Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T20:39:55.603Z Has data issue: false hasContentIssue false

16 - Fungi in subterranean environments

Published online by Cambridge University Press:  10 December 2009

Joachim Reitner
Affiliation:
Göttinger Zentrum Geowissenschaften, GZG Universität, Göttingen, Germany
Gabriela Schumann
Affiliation:
Göttinger Zentrum Geowissenschaften, GZG Universität, Göttingen, Germany
Karsten Pedersen
Affiliation:
Göteborg University, Sweden
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

Exploration of the microbial world got off to a slow start some 350 years ago, when Leeuwenhoek and his contemporaries focused their microscopes on very small life forms. It was not until about 20 years ago, however, that exploration of the world of intra-terrestrial microbes gathered momentum. Until then, it was generally assumed that life could not persist deep underground, out of reach of the sun and a photosynthetic ecosystem base. In the mid 1980s, the drilling of deep holes for scientific research started. Holes up to thousands of metres deep were drilled in hard as well as sedimentary rock, and up came microbes in numbers equivalent to what could be found in many surface ecosystems (Pedersen, 1993). The deep subterranean biosphere had been discovered.

Defining the boundary between the ground-surface biosphere and the subterranean biosphere is problematic: various scientists define it differently, and there is no general consensus. For our purposes the main criterion is that the subterranean biosphere begins where contact with the surface biosphere is lost. This lies beneath soil and root zones, beneath the ground-water table, and beneath sediment and crust surfaces. A long time should have elapsed since last surface contact, ‘long time’ in this respect being at least several decades, preferably hundreds of years or more. In our view it is not depth per se that defines a subterranean ecosystem; rather, it is the duration of isolation from the surface.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, F., Miura, T., Nagahama, T.et al. (2001). Isolation of a highly copper-tolerant yeast, Cryptococcus sp. from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnology Letters, 23, 2027–34.CrossRefGoogle Scholar
Banwart, S., Tullborg, E.-L., Pedersen, K.et al. (1996). Organic carbon oxidation induced by largescale shallow water intrusion into a vertical fracture zone at the Äspö Hard Rock Laboratory (Sweden). Journal of Contaminant Hydrology, 21, 115–25.CrossRefGoogle Scholar
Bathurst, R. G. C. (1966). Boring algae, micrite envelopes and lithification of molluscan biosparites. Geological Journal, 5, 15–32.CrossRefGoogle Scholar
Behr, H. J. & Gerler, J. (1987). Inclusions of sedimentary brines in post-Varscian mineralizations in the Federal Republic of Germany. A study by neutron activation analysis. Chemical Geology, 61, 63–77.CrossRefGoogle Scholar
Berbee, M. L. & Taylor, J. W. (1993). Dating the evolutionary radiations of the true fungi. Canadian Journal of Botany, 71, 1114–27.CrossRefGoogle Scholar
Berbee, M. L. & Taylor, J. W. (2001). Fungal molecular evolution: gene trees and geologic time. In The Mycota, Vol. VII. Systematics and Evolution. Part B, ed. McLaughlin, D. J., McLaughlin, E. G. & Lemke, P. A.. Berlin: Springer-Verlag, pp. 229–45.Google Scholar
Blackwell, M. (2000). Terrestrial life-fungal from the start? Science, 289, 1884–5.CrossRefGoogle ScholarPubMed
