Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T06:15:44.610Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 September 2011

Subhash Challa
Affiliation:
University of Melbourne
Mark R. Morelande
Affiliation:
University of Melbourne
Darko Mušicki
Affiliation:
Hanyang University, Republic of Korea
Robin J. Evans
Affiliation:
University of Melbourne
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerson, G. A. and Fu, K. S. (1970) On state estimation in switching environments, IEEE Transactions on Automatic Control, 15(1), 10–17.CrossRefGoogle Scholar
Alspach, D. L. and Sorenson, H. W. (1971) Nonlinear Bayesian estimation using Gaussian sum approximations, IEEE Transactions on Automatic Control, 17(4), 439–448.CrossRefGoogle Scholar
Anderson, B. D. O. and Moore, J. B. (1979) Optimal Filtering. New Jersey: Prentice-Hall.Google Scholar
Bar-Shalom, Y. (1978) Tracking methods in a multitarget environment, IEEE Transactions on Automatic Control, 23(4), 618–626.CrossRefGoogle Scholar
Bar-Shalom, Y. (2000) Update with out-of-sequence measurements in tracking: exact solution, in Proc. SPIE: Signal and Data Processing of Small Targets 2000, O. E., Drummond (ed.), Vol. 4048, pp. 541–556.CrossRefGoogle Scholar
Bar-Shalom, Y. and Birmiwal, K. (1982) Variable dimension filter for maneuvering target tracking, IEEE Transactions on Aerospace and Electronic Systems, 18(5), 621–629.CrossRefGoogle Scholar
Bar-Shalom, Y. and Fortmann, T. E. (1988) Tracking and Data Association. New York: Academic Press.Google Scholar
Bar-Shalom, Y. and Li, X. R. (1993) Estimation and Tracking: Principles, Techniques, and Software. MA: Artech House.Google Scholar
Bar-Shalom, Y. and Li, X. R. (1995) Multitarget-Multisensor Tracking: Principles and Techniques. Storrs, CT: YBS Publishing.Google Scholar
Bar-Shalom, Y. and Tse, E. (1975) Tracking in a cluttered environment with probabilistic data association, Automatica, 11(5), 451–460.CrossRefGoogle Scholar
Bar-Shalom, Y., Challa, S. and Blom, H. A. P. (2005) IMM estimator versus optimal estimator for hybrid systems, IEEE Transactions on Aerospace and Electronic Systems, 41(3), 986–991.CrossRefGoogle Scholar
Bar-Shalom, Y., Chang, K. C. and Blom, H. A. P. (1989) Automatic track formation in clutter with a recursive algorithm, in Proc. 28th Conference on Decision and Control, Florida, December, pp. 1402–1408.CrossRefGoogle Scholar
Bar-Shalom, Y., Chang, K. C. and Blom, H. A. P. (1990) Automatic track formation in clutter with a recursive algorithm, in Multitarget-Multisensor Tracking: Advanced Applications, Y., Bar-Shalom (ed.). MA: Artech House, pp. 25–42.Google Scholar
Bar-Shalom, Y. (ed.) (1990) Multitarget-Multisensor Tracking: Advanced Applications. MA: Artech House.Google Scholar
Bar-Shalom, Y., Li., X. R. and Kirubarajan, T. (2001) Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. New York: Wiley.CrossRefGoogle Scholar
Bayes, T. (1764) Essay towards solving a problem in the doctrine of chances, Philosophical Transactions of the Royal Society of London, 53, 370–418.CrossRefGoogle Scholar
Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis. New York: Springer.CrossRefGoogle Scholar
Bergman, N. (2001) Posterior Cramér–Rao bounds for sequential estimation, in Sequential Monte Carlo Methods in Practice, A., Doucet, N., de Freitas and N., Gordon (eds.). New York: Springer, pp. 321–338.CrossRefGoogle Scholar
Bernardo, J. M. and Smith, A. F. M. (1994) Bayesian Theory. New York: Wiley.CrossRefGoogle Scholar
Berry, D. A. (1996) Statistics: A Bayesian Perspective. Belmont: Duxbury.Google Scholar
