Urs Achim. 2007b. Wilson loops in heavy ion collisions and their calculation in AdS/CFT. JHEP, 03, 066. arXiv:hep-ph/0 612168.CrossRefGoogle Scholar
[585] Liu, Hong, Rajagopal, Krishna, and Shi, Yeming. 2008. Robustness and Infrared Sensitivity of Various Observables in the Application of AdS/CFT to Heavy Ion Collisions. JHEP, 08, 048. arXiv:0803.3214 [hep-ph].CrossRefGoogle Scholar
[586] Lublinsky, Michael, and Shuryak, Edward. 2007. How much entropyis producedin strongly coupled Quark-Gluon Plasma (sQGP) by dissipative effects?Phys. Rev., C76, 021901. arXiv:0704.1647 [hep-ph].Google Scholar
[587] Lust, D., and Theisen, S. 1989. Lectures on string theory. Lect. Notes Phys., 346, 1-346.Google Scholar
[588] Luzum, Matthew. 2011. Flow fluctuations and long-range correlations: elliptic flow and beyond. J. Phys., G38, 124026. arXiv:1107.0592 [nucl-th].CrossRefGoogle Scholar
[589] Luzum, Matthew, and Romatschke, Paul. 2008. Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at GeV. Phys. Rev., C78, 034915. arXiv:0804.4015 [nucl-th].Google Scholar
[590] Luzum, Matthew, and Romatschke, Paul. 2009. Viscous Hydrodynamic Predictions for Nuclear Collisions at the LHC. Phys. Rev. Lett., 103, 262302. arXiv:0901.4588 [nucl-th].CrossRefGoogle ScholarPubMed
[591] Majumder, A., and Van Leeuwen, M. 2011. The Theory and Phenomenology of Perturbative QCD Based Jet Quenching. Prog. Part. Nucl. Phys., A66, 41-92. arXiv:1002.2206 [hep-ph].Google Scholar
[592] Majumder, A., Nonaka, C., and Bass, S. A. 2007. Jet modification in three dimensional fluid dynamics at next-to-leadingtwist. Phys. Rev., C76, 041902. arXiv:nucl-th/0703019.Google Scholar
[593] Maldacena, J. M. 2003a. Eternal black holes in Anti-de-Sitter. JHEP, 04, 021. arXiv:hep-th/0106112.CrossRefGoogle Scholar
[594] Maldacena, Juan Martin. 1998a. The large-N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2, 231-252. arXiv:hep-th/9711200.CrossRefGoogle Scholar
[595] Maldacena, Juan Martin. 1998b. Wilson loops in large-N field theories. Phys. Rev. Lett., 80, 4859-4862. arXiv:hep-th/9803002.CrossRefGoogle Scholar
[596] Maldacena, Juan Martin. 2003b. Lectures on AdS/CFT. arXiv:hep-th/0309246.Google Scholar
[597] Maldacena, Juan Martin, and Nunez, Carlos. 2001. Towards the large-N limit of pure N = 1 super Yang Mills. Phys. Rev. Lett., 86, 588-591. arXiv:hep-th/0008001.CrossRefGoogle ScholarPubMed
[598] Mandelstam, Stanley. 1983. Light Cone Superspace and the Ultraviolet Finiteness of the N = 4 Model. Nucl. Phys., B213, 149-168.Google Scholar
[599] Manohar, Aneesh V. 1998. Large-N QCD. arXiv:hep-ph/9802419.Google Scholar
[600] Mas, Javier, and Tarrio, Javier. 2007. Hydrodynamics from the Dp-brane. JHEP, 05, 036. arXiv:hep-th/0703093.CrossRefGoogle Scholar
[601] Mateos, David. 2007. String Theory and Quantum Chromodynamics. Class. Quant. Grav., 24, S713-S740. arXiv:0709.1523 [hep-th].CrossRefGoogle Scholar
[602] Mateos, David. 2010. Lectures on the gauge/string duality with emphasis on spectroscopy. AIP Conf. Proc., 1296, 1-34.Google Scholar
[603] Mateos, David. 2011. Gauge/string duality applied to heavy ion collisions: Limitations, insights and prospects. J. Phys., G38, 124030. arXiv:1106.3295 [hep-th].Google Scholar
[604] Mateos, David, and Patino, Leonardo. 2007. Bright branes for strongly coupled plasmas. JHEP, 11, 025. arXiv:0709.2168 [hep-th].Google Scholar
[605] Mateos, David, Myers, Robert C., and Thomson, Rowan M. 2006. Holographic phase transitions with fundamental matter. Phys. Rev. Lett., 97, 091601. arXiv:hep-th/0605046.CrossRefGoogle ScholarPubMed
[606] Mateos, David, Matsuura, Shunji, Myers, Robert C., and Thomson, Rowan M. 2007a. Holographic phase transitions at finite chemical potential. JHEP, 11, 085. arXiv:0709.1225 [hep-th].Google Scholar
[607] Mateos, David, Myers, Robert C., and Thomson, Rowan M. 2007b. Holographic viscosity of fundamental matter. Phys. Rev. Lett., 98, 101601. arXiv:hep-th/0610184.CrossRefGoogle ScholarPubMed
[608] Mateos, David, Myers, Robert C., and Thomson, Rowan M. 2007c. Thermodynamics of the brane. JHEP, 05, 067. arXiv:hep-th/0701132.Google Scholar
[609] Matsui, T., and Satz, H. 1986. J/ψ Suppression by Quark-Gluon Plasma Formation. Phys. Lett., B178, 416.CrossRefGoogle Scholar
[610] Matsuo, Toshihiro, Tomino, Dan, and Wen, Wen-Yu. 2006. Drag force in SYM plasma with B field from AdS/CFT. JHEP, 10, 055. arXiv:hep-th/0607178.CrossRefGoogle Scholar
[611] McLerran, Larry D., and Svetitsky, Benjamin. 1981. Quark Liberation at High Temperature: A Monte Carlo Study of SU(2) Gauge Theory. Phys. Rev., D24, 450.Google Scholar
[612] Mehtar-Tani, Yacine, Salgado, Carlos A., and Tywoniuk, Konrad. 2012a. The Radiation pattern of a QCD antenna in a dense medium. JHEP, 1210, 197. arXiv:1205.5739 [hep-ph].CrossRefGoogle Scholar
[613] Mehtar-Tani, Yacine, Salgado, Carlos A., and Tywoniuk, Konrad. 2012b. The radiation pattern of a QCD antenna in a dilute medium. JHEP, 1204, 064. arXiv:1112.5031 [hep-ph].CrossRefGoogle Scholar