Bornet, E. & Flahaut, C. (1889). Sur quelques plantes vivantes dans le test calcaire des mollusques. Bulletin de la Société Botanique de France, 36, 147–76.CrossRefGoogle Scholar
Bromley, R. (1970). Borings as trace fossils and Entobio cretacea Portlock, as an example. In Trace Fossils, eds. Crimes, T. P. & Harper, J. C.. Liverpool, UK: Seel House Press, pp. 49–90.Google Scholar
Brown, O. L. M. (2004). Fossil fungi or paleomycology. Interciencia, 29, 94–8.Google Scholar
Budd, D. A. & Perkins, R. D. (1980). Bathymetric zonation and paleoecological significance of microborings in Puerto Rican shelf and slope sediments. Journal of Sedimentary Petrology, 50, 881–904.Google Scholar
Burford, E. P., Kierans, M. & Gadd, G. M. (2003). Geomycology: fungi in mineral substrata. Mycologist, 17, 98–107.CrossRefGoogle Scholar
Cavaliere, A. R. & Alberte, R. W. (1970). Fungi in animal shell fragments. Journal of the Elisha Mitchell Scientific Society, 86, 203–6.Google Scholar
Dennis, R. L. (1970). A Middle Pennsylvanian basidiomycete mycelium with clamp connections. Mycologia, 62, 578–84.CrossRefGoogle Scholar
Dörfelt, H., Schmidt, A. R., Ullmann, P. & Wunderlich, J. (2003). The oldest fossil myxogastroid slime mould. Mycological Research, 107, 123–6.CrossRefGoogle ScholarPubMed
Domke, W. (1952). Der erste sichere Fund eines Myxomyceten im Baltischen Bernstein (Stemonitis splendens Rost. fa. succini fa. nov. foss.). Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg, 21, 154–61.Google Scholar
Edwards, B. D. & Perkins, R. D. (1974). Distribution of microborings within continental margin sediments of southeastern United States. Journal of Sedimentary Petrology, 44, 1122–35.Google Scholar
Ehrlich, H. L. (1990). Microbial formation and degradation of carbonates. In Geomicrobiology, ed. Ehrlich, H. L.. New York: Marcel Dekker, pp. 157–95.Google Scholar
Ehrlich, H. L. (1998). Geomicrobiology: its significance for geology. Earth-Science Reviews, 45, 45–60.CrossRefGoogle Scholar
Ekendahl, S., O'Neill, A. H., Thomsson, E. & Pedersen, K. (2003). Characterisation of yeasts isolated from deep igneous rock aquifers of the fennoscandian shield. Microbial Ecology, 46, 416–28.CrossRefGoogle ScholarPubMed
Fliermans, C. B. (1989). Microbial life in the terrestrial subsurface of southeastern coastal plain sediments. Hazardous Waste and Hazardous Materials, 6, 155–72.CrossRefGoogle Scholar
Fredrickson, J. K. & Onstott, T. C. (1996). Microbes deep inside the earth. Scientific American, 8, 42–7.Google Scholar
Fremy, P. (1945). Contributions à la physiologie des thallophytes marines perforants et cariants les roches calcaires et les coquilles. Annales de l'Institut Océanographique, 22, 107–44.Google Scholar
Fry, E. J. (1927). The mechanical action of crustaceous lichens on substrata of shale, schist, gneiss, limestone and obsidian. Annals of Botany, 41, 437–60.CrossRefGoogle Scholar
Gage, J. D. & Tyler, P. A. (1991). Deep-Sea Biology: A Natural History of Organisms on the Deep Sea Floor. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gehlen, K. V., Kleinschmidt, G., Stenger, R., Wilhelm, H. & Wimmenauer, W. (1986). Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschalnd KTB. Ergebnisse der Vorerkundungsarbeiten Lokation Schwarzwald. 2. KTB-Kolloquium Seeheim/Odenwald, 1–160.Google Scholar
Ghiorse, W. C. & Balkwill, D. L. (1983). Enumeration and morphological characterization of bacteria indigenous to subsurface sediments. Developments in Industrial Microbiology, 24, 213–24.Google Scholar