Blackman, S. (1986) Multiple Target Tracking with Radar Applications. MA: Artech House.Google Scholar
Blackman, S. and Popoli, R. (1999) Design and Analysis of Modern Tracking Systems. MA: Artech House.Google Scholar
Blair, W. D. and Watson, G. A. (1992) Interacting multiple bias model algorithm with application to tracking maneuvering targets, in IEEE Proc. 31st Conference on Decision and Control, Tucson, AZ, December, pp. 3790–3795.Google Scholar
Blair, W. D. and Watson, G. A. (1994) IMM Algorithm for solution to benchmark problem for tracking maneuvering targets, in Proc. SPIE Symposium on Acquisition, Tracking and Pointing, Orlando, FL.Google Scholar
Blair, W. D., Watson, G. A. and Hoffman, S. A. (1993) Second order interacting multiple model algorithm for tracking maneuvering targets, in Proc. SPIE: Signal and Data Processing of Small Targets 1993, O. E., Drummond (ed.), vol. 1954, pp. 518–529.CrossRefGoogle Scholar
Blair, W. D., Watson, G. A. and Rice, T. R. (1991) Interacting multiple model filter for tracking maneuvering targets in spherical coordinates, in IEEE Proceedings of SOUTHEASTCON' 91, Williamsburg, VA, vol. 2, 1991, pp. 1055–1059.CrossRefGoogle Scholar
Blom, H. A. P. (1984a) A sophisticated tracking algorithm for ATC surveillance data, in Proc. International Radar Conference, Paris, May.Google Scholar
Blom, H. A. P. (1984b) An efficient filter for abruptly changing systems, in Proc. 23rd IEEE Conference on Decision and Control, Las Vegas, NV, December, pp. 656–658.CrossRefGoogle Scholar
Blom, H. A. P. and Bar-Shalom, Y. (1988) The interacting multiple model algorithm for systems with Markovian switching coefficients, IEEE Proceedings on Auto Control AC, 33(8), 780–783.CrossRefGoogle Scholar
Blom, H. A. P. and Bloem, E. (2002) Combining IMM and JPDA for tracking multiple maneuvering targets in clutter, in Proc. 5th International Conference on Information Fusion, Fusion 2002, Annapolis, MD, July, vol. 1, pp. 705–712.Google Scholar
Bochardt, O., Calhoun, R., Uhlmann, J. K. and Julier, S. J. (2006) Generalized information representation and compression using covariance union, in Proc. 9th International Conference on Information Fusion, Fusion 2006, Florence, Italy, July, pp. 1–7.Google Scholar
Boult, T. (1998) Frame-rate multi-body tracking for surveillance, in Proc. DARPA Image Understanding Workshop, Monterey, CA, pp. 305–308.Google Scholar
Box, G. P. A. and Tiao, G. C. (1973) Bayesian Inference in Statistical Analysis. New York: Wiley.Google Scholar
Bucy, R. and Senne, K. (1971) Digital synthesis of non-linear filters, Automatica, 7, 287–298.CrossRefGoogle Scholar
Chakravorty, R. and Challa, S. (2004) Fixed lag smoothing technique for track maintenance in clutter, in Proc. Intelligent Sensors Sensor Networks and Information Processing, pp. 119–124.Google Scholar
Chakravorty, R. and Challa, S. (2005) Smoothing framework for automatic track initiation in clutter, in Proc. 8th International Conference on Information Fusion, Philadelphia, PA, July, pp. 54–61.Google Scholar
Chakravorty, R. and Challa, S. (2006) Augmented state integrated probabilistic data association smoothing for multiple target tracking in clutter, Journal of Advances in Information Fusion, 1(1), 63–74.Google Scholar
Chakravorty, R. and Challa, S. (2009) Multitarget tracking algorithm: joint IPDA and Gaussian mixture PHD filter, in Proc. 12th International Conference on Information Fusion, Fusion 2009, Seattle, WA, July, pp. 316–323.Google Scholar
Challa, S. (1998) Nonlinear state estimation and filtering with applications to target tracking problems. Unpublished PhD thesis, Queenland University of Technology.