[614] Meyer, Harvey B. 2007. A calculation of the shear viscosity in SU(3) gluodynamics. Phys. Rev., D76, 101701. arXiv:0704.1801 [hep-lat].Google Scholar
[615] Meyer, Harvey B. 2008. A calculation of the bulk viscosity in SU(3) gluodynamics. Phys. Rev. Lett., 100, 162001. arXiv:0710.3717 [hep-lat].CrossRefGoogle ScholarPubMed
[616] Meyer, Harvey B. 2009. Transport properties of the quark-gluon plasma from lattice QCD. Nucl. Phys., A830, 641c-648c. arXiv:0907.4095 [hep-lat].Google Scholar
[617] Mezincescu, L., and Townsend, P. K. 1985. Stability at a Local Maximum in Higher Dimensional Anti-de Sitter Space and Applications to Supergravity. Ann. Phys., 160, 406.CrossRefGoogle Scholar
[618] Mikhailov, Andrei. 2003. Nonlinear waves in AdS/CFT correspondence. arXiv:hep-th/0305196.Google Scholar
[619] Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1973. Gravitation. Freeman.Google Scholar
[620] Mocsy, Agnes. 2009. Potential Models for Quarkonia. Eur. Phys. J., C61, 705-710. arXiv:0811.0337 [hep-ph].Google Scholar
[621] Mocsy, Agnes, and Petreczky, Peter. 2006. Quarkonia correlators above deconfinement. Phys. Rev., D73, 074007. arXiv:hep-ph/0512156.Google Scholar
[622] Mocsy, Agnes, and Petreczky, Peter. 2007. Color Screening Melts Quarkonium. Phys. Rev. Lett., 99, 211602. arXiv:0706.2183 [hep-ph].CrossRefGoogle ScholarPubMed
[623] Mocsy, Agnes, and Petreczky, Peter. 2008. Can quarkonia survive deconfinement?Phys. Rev., D77, 014501. arXiv:0705.2559 [hep-ph].Google Scholar
[624] Molnar, Denes, and Gyulassy, Miklos. 2002. Saturation of elliptic flow at RHIC: Results from the covariant elastic parton cascade model MPC. Nucl. Phys., A697, 495-520. arXiv:nucl-th/0104073.Google Scholar
[625] Molnar, Denes, and Huovinen, Pasi. 2008. Dissipative effects from transport and viscous hydrodynamics. J. Phys., G35, 104125. arXiv:0806.1367 [nucl-th].Google Scholar
[626] Molnar, Denes, and Sun, Deke. 2012. Realistic medium-averaging in radiative energy loss. arXiv:1209.2430 [nucl-th].Google Scholar
[627] Moore, Guy D., and Sohrabi, Kiyoumars A. 2011. Kubo Formulae for Second-Order Hydrodynamic Coefficients. Phys. Rev. Lett., 106, 122302. arXiv:1007.5333 [hep-ph].CrossRefGoogle Scholar
[628] Moore, Guy D., and Teaney, Derek. 2005. How much do heavy quarks thermalize in a heavy ion collision?Phys. Rev., C71, 064904. arXiv:hep-ph/0412346.Google Scholar
[629] ALICE Collaboration, Morsch, Andreas.2012. Jet-Like Near-Side Peak Shapes in Pb-Pb Collisions at. = 2. 76 TeV with ALICE. Nucl. Phys. A. arXiv:1207.7187 [nucl-ex].
[630] Mueller, A. H., Shoshi, A. I., and Xiao, Bo-Wen. 2009. Deep inelastic and dipole scattering on finite length hot N = 4 SYM matter. Nucl. Phys., A822, 20-40. arXiv:0812.2897 [hep-th].Google Scholar
[631] Mueller, I. 1967. Zum Paradoxon der Waermeleitungstheorie. Z.Phys., 198, 329.CrossRefGoogle Scholar
[632] Muronga, Azwinndini. 2002. Second order dissipative fluid dynamics for ultra- relativistic nuclear collisions. Phys. Rev. Lett., 88, 062302. arXiv:nucl-th/0104064.CrossRefGoogle Scholar
[633] Muronga, Azwinndini. 2004. Causal Theories of Dissipative Relativistic Fluid Dynamics for Nuclear Collisions. Phys. Rev., C69, 034903. arXiv:nucl-th/0309055.Google Scholar
[634] Muronga, Azwinndini, and Rischke, Dirk H. 2004. Evolution of hot, dissipative quark matter in relativistic nuclear collisions. arXiv:nucl-th/0407114.Google Scholar
[635] Myers, Robert C. 1999. Stress tensors and Casimir energies in the AdS/CFT correspondence. Phys. Rev., D60, 046002. arXiv:hep-th/9903203.Google Scholar
[636] Myers, Robert C., and Sinha, Aninda. 2008. The fast life of holographic mesons. JHEP, 06, 052. arXiv:0804.2168 [hep-th].Google Scholar
[637] Myers, Robert C., and Thomson, Rowan M. 2006. Holographic mesons in various dimensions. JHEP, 09, 066. arXiv:hep-th/0605017.Google Scholar
[638] Myers, Robert C., Starinets, Andrei O., and Thomson, Rowan M. 2007. Holographic spectral functions and diffusion constants for fundamental matter. JHEP, 11, 091. arXiv:0706.0162 [hep-th].Google Scholar
[639] Myers, Robert C., Paulos, Miguel F., and Sinha, Aninda. 2009a. Holographic Hydrodynamics with a Chemical Potential. JHEP, 0906, 006. arXiv:0903.2834 [hep-th].Google Scholar
[640] Myers, Robert C., Paulos, Miguel F., and Sinha, Aninda. 2009b. Quantum corrections to μ/s. Phys. Rev., D79, 041901. arXiv:0806.2156 [hep-th].Google Scholar
[641] Nadkarni, Sudhir. 1986. Nonabelian Debye Screening. 1. The Color Averaged Potential. Phys. Rev., D33, 3738.Google Scholar
[642] Nakamura, Shin, and Sin, Sang-Jin. 2006. A Holographic dual of hydrodynamics. JHEP, 0609, 020. arXiv:hep-th/0607123 [hep-th].Google Scholar
[643] Nakamura, Shin, Seo, Yunseok, Sin, Sang-Jin, and Yogendran, K. P. 2008a. A new phase at finite quark density from AdS/CFT. J. Korean Phys. Soc., 52, 1734-1739. arXiv:hep-th/0 611021.CrossRefGoogle Scholar
[644] Nakamura, Shin, Seo, Yunseok, Sin, Sang-Jin, and Yogendran, K. P. 2008b. Baryon-charge Chemical Potential in AdS/CFT. Prog. Theor. Phys., 120, 51-76. arXiv:0708.2818 [hep-th].CrossRefGoogle Scholar