Golubic, S., Perkins, R. D. & Lukas, K. J. (1975). Boring micro-organisms and microborings in carbonate substrates. In The Study of Trace Fossils, ed. Frey, R. W.. Berlin: Springer-Verlag, pp. 229–59.CrossRefGoogle Scholar
Gothan, W. & Weyland, H. (1964). Lehrbuch der Paläobotanik, 2nd edn. Berlin: Akademie-Verlag.Google Scholar
Graham, A. (1971). The role of Myxomyceta spores in palynology (with a brief note on the morphology of certain algal zygospores). Review of Palaeobotany and Palynology, 11, 89–99.CrossRefGoogle Scholar
Gray, J. & Shear, W. (1992). Early life on land. American Scientist, 80, 444–56.Google Scholar
Günther, A. (1990). Distribution and bathymetric zonation of shell-boring endoliths in recent reef and shelf environments: Cozumel, Yucatan (Mexico). Facies, 22, 233–62.CrossRefGoogle Scholar
Hass, H. & Remy, W. (1992). Devonian fungi. Interactions with the green algae Palaeonitella. Mycologia, 86, 901–10.Google Scholar
Hass, H., Taylor, T. N. & Remy, W. (1994). Fungi from the Lower Devonian Rhynie chert: Mycoparasitism. American Journal of Botany, 81, 29–37.CrossRefGoogle Scholar
Heckman, D. S., Geiser, D. M., Eidell, B. R.et al. (2001). Molecular evidence for the early colonization of land by fungi and plants. Science, 293, 1129–33.CrossRefGoogle ScholarPubMed
Hibbett, D. S., Grimaldi, D. & Donoghue, M. (1995). Cretaceous mushrooms in amber. Nature, 377, 487.CrossRefGoogle Scholar
Hibbett, D. S., Donoghue, M. J. & Tomlinson, P. B. (1997). Is Phellinites digiustoi the oldest homobasidiomycete? American Journal of Botany, 84, 1005–11.CrossRefGoogle ScholarPubMed
Hibbett, D. S., Binder, M. & Wang, Z. (2003). Another fossil agaric from Dominican amber. Mycologia, 95, 685–7.CrossRefGoogle ScholarPubMed
Hirsch, P. & Rades-Rohkohl, E. (1983). Microbial diversity in a ground water aquifer in northern Germany. Developments in Industrial Microbiology, 24, 183–200.Google Scholar
Hirsch, P., Rades-Rohkohl, E., Kölbel-Boelke, J. & Nehrkorn, A. (1992). Morphological and taxonomic diversity of ground water micro-organisms. In Progress in Hydrogeochemistry, ed. Matthess, G., Frimmel, F. H., Hirsch, P., Schulz, H. D. & Usdowski, E.. Berlin: Springer-Verlag, pp. 311–25.CrossRefGoogle Scholar
Hofmann, B. (1989). Genese, Alteration und rezentes Fliess-System der Uranlagerstätte Krunkelbach (Menzenschwand, Schwarzwald). NAGRA Technischer Bericht, 88–30, 1–195.Google Scholar
Hofmann, B. (1996). Earth science collections of the Natural History Museum Bern (NMBE) – a review. Jahrbuch des Naturhistorischen Museums Bern, 12, 115–34.Google Scholar
Hutchings, P. A. (1986). Biological destruction of coral reefs: a review. Coral Reefs, 4, 239–52.CrossRefGoogle Scholar
Jongmans, A. G., Breemen, N., Lundström, U.et al. (1997). Rock-eating fungi. Nature, 389, 682–3.CrossRefGoogle Scholar
Kato, C. (1999). Molecular analyses of the sediment and isolation of extreme barophiles from the deepest Mariana Trench. In Extremophiles in Deep-sea Environments, ed. Horikoshi, K. & Tsujii, K.. Tokyo: Springer-Verlag, pp. 27–37.CrossRefGoogle Scholar
Kidston, R. & Lang, W. H. (1921). On Old Red Sandstone plants showing structure, from the Rhynie Chert bed, Aberdeenshire. Part V. The Thallophyta occurring in the peat-bed; the succession of the plants throughout a vertical section of the bed, and the conditions of accumulation and preservation of the deposit. Transactions of the Royal Society of Edinburgh, 52, 855–902.CrossRefGoogle Scholar