Challa, S., Bar-Shalom, Y. and Krishnamurthy, V. (2000) Nonlinear filtering via generalized Edgeworth series and Gauss–Hermite quadrature, IEEE Transactions on Signal Processing, 48(6), 1816–1820.CrossRefGoogle Scholar
Challa, S., Evans, R. J. and Mušicki, D. (2002c) Target tracking – a Bayesian perspective, in Proc. 14th International Conference on Digital Signal Processing, Vol. 1, pp. 437–440.Google Scholar
Challa, S., Evans, R. and Wang, X. (2002a) A Bayesian solution to the OOSM problem, Submitted toIEEE Transactions on Aerospace and Electronic Systems.Google Scholar
Challa, S., Evans, R. and Wang, X. (2002b) Target tracking in clutter using time-delayed out-of-sequence measurements, in Proc. Defence Applications of Signal Processing (DASP), July.Google Scholar
Challa, S., Evans, R. J. and Wang, X. (2003) A Bayesian solution and its approximations to out-of-sequence measurement problems, Information Fusion, 4(3), 185–199.CrossRefGoogle Scholar
Challa, S. and Koks, K. (2004) Bayesian and Dempster–Shafer fusion, in Sadhana, Vol. 29, Part 2, pp. 145–176.CrossRefGoogle Scholar
Challa, S. and Koks, D. (2005) An introduction to Bayesian and Dempster–Shafer data fusion, DSTO Technical Report 1436.
Challa, S., Vo, B. and Wang, X. (2002c) Bayesian approaches to track existence – IPDA and random sets, in Proc. 5th International Conference on Information Fusion, Fusion 2002, Annapolis, MD, July, Vol. 2, pp. 1228–1235.Google Scholar
Chan, Y. T., Hu, A. G. and Plant, J. B. (1979) A Kalman filter based tracking scheme with input estimation, IEEE Transactions on Aerospace and Electronic Systems, 15(2), 237–244.CrossRefGoogle Scholar
Collins, R. T., Lipton, A. J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N. and Hasegawa, O. (2000) A system for video surveillance and monitoring, Carnegie Mellon University, Pittsburgh, PA, Technical Report, CMU-RI-TR-00-12.
Cover, T. M. and Thomas, J. A. (2006) Elements of Information Theory. New York: Wiley.Google Scholar
Cutaia, N. J. and O'Sullivan, J. A. (1995) Identification of maneuvering aircraft using class dependent kinematic models, ESSRL-95-13, May.
Daum, F. E. (1986) Exact finite-dimensional nonlinear filters, IEEE Transactions on Automatic Control, 31(7), 616–622.CrossRefGoogle Scholar
Davies, A. C., Yin, J. H. and Velastin, S. A. (1995) Crowd monitoring using image processing, Electronic and Communication Engineering Journal, 7(1), 37–47.CrossRefGoogle Scholar
de Laplace, P. S. (1812) Théorie analytique des probabilités, Paris: Courcier Imprimeur.Google Scholar
Erdinc, O., Willett, P. and Bar-Shalom, Y. (2005) Probability hypothesis density filter for multitarget multisensor tracking, in Proc. 8th International Conference on Information Fusion, Philadelphia, PA, July, pp. 146–153.Google Scholar
Farina, A. and Studer, F. A. (1985) Radar Data Processing, Vol. I: Introduction and Tracking, Vol. II: Advanced Topics and Applications. Hertfordshire, England: Research Studies Press and New York: Wiley.Google Scholar
Farooq, M., Bruder, S., Quach, T. and Lim, S. S. (1992) Adaptive filtering techniques for manoeuvring targets, in Proc. 34th Midwest Symposium on Circuits and Systems, vol. 1, Monterey, CA, USA, pp. 31–34.Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (1995) Bayesian Data Analysis. London: Chapman and Hall.Google Scholar
Gholson, N. H. and Moose, R. L. (1977) Maneuvering target tracking using adaptive state estimation, IEEE Transactions on Aerospace and Electronic Systems, 13(3), 310–317.CrossRefGoogle Scholar
Goodman, I. R., Mahler, R. and Nhuyen, H. T. (1997) Mathematics of Data Fusion. Amsterdam: Kluwer.CrossRefGoogle Scholar
Haritaoglu, I., Harwood, D. and Davis, L. S. (2004) W4: Real-time surveillance of people and their activities, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 809–830.CrossRefGoogle Scholar