[645] Nakano, Eiji, Teraguchi, Shunsuke, and Wen, Wen-Yu. 2007. Drag Force, Jet Quenching, and AdS/QCD. Phys. Rev., D75, 085016. arXiv:hep-ph/0608274.Google Scholar
[646] Natsuume, Makoto, and Okamura, Takashi. 2007. Screening length and the direction of plasma winds. JHEP, 09, 039. arXiv:0706.0086 [hep-th].Google Scholar
[647] Necco, Silvia, and Sommer, Rainer. 2002. The Nf = 0 heavy quark potential from short to intermediate distances. Nucl. Phys., B622, 328-346. arXiv:hep-lat/0108008.Google Scholar
[648] Neufeld, R. B. 2008. Fast Partons as a Source of Energy and Momentum in a Perturbative Quark-Gluon Plasma. Phys. Rev., D78, 085015. arXiv:0805.0385 [hep-ph].Google Scholar
[649] Neufeld, R. B. 2009. Mach cones in the quark-gluon plasma: Viscosity, speed of sound, and effects of finite source structure. Phys. Rev., C79, 054909. arXiv:0807.2996 [nucl-th].Google Scholar
[650] Neufeld, R. B., and Muller, B. 2009. The sound produced by a fast parton in the quark-gluon plasma is a ‘crescendo’. Phys. Rev. Lett., 103, 042301. arXiv:0902.2950 [nucl-th].CrossRefGoogle Scholar
[651] Neufeld, R. B., and Renk, Thorsten. 2010. The Mach cone signal and energy deposition scenarios in linearized hydrodynamics. Phys. Rev., C82, 044903. arXiv:1001.5068 [nucl-th].Google Scholar
[652] Neufeld, R. B., Muller, Berndt, and Ruppert, J. 2008. Sonic Mach Cones Induced by Fast Partons in a Perturbative Quark-Gluon Plasma. Phys. Rev., C78, 041901. arXiv:0802.2254 [hep-ph].Google Scholar
[653] Nishioka, Tatsuma, and Takayanagi, Tadashi. 2007. Free Yang-Mills vs. Toric Sasaki-Einstein. Phys. Rev., D76, 044004. arXiv:hep-th/0702194.Google Scholar
[654] Nonaka, Chiho, and Bass, Steffen A. 2007. Space-time evolution of bulk QCD matter. Phys. Rev., C75, 014902. arXiv:nucl-th/0607018.Google Scholar
[655] Noronha, Jorge, Torrieri, Giorgio, and Gyulassy, Miklos. 2008. Near Zone Navier-Stokes Analysis of Heavy Quark Jet Quenching in an N= 4 SYM Plasma. Phys. Rev., C78, 024903. arXiv:0712.1053 [hep-ph].Google Scholar
[656] Noronha, Jorge, Gyulassy, Miklos, and Torrieri, Giorgio. 2009a. Constraints on AdS/CFT Gravity Dual Models of Heavy Ion Collisions. arXiv:0906.4099 [hep-ph].Google Scholar
[657] Noronha, Jorge, Gyulassy, Miklos, and Torrieri, Giorgio. 2009b. Dijet Conical Correlations Associated with Heavy Quark Jets in anti-de Sitter Space/Conformal Field Theory Correspondence. Phys. Rev. Lett., 102, 102301. arXiv:0807.1038 [hep-ph].CrossRefGoogle Scholar
[658] Noronha, Jorge, Gyulassy, Miklos, and Torrieri, Giorgio. 2010. Conformal Holography ofBulk Elliptic Flow and Heavy Quark Quenching in Relativistic Heavy Ion Collisions. Phys. Rev., C82, 054903. arXiv:1009.2286 [nucl-th].Google Scholar
[659] Nunez, Carlos, Paredes, Angel, and Ramallo, Alfonso V. 2010. Unquenched flavor in the gauge/gravity correspondence. Adv. High Energy Phys., 2010, 196714. arXiv:1002.1088 [hep-th].CrossRefGoogle Scholar
[660] STAR Collaboration, Ohlson, Alice. 2011. Jet-hadron correlations in STAR. J. Phys., G38, 124159. arXiv:1106.6243 [nucl-ex].
[661] Ollitrault, J. Y. 2006. Nucleus nucleus collisions at RHIC: A review. Pramana, 67, 899-914.CrossRefGoogle Scholar
[662] Pal, Shesansu Sekhar. 2010. μ/s at finite coupling. Phys. Rev., D81, 045005. arXiv:0910.0101 [hep-th].Google Scholar
[663] Panero, Marco. 2009. Thermodynamics of the QCD plasma and the large-N limit. Phys. Rev. Lett., 103, 232001. arXiv:0907.3719 [hep-lat].CrossRefGoogle ScholarPubMed
[664] Papadimitriou, Ioannis, and Skenderis, Kostas. 2004. AdS/CFT correspondence and geometry. 73-101. arXiv:hep-th/0404176 [hep-th].Google Scholar
[665] Papadimitriou, Ioannis, and Skenderis, Kostas. 2005. Thermodynamics of asymptotically locally AdS spacetimes. JHEP, 0508, 004. arXiv:hep-th/050519 0 [hep-th].Google Scholar
[666] Paredes, Angel, and Talavera, Pere. 2005. Multiflavor excited mesons from the fifth dimension. Nucl. Phys., B713, 438-464. arXiv:hep-th/0412260.Google Scholar
[667] Paredes, Angel, Peeters, Kasper, and Zamaklar, Marija. 2008. Mesons versus quasinormal modes: undercooling and overheating. JHEP, 05, 027. arXiv:0803.0759 [hep-th].Google Scholar
[668] Park, Chanyong. 2010. The dissociation of a heavy meson in the quark medium. Phys. Rev., D81, 045009. arXiv:0907.0064 [hep-ph].Google Scholar
[669] Parnachev, Andrei, and Sahakyan, David A. 2006. Chiral phase transition from string theory. Phys. Rev. Lett., 97, 111601. arXiv:hep-th/0604173.CrossRefGoogle ScholarPubMed
[670] Parnachev, Andrei, and Sahakyan, David A. 2007. Photoemission with Chemical Potential from QCD Gravity Dual. Nucl. Phys., B768, 177-192. arXiv:hep-th/0610247.Google Scholar
[671] Peet, Amanda W., and Polchinski, Joseph. 1999. UV/IR relations in AdS dynamics. Phys. Rev., D59, 065011. arXiv:hep-th/9809022.Google Scholar
[672] Peeters, Kasper, and Zamaklar, Marija. 2007. The string/gauge theory correspondence in QCD. Eur. Phys. J. ST, 152, 113-138. arXiv:0708.1502 [hep-ph].CrossRefGoogle Scholar