Kobluk, D. & Risk, M. (1974). Devonian boring algae or fungi associated with micrite tubules. Canadian Journal of Earth Sciences, 11, 1606–10.CrossRefGoogle Scholar
Kohlmeyer, J. (1969a). Deterioration of wood by marine fungi in the deep sea. In Materials Performance and the Deep Sea. American Society for Testing and Materials, Special Technical Publication, 445, 20–9.CrossRefGoogle Scholar
Kohlmeyer, J. (1969b). The role of marine fungi in the penetration of calcareous substances. American Zoologist, 9, 741–6.CrossRefGoogle Scholar
Kohlmeyer, J. (1977). New-genera and species of higher fungi from deep-sea. Revue de Mycologie, 41, 189–206.Google Scholar
Kohlmeyer, J. & Kohlmeyer, E. (1979). Marine Mycology: The Higher Fungi. London: Academic Press.Google Scholar
Krauss, G., Sridhar, K. R., Jung, K.et al. (2003). Aquatic hyphomycetes in polluted groundwater habitats of central Germany. Microbial Ecology, 45, 329–39.Google ScholarPubMed
Kretzschmar, M. (1982). Fossile Pilze in Eisen-Stromatolithen von Warstein (Rheinisches Schiefergebirge). Facies, 7, 237–60.CrossRefGoogle Scholar
Krumbein, W. E. (1981). Biogenic rock varnishes of the Negev Desert (Israel). An ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologica, 50, 25–38.CrossRefGoogle ScholarPubMed
Lippolt, H. J., Schleicher, H. & Raczek, I. (1983). Rb-Sr systematics of Permian volcanites in the Schwarzwald (SW Germany). Space of time between plutonism and late orogenic volcanism. Contribution of Mineralogy and Petrology, 84, 272–80.CrossRefGoogle Scholar
Ludvigsen, L., Albrechtsen, H. J., Ringelberg, D. B., Ekelund, F. & Christensen, T. H. (1999). Distribution and composition of microbial populations in landfill leachate contaminated aquifer (Grindsted, Denmark). Microbial Ecology, 37, 197–207.CrossRefGoogle Scholar
McKinley, J. P., Stevens, T. O. & Westall, F. (2000). Microfossils and paleoenvironments in deep subsurface basalt samples. Geomicrobiology Journal, 17, 43–54.Google Scholar
Madsen, E. L. & Ghiorse, W. C. (1993). Groundwater microbiology: subsurface ecosystem processes. In Aquatic Microbiology, ed. Ford, T E.. London: Blackwell Scientific Publications, pp. 167–213.Google Scholar
May, J. A. & Perkins, R. D. (1979). Endolithic infestation of carbonate substrates below the sediment–water interface. Journal of Sedimentary Petrology, 49, 357–78.Google Scholar
May, J. A., Macintyre, I. G. & Perkins, R. D. (1982). Distribution of microborers within planted substrates along a barrier reef transect, Carrie Bow Cay, Belize. In Smithsonian Contribution to the Marine Science, Vol. 12. The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay, Belize I: Structure and Communities, eds. K. Rützler & I. G. Macintyre. pp. 93–107.
Mehta, A. P., Torma, A. E. & Murr, L. E. (1979). Effect of environmental parameters on the effciency of biodegradation of basalt rock by fungi. Biotechnology and Bioengineering, 21, 875–85.CrossRefGoogle Scholar
Mellor, E. (1923). Lichens and their action on the glass and leadings of church windows. Nature, 112, 299–300.CrossRefGoogle Scholar
Mertz, D. F., Lippolt, H. J. & Huck, K.-H. (1986). K-Ar, Ar40/Ar39 and Rb-Sr investigations on the genesis of the Clara vein deposits/Central Schwarzwald. 46. Jahrestagung der Deutschen Geologischen Gesellschaft ILP Karlsruhe, Abstracts, 235.