Helmick, R. E., Blair, W. D. and Hoffman, S. A. (1993) Interacting multiple-model approach to fixed-interval smoothing, in Proc. 32nd IEEE Conference on Decision and Control, San Antonio, TX, December, pp. 3052–3057.CrossRefGoogle Scholar
Helmick, R. E., Blair, W. D. and Hoffman, S. A. (1995) Fixed-interval smoothing for Markovian switching systems, IEEE Transactions on Information Theory, 41(6), 1845–1855.CrossRefGoogle Scholar
Helmick, R. E., Blair, W. D. and Hoffman, S. A. (1996) One-step fixed-lag smoothers for Markovian switching systems, IEEE Transactions on Automatic Control, 41(7), 1051–1056.CrossRefGoogle Scholar
Hernandez, M., Farina, A. and Ristic, B. (2006) PCRLB for tracking in cluttered environments: measurement sequence conditioning approach, IEEE Transactions on Aerospace and Electronic Systems, 42(2), 680–704.CrossRefGoogle Scholar
Hernandez, M., Marrs, A. D., Gordon, N. J., Maskell, S. R. and Reed, C. M. (2002) Cramér–Rao bounds for non-linear filtering with measurement origin uncertainty, in Proc. 5th International Converence on Information Fusion, Fusion 2002, Annapolis, MD, July, Vol. 2, pp. 18–25.Google Scholar
Hernandez, M., Ristic, B. and Farina, A. (2005) A performance bound for manoeuvring target tracking using best-fitting Gaussian distributions, in Proc. 8th International Conference on Information Fusion, Philadelphia, PA, July, pp. 1–8.Google Scholar
Hilton, R. D., Martin, D. A. and Blair, W. D. (1993) Tracking with time delayed data in multisensor system, Technical Report, NSWCDD/TR-93/351, Dahlgren, VA.
Ho, Y. C. and Lee, R. C. K. (1964) A Bayesian approach to problems in stochastic estimation and control, IEEE Transactions on Automatic Control, 9(4), 333–339.CrossRefGoogle Scholar
Hoffman, J. R. and Mahler, R. (2002) Multitarget miss distance and its applications, in Proc. 5th International Conference on Information Fusion, Fusion 2002, Annapolis, MD, July, Vol. 2, pp. 149–155.Google Scholar
Hogg, R. V. and Craig, A. T. (1995) Introduction to Mathematical Statistics. New Jersey: Prentice-Hall.Google Scholar
Houles, A. and Bar-Shalom, Y. (1989) Multisensor tracking of a maneuvring target in clutter, IEEE Transactions on Aerospace and Electronic Systems, 25(2), 176–189.CrossRefGoogle Scholar
Hu, W., Tan, T., Wang, L. and Maybank, S. (2004) A survey on visual surveillance of object motion and behaviors, IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews, 34(3), pp. 334–352.CrossRefGoogle Scholar
Hwang, I., Balakrishnan, H., Roy, K. and Tomlin, C. (2004) Multiple-target tracking and identity management in clutter, with application to aircraft tracking, in Proc. 2004 American Control Conference, Boston, MA, June 30–July 2, pp. 3422–3428.Google Scholar
Ito, K. and Xiong, K. (2000) Gaussian filters for nonlinear filtering problems, IEEE Transactions on Automatic Control, 45(5), 910–927.CrossRefGoogle Scholar
Jaffer, A. G. and Gupta, S. C. (1971) Recursive Bayesian estimation with uncertain observation, IEEE Transactions on Information Theory, 17, 614–616.CrossRefGoogle Scholar
Jazwinski, A. H. (1970) Stochastic Processes and Filtering Theory. New York: Academic Press.Google Scholar
Julier, S. J., Uhlmann, J. K. and Durrant-Whyte, H. (2000) A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Transactions on Automatic Control, 45(3), 477–482.CrossRefGoogle Scholar
Kalman, R. E. (1960) A new approach to linear filtering and prediction problems, Transactions of the ASME, Journal of Basic Engineering, March, 35–45.CrossRefGoogle Scholar
Kingman, J. F. C. (1992) Poisson Processes. Oxford: Oxford University Press.Google Scholar
Kramer, S. C. and Sorenson, H. W. (1988) Bayesian parameter estimation, IEEE Transactions on Automatic Control, 33(2), 217–222.CrossRefGoogle Scholar
Krause, S. S. (1995) Avoiding Mid-air Collisions. TAB Books.Google Scholar