[673] Peeters, Kasper, Sonnenschein, Jacob, and Zamaklar, Marija. 2006a. Holographic decays of large-spin mesons. JHEP, 02, 009. arXiv:hep-th/0511044.Google Scholar
[674] Peeters, Kasper, Sonnenschein, Jacob, and Zamaklar, Marija. 2006b. Holographic melting and related properties of mesons in a quark gluon plasma. Phys. Rev., D74, 106008. arXiv:hep-th/0606195.Google Scholar
[675] Peng, Jun-Jin, and Wu, Shuang-Qing. 2008. Covariant anomalies and Hawking radiation from charged rotating black strings in anti-de Sitter spacetimes. Phys. Lett., B661, 300-306. arXiv:0801.0185 [hep-th].Google Scholar
[676] Petreczky, P. 2009. Lattice QCD at finite temperature: Present status. Nucl. Phys., A830, 11C-18C. arXiv:0908.1917 [hep-ph].Google Scholar
[677] Petreczky, P., and Petrov, K. 2004. Free energy of a static quark anti-quark pair and the renormalized Polyakov loop in three flavorQCD. Phys. Rev., D70, 054503. arXiv:hep-lat/0405009.Google Scholar
[678] Petreczky, Peter. 2010. Quarkonium in HotMedium. J. Phys., G37, 094009. arXiv:1001.5284 [hep-ph].Google Scholar
[679] Petreczky, Peter, Miao, Chuan, and Mocsy, Agnes. 2011. Quarkonium spectral functions with complex potential. Nucl. Phys., A855, 125-132. arXiv:1012.4433 [hep-ph].Google Scholar
[680] Philipsen, Owe. 2002. Non-perturbative formulation of the static color octet potential. Phys. Lett., B535, 138-144. arXiv:hep-lat/0203018.Google Scholar
[681] Pineda, A., and Soto, J. 1998. Effective field theory for ultrasoft momenta in NRQCD and NRQED. Nucl. Phys. Proc. Suppl., 64, 428-432. arXiv:hep-ph/9707481.CrossRefGoogle Scholar
[682] Podolsky, Jiri. 1998. Interpretation of the Siklos solutions as exact gravitational waves in the anti-de Sitter universe. Class. Quant. Grav., 15, 719-733. arXiv:gr-qc/9801052 [gr-qc].CrossRefGoogle Scholar
[683] Poisson, E. 2004. A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press.CrossRefGoogle Scholar
[684] Pokorski, Stefan. 2000. Gauge Field Theories, 2nd edition. Cambridge University Press.CrossRefGoogle Scholar
[685] Polchinski, J. 1998. String theory. Vol. 1 & 2. Cambridge University Press.Google Scholar
[686] Polchinski, Joseph. 1995. Dirichlet-Branes and Ramond-Ramond Charges. Phys. Rev. Lett., 75, 4724-4727. arXiv:hep-th/9510 017.CrossRefGoogle ScholarPubMed
[687] Polchinski, Joseph. 2010. Introduction to Gauge/Gravity Duality. arXiv:1010.6134 [hep-th].Google Scholar
[688] Polchinski, Joseph, and Strassler, Matthew J. 2000. The string dual of a confining four-dimensional gauge theory. arXiv:hep-th/0003136.Google Scholar
[689] Polchinski, Joseph, and Strassler, Matthew J. 2002. Hard scattering and gauge/string duality. Phys. Rev. Lett., 88, 031601. arXiv:hep-th/0109174 [hep-th].CrossRefGoogle ScholarPubMed
[690] Policastro, G., Son, D. T., and Starinets, A. O. 2001. The Shear viscosity of strongly coupled N = 4 supersymmetric Yang–Mills plasma. Phys. Rev. Lett., 87, 081601. arXiv:hep-th/0104066 [hep-th].CrossRefGoogle ScholarPubMed
[691] Policastro, Giuseppe, Son, Dam T., and Starinets, Andrei O. 2002a. From AdS/CFT correspondence to hydrodynamics. 2. Sound waves. JHEP, 0212, 054. arXiv:hep-th/0210220 [hep-th].Google Scholar
[692] Policastro, Giuseppe, Son, Dam T., and Starinets, Andrei O. 2002b. From AdS/CFT correspondence to hydrodynamics. JHEP, 0209, 043. arXiv:hep-th/0205052 [hep-th].Google Scholar
[693] Polyakov, Alexander M. 1987. Gauge Fields and Strings. Harwood.Google Scholar
[694] Polyakov, Alexander M. 1999. The wall of the cave. Int. J. Mod. Phys., A14, 645-658. arXiv:hep-th/9809057.Google Scholar
[695] Prakash, Madappa, Prakash, Manju, Venugopalan, R., and Welke, G. 1993. Nonequilibrium properties of hadronic mixtures. Phys. Rept., 227, 321-366.CrossRefGoogle Scholar
[696] Pretorius, Frans, and Choptuik, Matthew W. 2000. Gravitational collapse in (2+1)-dimensional AdS space-time. Phys. Rev., D62, 124012. arXiv:gr-qc/0007008 [gr-qc].Google Scholar
[697] Price, Richard H., and Pullin, Jorge. 1994. Colliding black holes: The Close limit. Phys. Rev. Lett., 72, 3297-3300. arXiv:gr-qc/9402039 [gr-qc].CrossRefGoogle ScholarPubMed
[698] Qin, Guang-You. 2011. Jet shower evolution in medium and dijet asymmetry in Pb+Pb collisions at the LHC. J. Phys., G38, 124158. arXiv:1107.0631 [hep-ph].Google Scholar
[699] Qin, Guang-You, and Muller, Berndt. 2011. Explanation of Dijet asymmetry in Pb+Pb collisions at the Large Hadron Collider. Phys. Rev. Lett., 106, 162302. arXiv:1012.5280 [hep-ph].CrossRefGoogle ScholarPubMed
[700] Qin, Guang-You, et al. 2008. Radiative and Collisional Jet Energy Loss in the Quark- Gluon Plasma at RHIC. Phys. Rev. Lett., 100, 072301. arXiv:0710.0605 [hep-ph].CrossRefGoogle Scholar
[701] Qiu, Zhi, Shen, Chun, and Heinz, Ulrich. 2012. Hydrodynamic elliptic and triangular flow in Pb-Pb collisions at = 2.76 ATeV. Phys. Lett., B707, 151-155. arXiv:1110.3033 [nucl-th].Google Scholar
[702] Rajagopal, Krishna, and Tripuraneni, Nilesh. 2010. Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion. JHEP, 1003, 018. arXiv:0908.1785 [hep-ph].Google Scholar
