Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T11:36:11.068Z Has data issue: false hasContentIssue false

Amazons, Konane, and Cross Purposes are PSPACE-complete

Published online by Cambridge University Press:  28 February 2011

Michael H. Albert
Affiliation:
University of Otago, New Zealand
Richard J. Nowakowski
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

Abstract. Amazons is a board game which combines elements of Chess and Go. It has become popular in recent years, and has served as a useful platform for both game-theoretic study and AI games research. Buro showed that simple Amazons endgames are NP-equivalent, leaving the complexity of the general case as an open problem.

Konane is an ancient Hawaiian game, with moves similar to peg solitaire. Konane has received some attention in the combinatorial game theory community, with game values determined for many small positions and one-dimensional positions. However, its general complexity seems not to have been previously addressed.

Cross Purposes was invented by Michael Albert, and named by Richard Guy at the Games at Dalhousie III workshop, in 2004. It is played on a Go board. Cross Purposes is a kind of two-player version of the popular puzzle Tipover: it represents stacks of crates tipping over and blocking others from tipping over.

We show that generalized versions of these games are PSPACE-complete. We give similar reductions to each game from one of the PSPACE-complete two-player formula games described by Schaefer. Our construction also provides an alternate proof that simple Amazons endgames are NP-equivalent.

Introduction

Combinatorial game theory is concerned with the attempt to find and analyze winning strategies for combinatorial games, or for tractable families of game positions.

Type
Chapter
Information
Games of No Chance 3 , pp. 287 - 306
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×