Kudryavtsev, L. D. (2001) Implicit function, in Encyclopedia of Mathematics, M., Hazewinkel (ed.). New York: Springer.Google Scholar
Lerner, U. N. (2002) Hybrid Bayesian Networks for Reasoning about Complex Systems. Stanford, CA: Stanford University Press.Google Scholar
Lerro, D. and Bar-Shalom, Y. (1990) Automated tracking with target amplitude information, in Proc. 1990 American Control Conference, San Diego, CA, May, pp. 2875–2880.Google Scholar
Lerro, D. and Bar-Shalom, Y. (1993) Interactive multiple model tracking with target amplitude feature, IEEE Transactions on Aerospace and Electronic Systems, 29(2), 494–509.CrossRefGoogle Scholar
Li, X. R. (1994) Multiple-model estimation with variable structure: some theoretical considerations, in Proc. 33rd IEEE Conference on Decision and Control, Orlando, FL, December, pp. 1199–1204.Google Scholar
Li, X. R. (2000) Multiple-model estimation with variable structure – part II: model-set adaptation, IEEE Transactions on Automatic Control, 45(11), 2047–2060.Google Scholar
Li, X. R. and Bar-Shalom, Y. (1992) Mode-set adaptation in multiple-model estimators for hybrid systems, in Proc. 1992 American Control Conference, Chicago, IL, June, pp. 1794–1799.Google Scholar
Li, X. R. and Bar-Shalom, Y. (1996) Multiple-model estimation with variable structure, IEEE Transactions on Automatic Control, 41(4), 478–493.Google Scholar
Li, X. R. and Bar-Shalom, Y. (1997) Intelligent PDAF: refinement of IPDAF for tracking in clutter, in Proc. 29th SSST, March, pp. 133–137.Google Scholar
Li, X. R. and He, C. (1999) 2M-PDAF: an integrated two-model probabilistic data association filter, in Proc. SPIE: Signal and Data Processing of Small Targets 1999, O. E., Drummond (ed.), pp. 384–395.CrossRefGoogle Scholar
Li, X. R. and Zhang, Y. (2000) Multiple-model estimation with variable structure–part V: likely-model set algorithm, IEEE Transactions on Aerospace and Electronic Systems, 36(2), pp. 448–466.Google Scholar
Li, X. R., Zhi, X. and Zhang, Y. (1999) Multiple-model estimation with variable structure part III: model-group switching algorithm, IEEE Transactions on Aerospace and Electronic Systems, 35(1), 225–240.Google Scholar
Lin, L., Bar-Shalom, Y. and Kirubarajan, T. (2006) Track labeling and PHD filter for multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems, 42(3), 778–795.CrossRefGoogle Scholar
Lindley, D. V. (1972) Bayesian Statistics, A Review. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Lipton, A. J., Fujiyoshi, H. and Patil, R. S. (1998) Moving target classification and tracking from real-time video, in Proc. 4th IEEE Workshop on Applications of Computer Vision, pp. 8–14.Google Scholar
Mahalanabis, A. K., Zhou, B. and Bose, N. K. (1990) Improved multi-target tracking in clutter by PDA smoothing, IEEE Transactions on Aerospace and Electronic Systems, 26(1), 113–121.CrossRefGoogle Scholar
Mahler, R. (1997) Multisensor-multitarget statistics, in A Unified Approach to Data Fusion – Proceedings of 7th Joint Data Fusion Symposium, F. A., Sadjadi (ed.), pp. 154–174.Google Scholar
Mahler, R. (2000) Approximate multisensor-multitarget joint detection, IEEE Transactions on Aerospace and Electronic Systems, to appear.Google Scholar
Mahler, R. (2003a) Multitarget Bayes filtering via first-order multitarget moments, IEEE Transactions on Aerospace and Electronic Systems, 39(4), 1152–1178.CrossRefGoogle Scholar
Mahler, R. (2003b) Objective functions for Bayesian control-theoretic sensor management, I: Multitarget first-moment approximation, in Proc. IEEE Conference on Aerospace and Electronics Systems, Vol. 4, pp. 1905–1923.Google Scholar
Mahler, R. (2004a) “Statistics 101” for multisensor, multitarget data fusion, IEEE Magazine of Aerospace and Electronic Systems, 19(1), 53–64.CrossRefGoogle Scholar
Mahler, R. (2004b) An introduction to multisource-multitarget statistics and its applications, Technical report, Lockheed Martin.