[703] Rajaraman, R. 1982. Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory. North Holland.Google Scholar
[704] Ramallo, Alfonso V. 2006. Adding open string modes to the gauge/gravity correspondence. Mod. Phys. Lett., A21, 1481-1494. arXiv:hep-th/0605261.Google Scholar
[705] Rangamani, Mukund. 2009. Gravity and Hydrodynamics: Lectures on the fluid-gravity correspondence. Class. Quant. Grav., 26, 224003. arXiv:0905.4352 [hep-th].CrossRefGoogle Scholar
[706] Rapp, Ralf, and van Hees, Hendrik. 2009. Heavy Quarks in the Quark-Gluon Plasma. arXiv:0903.1096 [hep-ph].Google Scholar
[707] Ratti, Claudia, Bellwied, Rene, Cristoforetti, Marco, and Barbaro, Maria. 2012. Are there hadronic bound states above the QCD transition temperature?Phys. Rev., D85, 014004. arXiv:1109.6243 [hep-ph].Google Scholar
[708] Renk, Thorsten, and Ruppert, Jorg. 2006. Mach cones in an evolving medium. Phys. Rev., C73, 011901. arXiv:hep-ph/0509036.Google Scholar
[709] Renk, Thorsten, and Ruppert, Jorg. 2007. The rapidity structure of Mach cones and other large angle correlations in heavy-ion collisions. Phys. Lett., B646, 19-23. arXiv:hep-ph/0605330.Google Scholar
[710] Renk, Thorsten, Ruppert, Jorg, Nonaka, Chiho, and Bass, Steffen A. 2007. Jet-quenching in a 3D hydrodynamic medium. Phys. Rev., C75, 031902. arXiv:nucl-th/0611027.Google Scholar
[711] Rey, Soo-Jong, and Yee, Jung-Tay. 2001. Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity. Eur. Phys. J., C22, 379-394. arXiv:hep-th/9803001.Google Scholar
[712] Rey, Soo-Jong, Theisen, Stefan, and Yee, Jung-Tay. 1998. Wilson-Polyakov loop at finite temperature in large-N gauge theory and anti-de Sitter supergravity. Nucl. Phys., B527, 171-186. arXiv:hep-th/9803135.Google Scholar
[713] Rischke, D. H., Stoecker, Horst, and Greiner, W. 1990. Flow in Conical Shock Waves: a Signal for the Deconfinement Transition?Phys. Rev., D42, 2283-2292.Google Scholar
[714] Romatschke, Paul. 2010a. New Developments in Relativistic Viscous Hydrodynamics. Int. J. Mod. Phys., E19, 1-53. arXiv:09 02. 3 663 [hep-ph].Google Scholar
[715] Romatschke, Paul. 2010b. Relativistic Viscous Fluid Dynamics and Non-Equilibrium Entropy. Class. Quant. Grav., 27, 025006. arXiv:0906.4787 [hep-th].CrossRefGoogle Scholar
[716] Romatschke, Paul, and Romatschke, Ulrike. 2007. Viscosity Information from Relativistic Nuclear Collisions: How Perfect is the Fluid Observed at RHIC?Phys. Rev. Lett., 99, 172301. arXiv:0706.1522 [nucl-th].CrossRefGoogle ScholarPubMed
[717] Rothkopf, Alexander, Hatsuda, Tetsuo, and Sasaki, Shoichi. 2012. Complex Heavy-Quark Potential at Finite Temperature from Lattice QCD. Phys. Rev. Lett., 108, 162001. arXiv:1108.1579 [hep-lat].CrossRefGoogle ScholarPubMed
[718] Rozali, Moshe, Shieh, Hsien-Hang, Van Raamsdonk, Mark, and Wu, Jackson. 2008. Cold Nuclear Matter In Holographic QCD. JHEP, 01, 053. arXiv:07 08. 1322 [hep-th].Google Scholar
[719] Ruppert, Jorg, and Muller, Berndt. 2005. Waking the colored plasma. Phys. Lett., B618, 123-130. arXiv:hep-ph/0503158.Google Scholar
[720] Russo, Jorge G. 1999. New compactifications of supergravities and large-N QCD. Nucl. Phys., B543, 183-197. arXiv:hep-th/9808117.Google Scholar
[721] Sakai, Tadakatsu, and Sugimoto, Shigeki. 2005a. Low energy hadron physics in holographic QCD. Prog. Theor. Phys., 113, 843-882. arXiv:hep-th/0412141.CrossRefGoogle Scholar
[722] Sakai, Tadakatsu, and Sugimoto, Shigeki. 2005b. More on a holographic dual of QCD. Prog. Theor. Phys., 114, 1083-1118. arXiv:hep-th/0507073.CrossRefGoogle Scholar
[723] Salgado, Carlos A., and Wiedemann, Urs Achim. 2002. A dynamical scaling law for jet tomography. Phys. Rev. Lett., 89, 092303. arXiv:hep-ph/0204221.CrossRefGoogle ScholarPubMed
[724] Salgado, Carlos A., and Wiedemann, Urs Achim. 2003. Calculating quenching weights. Phys. Rev., D68, 014008. arXiv:hep-ph/0302184.Google Scholar
[725] Saremi, Omid. 2007. Shear waves, sound waves on a shimmering horizon. arXiv:hep-th/0703170.Google Scholar
[726] Sasaki, C., Friman, B., and Redlich, K. 2007. Susceptibilities and the Phase Structure of a Chiral Model with Polyakov Loops. Phys. Rev., D75, 074013. arXiv:hep-ph/0611147 [hep-ph].Google Scholar
[727] Satarov, L. M., Stoecker, Horst, and Mishustin, I. N. 2005. Mach shocks induced by partonic jets in expanding quark- gluon plasma. Phys. Lett., B627, 64-70. arXiv:hep-ph/0505245.Google Scholar
[728] Satz, Helmut. 2006. Color deconfinement and quarkonium binding. J. Phys., G32, R25. arXiv:hep-ph/0512217.Google Scholar
[729] Satz, Helmut. 2007. Quarkonium Binding and Dissociation: The Spectral Analysis of the QGP. Nucl. Phys., A783, 249-260. arXiv:hep-ph/0609197.Google Scholar
[730] Schafer, Thomas, and Teaney, Derek. 2009. Nearly Perfect Fluidity: From Cold Atomic Gases to Hot Quark Gluon Plasmas. Rept. Prog. Phys., 72, 126001. arXiv:0904.3107 [hep-ph].CrossRefGoogle Scholar
[731] Schwarz, John H. 1982. Superstring Theory. Phys. Rept., 89, 223-322.CrossRefGoogle Scholar