Miliman, J. D., Pilkey, O. H. & Ross, D. A. (1972). Sediments of the continental margin off the eastern United States. Geological Society of America Bulletin, 83, 1315–34.CrossRefGoogle Scholar
Nagahama, T., Hamamoto, M., Nakase, T., Takaki, Y. & Horikoshi, K. (2003). Cryptococcus surugaensis sp. nov., a novel yeast species from sediments collected on the deep-sea floor of Suruga Bay. International Journal of Systematic and Evolutionary Microbiology, 53, 2095–8.CrossRefGoogle ScholarPubMed
Newberry, C. J., Webster, G., Cragg, B. A.et al. (2004). Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environmental Microbiology, 6, 274–87.CrossRefGoogle ScholarPubMed
Ogram, A., Sun, W., Brockman, F. J. & Fredrickson, J. K. (1995). Isolation and characterization of RNA from low-biomass deep-subsurface sediments. Applied and Environmental Microbiology, 61, 763–8.Google ScholarPubMed
Palumbo, A. V., Zhang, C. L., Liu, S.et al. (1996). Influence of media on measurement of bacterial populations in the subsurface – Numbers and diversity. Applied Biochemistry and Biotechnology, 57, 905–14.CrossRefGoogle Scholar
Parkes, R. J., Cragg, B. A., Fry, J. C.et al. (1990). Bacterial biomass and activity in deep sediment layers from the Peru Margin. Philosophical Transactions of the Royal Society of London Series A – Mathematical Physical and Engineering Sciences, 331, 139–53.CrossRefGoogle Scholar
Parkes, R. J., Cragg, B. A., Bale, S. J.et al. (1994). Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371, 410–13.CrossRefGoogle Scholar
Parkes, R. J., Cragg, B. A. & Wellsbury, P. (2000). Recent studies on bacterial populations and processes in subsea floor sediments: A review. Hydrogeology Journal, 8, 11–28.CrossRefGoogle Scholar
Pedersen, K. (1987). Preliminary Investigations of Deep Groundwater Microbiology in Swedish Granitic Rock. SKB Technical report 88–01. Stockholm: Swedish Nuclear Fuel and Waste Management Co., pp. 1–22.Google Scholar
Pedersen, K. (1993). The deep subterranean biosphere. Earth-Science Reviews, 34, 243–60.CrossRefGoogle Scholar
Pedersen, K., Arlinger, J., Ekendahl, S. & Hallbeck, L. (1996). 16S rRNA gene diversity of attached and unattached groundwater bacteria along the access tunnel to the Äspö Hard Rock Laboratory, Sweden. FEMS Microbiology Ecology, 19, 249–62.Google Scholar
Pedersen, K., Ekendahl, S., Tullborg, E.-L.et al. (1997a). Evidence of ancient life at 207 m depth in a granitic aquifer. Geology, 25, 827–30.2.3.CO;2>CrossRefGoogle Scholar
Pedersen, K., Hallbeck, L., Arlinger, J., Erlandson, A.-C. & Jahromi, N. (1997b). Investigation of the potential for microbial contamination of deep granitic aquifers during drilling using 16S rRNA gene sequencing and culturing methods. Journal of Microbiological Methods, 30, 179–92.CrossRefGoogle Scholar
Perkins, R. D. & Halsey, S. D. (1971). Geologic significance of microboring fungi and algae in Carolina shelf sediments. Journal of Sedimentary Petrology, 41, 843–53.CrossRefGoogle Scholar
Perkins, R. D. & Tsentas, C. I. (1976). Microbial infestation of carbonate substrates planted on the St. Croix shelf, West Indies. Geological Society of America Bulletin, 87, 1615–28.2.0.CO;2>CrossRefGoogle Scholar
Pia, J. (1927). Fungi. In Handbuch der Paläobotanik, ed. Hirmer, M.. München: R. Oldenbourg, pp. 112–130.Google Scholar
Pirozynski, K. A. (1976). Fossil fungi. Annual Review of Phytopathology, 14, 237–46.CrossRefGoogle Scholar
Pirozynski, K. A. & Dalpé, Y. (1989). Geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis, 7, 1–36.Google Scholar
Poinar, G. O. & Singer, R. (1990). Upper Eocene gilled mushroom from the Dominican Republic. Science, 248, 1099–101.CrossRefGoogle ScholarPubMed
Poinar, G. O., Waggoner, B. M. & Bauer, U. C. (1993). Terrestrial soft-bodied protists and other micro-organisms in Triassic amber. Science, 259, 222–4.CrossRefGoogle Scholar