Mahler, R. (2007) PHD filters of higher order in target number, IEEE Transactions on Aerospace and Electronic Systems, 43(4), 1523–1543.CrossRefGoogle Scholar
Mallick, M., Coraluppi, S. and Bar-Shalom, Y. (2001b) Comparison of out-of-sequence measurement algorithms in multi-platform target tracking, in Proc. 4th International Conference on Information Fusion, Fusion 2001, Montreal, Quebec, August, Vol. II, pp. ThB1-11–18.Google Scholar
Mallick, M., Coraluppi, S. and Carthel, C. (2001a) Advances in asynchronous and decentralized estimation, in Proc. 2001 IEEE Aerospace Conference, Big Sky, MT, March.Google Scholar
Marcus, G. D. (1979) Tracking with measurements of uncertain origin and random arrival times. Unpublished thesis, University of Connecticut.
Mazor, E., Averbuch, A., Bar-Shalom, Y. and Dayan, J. (1998) Interacting multiple model methods in target tracking: a survey, IEEE Transactions on Aerospace and Electronic Systems, 34(1), 103–123.CrossRefGoogle Scholar
McGinnity, S. and Irwin, G. (2001) Manoevring target tracking using a multiple-model bootstrap filter, in Sequential Monte Carlo Methods in Practice, A., Doucet, N. de, Freitas and N., Gordon (eds.), New York: Springer, pp. 479–496.CrossRefGoogle Scholar
Moose, R. L. (1975) An adaptive state estimation solution to the maneuvering target tracking problem, IEEE Transactions on Automatic Control, 20, 359–362.CrossRefGoogle Scholar
Moose, R. L., Vanlandingham, H. F. and McCabe, D. H. (1979) Modeling and estimation for tracking maneuvering targets, IEEE Transactions on Aerospace and Electronic Systems, 15(3), 448–456.CrossRefGoogle Scholar
Mori, S., Chong, C. Y., Tse, E. and Wishner, R. P. (1986) Tracking and classifying multiple targets without a priori identification, IEEE Transactions on Automatic Control, 31(5), 401–408.CrossRefGoogle Scholar
Munir, A. and Atherton, D. P. (1994) Maneuvering target tracking using an adaptive interacting multiple model algorithm, in Proc. 1994 American Control Conference, Vol. 2, Baltimore, MD, pp. 1324–1328.CrossRefGoogle Scholar
Mušicki, D. (1994) Automatic tracking of maneuvering targets in clutter using IPDA. Unpublished PhD dissertation, University of Newcastle, New South Wales, Australia.
Mušicki, D. and Evans, R. J. (1995) Integrated probabilistic data association – finite resolution, Automatica, 31(4), pp. 559–570.CrossRefGoogle Scholar
Mušicki, D. and Evans, R. J. (2002) Joint integrated probabilistic data association JIPDA, in Proc. 5th International Conference on Information Fusion, Fusion 2002, Annapolis, MD, July, pp. 1120–1125.Google Scholar
Mušicki, D. and Evans, R. J. (2004a) Clutter map information for data association and track initialization, IEEE Transactions on Aerospace and Electronic Systems, 40(2), 387–398.CrossRefGoogle Scholar
Mušicki, D. and Evans, R. J. (2004b) Joint integrated probabilistic data association – JIPDA, IEEE Transactions on Aerospace and Electronic Systems, 40(3), 1093–1099.CrossRefGoogle Scholar
Mušicki, D. and Evans, R. J. (2008) Multi-scan multi-target tracking in clutter with ITS, IEEE Transactions on Aerospace and Electronic Systems, to appear.Google Scholar
Mušicki, D. and La Scala, B. F. (2005) Limits of linear multitarget tracking, in Proc. 8th International Conference on Information Fusion, Fusion 2005, Philadelphia, PA, July, pp. 205–210.Google Scholar
Mušicki, D. and La Scala, B. F. (2008) Multi-target tracking in clutter without measurement assignment, IEEE Transactions on Aerospace and Electronic Systems, 44(3), 877–896.CrossRefGoogle Scholar
Mušicki, D. and Morelande, M. (2004) Gate volume estimation for target tracking, in Proc. 7th International Conference on Information Fusion, Fusion 2004, Stockholm, Sweden, June 28–July 1, pp. 455–462.Google Scholar