[732] Schwarz, John H. 1983. Covariant Field Equations of Chiral N = 2 D=10 Supergravity. Nucl. Phys., B226, 269.CrossRefGoogle Scholar
[733] Schwarz, John H., and West, Peter C. 1983. Symmetries and Transformations of Chiral N= 2 D = 10 Supergravity. Phys. Lett., B126, 301.CrossRefGoogle Scholar
[734] Shen, Chun, and Heinz, Ulrich. 2012. Collision Energy Dependence of Viscous Hydrodynamic Flow in Relativistic Heavy-Ion Collisions. Phys. Rev., C85, 054902. arXiv:1202.6620 [nucl-th].Google Scholar
[735] Shen, Chun, Heinz, Ulrich, Huovinen, Pasi, and Song, Huichao. 2010. Systematic parameter study of hadron spectra and elliptic flow from viscous hydrodynamic simulations of Au+Au collisions at = 200 GeV. Phys. Rev., C82, 054904. arXiv:1010.1856 [nucl-th].Google Scholar
[736] Shenker, Stephen H. 1990. The Strength of nonperturbative effects in string theory. Presented at the Cargese Workshop on Random Surfaces, Quantum Gravity and Strings, Cargese, France, May 28 -Jun 1, 1990.Google Scholar
[737] Shu, Fu-Wen. 2010. The Quantum ViscosityBoundIn Lovelock Gravity. Phys. Lett., B685, 325-328. arXiv:0910.0607 [hep-th].Google Scholar
[738] Shuryak, Edward. 2012. Toward the AdS/CFT Dual of the ‘Little Bang’. J. Phys., G39, 054001. arXiv:1112.2573 [hep-ph].Google Scholar
[739] Shuryak, Edward V., and Zahed, Ismail. 2004a. Rethinking the properties of the quark gluon plasma at T ≍ Tc. Phys. Rev., C70, 021901. arXiv:hep-ph/0307267.Google Scholar
[740] Shuryak, Edward V., and Zahed, Ismail. 2004b. Towards a theory of binary bound states in the quark gluon plasma. Phys. Rev., D70, 054507. arXiv:hep-ph/0403127.Google Scholar
[741] Sinha, Aninda, and Myers, Robert C. 2009. The Viscosity bound in string theory. Nucl. Phys., A830, 295C-298C. arXiv:0907.4798 [hep-th].Google Scholar
[742] Skenderis, Kostas. 2002. Lecture notes on holographic renormalization. Class. Quant. Grav., 19, 5849-5876. arXiv:hep-th/0209067.CrossRefGoogle Scholar
[743] Skenderis, Kostas, and van Rees, Balt C. 2008. Real-time gauge/gravity duality. Phys. Rev. Lett., 101, 081601. arXiv:0805.0150 [hep-th].CrossRefGoogle ScholarPubMed
[744] Skenderis, Kostas, and van Rees, Balt C. 2009. Real-time gauge/gravity duality: Prescription, Renormalization and Examples. JHEP, 05, 085. arXiv:0812.2909 [hep-th].Google Scholar
[745] Sohnius, Martin F., and West, Peter C. 1981. Conformal Invariance in N = 4 Supersymmetric Yang-Mills Theory. Phys. Lett., B100, 245.CrossRefGoogle Scholar
[746] Son, D. T. 2000. Hydrodynamics of nuclear matter in the chiral limit. Phys. Rev. Lett., 84, 3771-3774. hep-ph/9912267.CrossRefGoogle ScholarPubMed
[747] Son, Dam T., and Starinets, Andrei O. 2002. Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications. JHEP, 09, 042. arXiv:hep-th/0205051.Google Scholar
[748] Son, Dam T., and Starinets, Andrei O. 2006. Hydrodynamics of R-charged black holes. JHEP, 03, 052. arXiv:hep-th/0601157.Google Scholar
[749] Son, Dam T., and Starinets, Andrei O. 2007. Viscosity, Black Holes, and Quantum Field Theory. Ann. Rev. Nucl. Part. Sci., 57, 95-118. arXiv:0704.0240 [hep-th].CrossRefGoogle Scholar
[750] Son, Dam T., and Surowka, Piotr. 2009. Hydrodynamics with Triangle Anomalies. Phys. Rev. Lett., 103, 191601. arXiv:0906.5044 [hep-th].CrossRefGoogle ScholarPubMed
[751] Son, Dam T., and Teaney, Derek. 2009. Thermal Noise and Stochastic Strings in AdS/CFT. JHEP, 07, 021. arXiv:0901.2338 [hep-th].Google Scholar
[752] Song, Huichao, and Heinz, Ulrich W. 2008a. Causal viscous hydrodynamics in 2+1 dimensions for relativistic heavy-ion collisions. Phys. Rev., C77, 064901. arXiv:0712.3715 [nucl-th].Google Scholar
[753] Song, Huichao, and Heinz, Ulrich W. 2008b. Multiplicity scaling in ideal and viscous hydrodynamics. Phys. Rev., C78, 024902. arXiv:0805.1756 [nucl-th].Google Scholar
[754] Song, Huichao, and Heinz, Ulrich W. 2008c. Suppression of elliptic flow in a minimally viscous quark-gluon plasma. Phys. Lett., B658, 279-283. arXiv:0709.0742 [nucl-th].Google Scholar
[755] Song, Huichao, and Heinz, Ulrich W. 2009a. Extracting the QGP viscosity from RHIC data – A Status report from viscous hydrodynamics. J. Phys., G36, 064033. arXiv:0812.4274 [nucl-th].Google Scholar
[756] Song, Huichao, and Heinz, Ulrich W. 2009b. Viscous hydrodynamics with bulk viscosity: Uncertainties from relaxation time and initial conditions. Nucl. Phys., A830, 467C-470C. arXiv:0907.2262 [nucl-th].Google Scholar
[757] Song, Huichao, and Heinz, Ulrich W. 2010. Interplay of shear and bulk viscosity in generating flow in heavy-ion collisions. Phys. Rev., C81, 024905. arXiv:0909.1549 [nucl-th].Google Scholar
[758] Song, Huichao, Bass, Steffen A., Heinz, Ulrich, Hirano, Tetsufumi, and Shen, Chun. 2011. 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid. Phys. Rev. Lett., 106, 192301. arXiv:1011.2783 [nucl-th].CrossRefGoogle Scholar
[759] Song, Taesoo, Han, Kyong Chol, and Ko, Che Ming. 2012. Bottomonia suppression in heavy-ion collisions. Phys. Rev., C85, 014902. arXiv:1109.6691 [nucl-th].Google Scholar