Radtke, G. (1993). The distribution of microborings in molluscan shells from recent reef environments at the Stocking Island, Bahamas. Facies, 29, 81–92.CrossRefGoogle Scholar
Raghukumar, C. & Raghukumar, S. (1998). Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquatic Microbial Ecology, 15, 153–63.CrossRefGoogle Scholar
Redecker, D., Kodner, R. & Graham, L. E. (2000). Glomalean fungi from the Ordovician. Science, 289, 1920–1.CrossRefGoogle ScholarPubMed
Redecker, D., Kodner, R. & Graham, L. E. (2002). Palaeoglonius grayi from the Ordovician. Mycotaxon, 84, 33–7.Google Scholar
Remy, W., Taylor, T. N., Hass, H. & Kerp, H. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Science of the United States of America, 91, 11841–3.CrossRefGoogle ScholarPubMed
Rossi, G. & Ehrlich, H. L. (1990). Other bioleaching processes. In Microbial Mineral Recovery, eds. Ehrlich, H. L. & Brierley, C. L.. New York: McGraw-Hill, pp. 149–70.Google Scholar
Russell, B. F., Phelps, T. J., Griffin, W. T. & Sargent, K. A. (1992). Procedures for sampling deep subsurface microbial communities in unconsolidated sediments. Ground Water Monitoring Review, 12, 96–104.CrossRefGoogle Scholar
Schumann, G., Manz, W., Reitner, J. & Lustrino, M. (2004). Ancient fungal life in North Pacific Eocene oceanic crust. Geomicrobiology Journal, 21, 241–6.CrossRefGoogle Scholar
Sherwood-Pike, M. A. & Gray, J. (1985). Silurian fungal remains: probable records of Ascomycetes. Lethaia, 18, 1–20.CrossRefGoogle Scholar
Simon, K. & Hoefs, J. (1985). Geochemische Untersuchungen an hydrothermal überprägten Graniten und Gneisen des Südschwarzwaldes. Forstschritte Mineralogie, 63, 253–61.Google Scholar
Simon, K. & Hoefs, J. (1987). Effects of meteoric water interaction on Hercynian granites from the Südschwarzwald, SW Germany. Chemical Geology, 61, 253–61.CrossRefGoogle Scholar
Simon, L., Bousquet, J., Lévesque, R. C. & Lalonde, M. (1993). Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature, 363, 67–9.CrossRefGoogle Scholar
Sinclair, J. L. & Ghiorse, W. C. (1989). Distribution of aerobic bacteria, protozoa, algae, and fungi in deep subsurface sediments. Geomicrobiology Journal, 7, 15–31.CrossRefGoogle Scholar
Smith, D. C., Spivack, A. J., Fisk, M. R.et al. (2000). Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiology Journal, 17, 207–19.Google Scholar
Smith, S. E. & Read, D. J. (1997). Mycorrhizal Symbiosis, San Diego: Academic Press.Google Scholar
Smith, S. Y., Currah, R. S. & Stockey, R. A. (2004). Cretaceous and Eocene poroid hymenophores from Vancouver Island, British Columbia. Mycologia, 96, 180–6.CrossRefGoogle ScholarPubMed
Sneath, P. H. A. (1962). Longevity of micro-organisms. Nature, 195, 643–6.CrossRefGoogle ScholarPubMed
Soltwedel, T. & Schewe, I. (1998). Activity and biomass of the small benthic biota under permanent ice coverage in the central Arctic Ocean. Polar Biology, 19, 52–62.CrossRefGoogle Scholar
Stephen, R. A., Kasahara, J., Acton, G. D. & Shipboard Scientific Party. (2003). Proceedings of the Ocean Drilling Program, Initial Reports, 200 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845–9547, USA.CrossRef
Sterflinger, K. (2000). Fungi as geologic agents. Geomicrobiology Journal, 17, 97–124.CrossRefGoogle Scholar
Stubblefield, S. P. & Taylor, T. N. (1988). Recent advances in Paleomycology. New Phytologist, 108, 3–25.CrossRefGoogle Scholar
Swinchatt, J. P. (1965). Significance of constituent composition, texture and skeletal breakdown in some bonate sediments. Journal of Sedimentary Petrology, 35, 71–90.Google Scholar
Takami, H. (1999). Isolation and characterization of micro-organisms from deep-sea mud. In Extremophiles in Deep-sea Environments, ed. Horikoshi, K. & Tsujii, K.. Tokyo: Springer-Verlag, pp. 3–26.CrossRefGoogle Scholar