[760] Sonnenschein, Jacob. 2000. Stringy confining Wilson loops. arXiv:hep-th/0009146 [hep-th].Google Scholar
[761] Starinets, Andrei O. 2009. Quasinormal spectrum and the black hole membrane paradigm. Phys. Lett., B670, 442-445. arXiv:0806.3797 [hep-th].Google Scholar
[762] Steinberg, Peter. 2005. Landau hydrodynamics and RHIC phenomena. Acta Phys. Hung., A24, 51-57. arXiv:nucl-ex/0405022 [nucl-ex].Google Scholar
[763] Stoecker, Horst. 2005. Collective Flow signals the Quark Gluon Plasma. Nucl. Phys., A750, 121-147. arXiv:nucl-th/0406018.Google Scholar
[764] Strassler, Matthew J. 2005. The duality cascade. hep-th/0505153. arXiv:hep-th/0505153.CrossRefGoogle Scholar
[765] Strickland, Michael. 2011. Thermal Υ1s and Χb1 suppression in = 2. 76 TeV Pb-Pb collisions at the LHC. Phys. Rev. Lett., 107, 132301. arXiv:1106.2571 [hep-ph].CrossRefGoogle Scholar
[766] Strickland, Michael, and Bazow, Dennis. 2012. Thermal Bottomonium Suppression at RHIC and LHC. Nucl. Phys., A879, 25-58. arXiv:1112.2761 [nucl-th].Google Scholar
[767] Susskind, Leonard. 1995. The Worldas a hologram. J. Math. Phys., 36, 6377-6396. arXiv:hep-th/9409089.CrossRefGoogle Scholar
[768] Susskind, Leonard, and Witten, Edward. 1998. The holographic bound in anti-de Sitter space. arXiv:hep-th/9805114.Google Scholar
[769] Svetitsky, Benjamin, and Yaffe, Laurence G. 1982. Critical Behavior at Finite Temperature Confinement Transitions. Nucl. Phys., B210, 423.CrossRefGoogle Scholar
[770] 't Hooft, Gerard. 1974. A Planar Diagram Theory for Strong Interactions. Nucl. Phys., B72, 461.Google Scholar
[771] 't Hooft, Gerard. 1993. Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026.Google Scholar
[772] Talavera, Pere. 2007. Drag force in a string model dual to large-N QCD. JHEP, 01, 086. arXiv:hep-th/0610179.Google Scholar
[773] Taliotis, Anastasios. 2010. Heavy Ion Collisions with Transverse Dynamics from Evolving AdS Geometries. JHEP, 1009, 102. arXiv:1004.3500 [hep-th].CrossRefGoogle Scholar
[774] Taylor, J. C., and Wong, S. M. H. 1990. The Effective Action of Hard Thermal Loops in QCD. Nucl. Phys., B346, 115-128.Google Scholar
[775] Teaney, D., Lauret, J., and Shuryak, E. V. 2001. A hydrodynamic description of heavy ion collisions at the SPS and RHIC. arXiv:nucl-th/0110037.Google Scholar
[776] Teaney, Derek. 2003. Effect of shear viscosity on spectra, elliptic flow, and Hanbury-Brown Twiss radii. Phys. Rev., C68, 034913. arXiv:nucl-th/0301099.Google Scholar
[777] Teaney, Derek. 2006. Finite temperature spectral densities of momentum and R- charge correlators in N= 4 Yang Mills theory. Phys. Rev., D74, 045025. arXiv:hep-ph/0 6 02 044.Google Scholar
[778] Teaney, Derek, and Yan, Li. 2011. Triangularity and Dipole Asymmetry in Heavy Ion Collisions. Phys. Rev., C83, 064904. arXiv:1010.1876 [nucl-th].Google Scholar
[779] Teaney, Derek A. 2009. Viscous Hydrodynamics and the Quark Gluon Plasma. arXiv:0905.2433 [nucl-th].Google Scholar
[780] Thews, Robert L., Schroedter, Martin, and Rafelski, Johann. 2001. Enhanced J/Ψ production in deconfined quark matter. Phys. Rev., C63, 054905. arXiv:hep-ph/0007323.Google Scholar
[781] Tseytlin, Arkady A. 1999. Born-Infeld action, supersymmetry and string theory. arXiv:hep-th/9908105.Google Scholar
[782] Umeda, Takashi. 2007. A constant contribution in meson correlators at finite temperature. Phys. Rev., D75, 094502. arXiv:hep-lat/0701005.Google Scholar
[783] van der Schee, Wilke. 2013. Holographic thermalization with radial flow. Phys. Rev., D87, 061901. arXiv:1211.2218 [hep-th].Google Scholar
[784] van Hees, H., Mannarelli, M., Greco, V., and Rapp, R. 2008. Nonperturbative Heavy-Quark Diffusion in the Quark-Gluon Plasma. Phys. Rev. Lett., 100, 192301. arXiv:0709.2884 [hep-ph].CrossRefGoogle ScholarPubMed
[785] van Hees, Hendrik, Greco, Vincenzo, and Rapp, Ralf. 2006. Heavy-quark probes of the quark-gluon plasma at RHIC. Phys. Rev., C73, 034913. arXiv:nucl-th/0508055.Google Scholar
[786] van Rees, Balt C. 2009. Real-time gauge/gravity duality and ingoing boundary conditions. Nucl. Phys. Proc. Suppl., 192-193, 193-196. arXiv:0902.4010 [hep-th].CrossRefGoogle Scholar
[787] Vilenkin, A. 1979. Macroscopic Parity Violating Effects: Neutrino Fluxes from Rotating Black Holes and in Rotating Thermal Radiation. Phys. Rev., D20, 1807-1812.Google Scholar
[788] Vilenkin, A. 1980a. Equilibrium Parity Violating Current in a Magnetic Field. Phys. Rev., D22, 3080-3084.Google Scholar
[789] Vilenkin, A. 1980b. Quantum Field Theory at Finite Temperature in a Rotating System. Phys. Rev., D21, 2260-2269.Google Scholar
[790] Vitev, Ivan, and Zhang, Ben-Wei. 2010. Jet tomography of high-energy nucleus-nucleus collisions at next-to-leading order. Phys. Rev. Lett., 104, 132001. arXiv:0910.1090 [hep-ph].CrossRefGoogle ScholarPubMed
[791] Volovik, G. E., and Vilenkin, A. 2000. Macroscopic parity violating effects and He-3-A. Phys. Rev., D62, 025014. arXiv:hep-ph/9905460 [hep-ph].Google Scholar
[792] Volovik, Grigory E. 2003. The Universe in a Helium Droplet. Oxford University Press.Google Scholar
[793] Wald, Robert M. 1984. General Relativity. University of Chicago Press.CrossRefGoogle Scholar
[794] Wang, Wen-Fu. 2001. An exact solution with exit in the new inflationary universe model. Chin. Phys. Lett., 18, 997-999.Google Scholar
[795] Wang, Xin-Nian, and Guo, Xiao-Feng. 2001. Multiple parton scattering in nuclei: Parton energy loss. Nucl. Phys., A696, 788-832. arXiv:hep-ph/0102230.Google Scholar
[796] Wicks, Simon, Horowitz, William, Djordjevic, Magdalena, and Gyulassy, Miklos. 2007. Elastic, Inelastic, and Path Length Fluctuations in Jet Tomography. Nucl. Phys., A784, 426-442. arXiv:nucl-th/0512076.Google Scholar
[797] Wiedemann, Urs Achim. 2000a. Gluon radiation off hard quarks in a nuclear environment: Opacity expansion. Nucl. Phys., B588, 303-344. arXiv:hep-ph/0005129.Google Scholar
[798] Wiedemann, Urs Achim. 2000b. Transverse dynamics of hard partons in nuclear media and the QCD dipole. Nucl. Phys., B582, 409-450. arXiv:hep-ph/0003021.Google Scholar
[799] Wiedemann, Urs Achim. 2009. Jet Quenching in Heavy Ion Collisions. arXiv:0908.2306 [hep-ph].Google Scholar
[800] Wilson, Kenneth G. 1974. Confinement of Quarks. Phys. Rev., D10, 2445-2459.Google Scholar
[801] Witten, Edward. 1979. Baryons in the 1/N Expansion. Nucl. Phys., B160, 57.CrossRefGoogle Scholar
[802] Witten, Edward. 1996. Bound states of strings and p-branes. Nucl. Phys., B460, 335-350. arXiv:hep-th/9510135.Google Scholar
[803] Witten, Edward. 1998a. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2, 253-291. arXiv:hep-th/9802150.CrossRefGoogle Scholar
[804] Witten, Edward. 1998b. Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys., 2, 505-532. arXiv:hep-th/9803131.CrossRefGoogle Scholar
[805] Witten, Edward. 2001. Multi-trace operators, boundary conditions, and AdS/CFT correspondence. arXiv:hep-th/0112258.Google Scholar
[806] Wong, Cheuk-Yin. 2005. Heavy quarkonia in quark gluon plasma. Phys. Rev., C72, 034906. arXiv:hep-ph/0408020.Google Scholar
[807] Wu, Bin, and Romatschke, Paul. 2011. Shock wave collisions in AdS5: approximate numerical solutions. Int. J. Mod. Phys., C22, 1317-1342. arXiv:1108.3715 [hep-th].Google Scholar
[808] Xiao, Bo-Wen. 2008. On the exact solution of the accelerating string in AdS5 space. Phys. Lett., B665, 173-177. arXiv:0804.1343 [hep-th].Google Scholar
[809] Yamada, Daiske. 2008. Sakai-Sugimoto Model at High Density. JHEP, 10, 020. arXiv:0707.0101 [hep-th].Google Scholar
[810] Yarom, Amos. 2007a. On the energy deposited by a quark moving in an N = 4 SYM plasma. Phys. Rev., D75, 105023. arXiv:hep-th/0703095.Google Scholar
[811] Yarom, Amos. 2007b. The high momentum behavior of a quark wake. Phys. Rev., D75, 125010. arXiv:hep-th/0702164.Google Scholar
[812] York, Mark Abraao, and Moore, Guy D. 2009. Second order hydrodynamic coefficients from kinetic theory. Phys. Rev., D79, 054011. arXiv:0811.0729 [hep-ph].Google Scholar
[813] Young, Clint, and Dusling, Kevin. 2010. Quarkonium above deconfinement as an open quantum system. arXiv:1001.0935 [nucl-th].Google Scholar
[814] Young, Clint, and Shuryak, Edward. 2009. Charmonium in strongly coupled quark-gluon plasma. Phys. Rev., C79, 034907. arXiv:0803.2866 [nucl-th].Google Scholar
[815] Young, Clint, Schenke, Bjorn, Jeon, Sangyong, and Gale, Charles. 2011a. Dijet asymmetry at the energies available at the CERN Large Hadron Collider. Phys. Rev., C84, 024907. arXiv:1103.5769 [nucl-th].Google Scholar
[816] Young, Clint, Jeon, Sangyong, Gale, Charles, and Schenke, Bjoern. 2011b. Monte-Carlo simulation of jets in heavy ion collisions. arXiv:1109.5992 [hep-ph].Google Scholar
[817] Zakharov, B. G. 1997. Radiative energy loss of high energy quarks in finite-size nuclear matter and quark-gluon plasma. JETP Lett., 65, 615-620. arXiv:hep-ph/9704255.CrossRefGoogle Scholar
[818] Zapp, Korinna, Ingelman, Gunnar, Rathsman, Johan, Stachel, Johanna, and Wiedemann, Urs Achim. 2009. A Monte Carlo Model for ‘Jet Quenching’. Eur. Phys. J., C60, 617-632. arXiv:0804.3568 [hep-ph].Google Scholar
[819] Zapp, Korinna C., Krauss, Frank, and Wiedemann, Urs A. 2013. A pertur-bative framework for jet quenching. JHEP, 1303, 080. arXiv:1212.1599 [hep-ph].Google Scholar
[820] Zapp, Korinna Christine, Stachel, Johanna, and Wiedemann, Urs Achim. 2011. A local Monte Carlo framework for coherent QCD parton energy loss. JHEP, 1107, 118. arXiv:1103.6252 [hep-ph].Google Scholar
[821] Zhang, Hanzhong, Owens, J. F., Wang, Enke, and Wang, Xin-Nian. 2007. Dihadron Tomography of High-Energy Nuclear Collisions in NLO pQCD. Phys. Rev. Lett., 98, 212301. arXiv:nucl-th/0701045.CrossRefGoogle Scholar
[822] Zhang, Xilin, and Liao, Jinfeng. 2012. Event-by-event azimuthal anisotropy of jet quenching in relativistic heavy ion collisions. arXiv:1210.1245 [nucl-th].Google Scholar
[823] Zwiebach, Barton. 2004. A first course in string theory. Cambridge University Press.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×