Takami, H., Ioue, A., Fuji, F. & Horikoshi, K. (1997). Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiology Letters, 152, 279–85.CrossRefGoogle ScholarPubMed
Taylor, N. & Taylor, E. L. (1993). The Biology and Evolution of Fossil Plants. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
Taylor, N. & Taylor, E. L. (1997). The distribution and interactions of some Paleozoic fungi. Review of Palaeobotany and Palynology, 95, 83–94.CrossRefGoogle Scholar
Taylor, T. N., Remy, W. & Hass, H. (1992). Fungi from the lower Devonian Rhynie Chert – Chytridiomycetes. American Journal of Botany, 79, 1233–41.CrossRefGoogle Scholar
Taylor, T. N., Remy, W. & Hass, H. (1994). Allomyces in the Devonian. Nature, 367, 601.CrossRefGoogle Scholar
Taylor, T. N., Remy, W., Hass, H. & Kerp, H. (1995). Fossil arbuscular mycorrhizae from the early Devonian. Mycologia, 87, 560–73.CrossRefGoogle Scholar
Taylor, T. N., Hass, H. & Kerp, H. (1997). A cyanolichen from the Lower Devonian Rhynie chert. American Journal of Botany, 84, 992–1004.CrossRefGoogle ScholarPubMed
Taylor, T. N., Hass, H. & Kerp, H. (1999). The oldest fossil ascomycetes. Nature, 399, 648.CrossRefGoogle ScholarPubMed
Thorseth, I. H., Torsvik, T., Torsvik, V., Daae, F. L. & Pedersen, R. B. (2001). Diversity of life in ocean floor basalt. Earth and Planetary Science Letters, 194, 31–7.CrossRefGoogle Scholar
Tiffney, B. H. & Barghoorn, E. S. (1974). The fossil record of fungi. Occasional Papers of the Farlow Herbarium of Cryptogamic Botany Harvard University, 7, 1–42.Google Scholar
Torsvik, T., Furnes, H., Muehlenbachs, K., Thorseth, I. H. & Tumyr, O. (1998). Evidence for microbial activity at the glass-alteration interface in oceanic basalts. Earth and Planetary Science Letters, 162, 165–76.CrossRefGoogle Scholar
Tudhope, A. W. & Risk, M. J. (1985). Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia. Journal of Sedimentary Petrology, 55, 440–7.Google Scholar
Auwera, G. & Wachter, R. (1996). Large-subunit rRNA sequence of the chytridiomycete Blastocladiella emersonii, and implications for the evolution of zoosporic fungi. Journal of Molecular Evolution, 43, 476–83.CrossRefGoogle ScholarPubMed
Van Uden, N. & Fell, J. W. (1968). Marine yeasts. In Advances in Microbiology of the Sea, eds. Droop, M. & Wood, E. J. F.. London: Academic Press, pp. 167–201.Google Scholar
Vogel, K. (1993). Bioerosion in fossil reefs. Facies, 28, 109–14.CrossRefGoogle Scholar
Vogel, K., Golubic, S. & Breh, C. E. (1987). Endolithic associations and their relation to facies distribution in the Middle Devonian of New York State, U. S. A.Lethaia, 20, 263–90.CrossRefGoogle Scholar
Waggoner, B. M. (1994). Fossil micro-organisms from upper Cretaceous amber of Mississippi. Review of Palaeobotany and Palynology, 80, 75–84.CrossRefGoogle Scholar
Waggoner, B. M. & Poinar, G. O. (1992). A fossil myxomycete plasmodium from Eocene-Oligocene amber of the Dominican Republic. Journal of Protozoology, 39, 639–42.CrossRefGoogle Scholar
Wellsbury, P., Goodman, K., Barth, T.et al. (1997). Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature, 388, 573–6.CrossRefGoogle Scholar
Wellsbury, P., Mather, I. & Parkes, R. J. (2002). Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiology Ecology, 42, 59–70.CrossRefGoogle ScholarPubMed
Zande, J. M. (1999). An ascomycete commensal on the gills of Bathynerita naticoidea, the dominant gastropod at Gulf of Mexico hydrocarbon seeps. Invertebrate Biology, 118, 57–62.CrossRefGoogle Scholar
Zebrowski, G. (1936). New genera of Cladochytriaceae. Annals of Missouri Botanical Garden, 23, 553–64.CrossRefGoogle Scholar
Zeff, M. L. & Perkins, R. D. (1979). Microbial alteration of Bahamian deep-sea carbonates. Sedimentology, 26, 175–201.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×