Mušicki, D. and Suvorova, S. (2004) Target tracking initiation comparison and optimisation, in Proc. 7th International Conference on Information Fusion, Fusion 2004, Stockholm, Sweden, June 28–July 1, pp. 28–32.Google Scholar
Mušicki, D. and Suvorova, S. (2008) Tracking in clutter using IMM-IPDA based algorithms, IEEE Transactions on Aerospace and Electronic Systems, 44(1), 111–126.CrossRefGoogle Scholar
Mušicki, D. and Wang, X. (2004) Reliability of PDA based target tracking in clutter, in Proc. 7th International Conference on Information Fusion, Fusion 2004, Stockholm, Sweden, June 28–July 1, pp. 1257–1262.Google Scholar
Mušicki, D., Challa, S. and Suvorova, S. (2004a) Automatic track initiation of maneuvering target in clutter, in Asian Control Conference, ASCC 2004, Melbourne, Australia, July, pp. 1008–1014.Google Scholar
Mušicki, D., Evans, R. J. and La Scala, B. F. (2003) Integrated tracking splitting suite of target tracking filters, in Proc. 6th International Conference on Information Fusion, Fusion 2003, Cairns, Australia, July, pp. 1039–1047.CrossRefGoogle Scholar
Mušicki, D., Evans, R. J. and Stanković, S. (1994) Integrated probabilistic data association, IEEE Transactions on Automatic Control, 39(6), 1237–1241.CrossRefGoogle Scholar
Mušicki, D., La Scala, B. F. and Evans, R. J. (2004b) Integrated track splitting filter for manoeuvring targets, in Proc. 7th International Conference on Information Fusion, Fusion 2004, Stockholm, Sweden, June 28–July 1, pp. 146–152.Google Scholar
Mušicki, D., La Scala, B. F. and Evans, R. J. (2007) The integrated track splitting filter – efficient multi-scan single target tracking in clutter, IEEE Transactions on Aerospace and Electronic Systems, 43(4), 1409–1425.Google Scholar
Mušicki, D., Mallick, M., La Scala, B. F., Strange, S. and Evans, R. (2005a) LMITS as an efficient MHT, in Proc. SPIE: Signal and Data Processing of Small Targets 2005, O. E., Drummond (ed.), pp. OVI–OVI2.Google Scholar
Mušicki, D., Suvorova, S., Morelande, M. and Moran, W. (2005b) Clutter map and target tracking, in Proc. 8th International Conference on Information Fusion, Fusion 2005, Philadelphia, PA, July, pp. 69–76.Google Scholar
Olson, T. and Brill, F. (1997) Moving object detection and event recognition algorithms for smart cameras, in Proc. DARPA Image Understanding Workshop, pp. 159–175.Google Scholar
Panta, K., Vo, B. and Singh, S. (2005) Improved PHD filter for multi-target tracking, in Proc. International Conference on Intelligent Sensing and Information Processing, pp. 213–218.CrossRefGoogle Scholar
Rapoport, I. and Oshman, Y. (2004) Recursive Weiss–Weinstein lower bounds for discretetime nonlinear filtering, in Proc. 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, December, pp. 2662–2667.Google Scholar
Rasmussen, C. and Hager, G. D. (2001) Probabilistic data association methods for tracking complex visual objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 560–576.CrossRefGoogle Scholar
Ravn, O., Larsen, T. D., Andersen, N. A. and Poulsen, N. K. (1998) Incorporation of time delayed measurements in a discrete time Kalman filter, in Proc. 37th IEEE Conference on Decision and Control, Tampa, FL, December, pp. 3972–3977.Google Scholar
Regazzoni, C. S. and Tesei, A. (1996) Distributed data fusion for real time crowding estimation, Signal Processing, 53(1), 47–63.CrossRefGoogle Scholar
Regazzoni, C. S., Tesei, A. and Munro, V. (1993) A real time vision system for crowding monitoring, Proc. IECON, pp. 1860–1864.Google Scholar
Reid, D. B. (1979) An algorithm for tracking multiple targets, IEEE Transactions on Automatic Control, 24(6), 843–854.CrossRefGoogle Scholar
Ricker, G. G. and Williams, J. R. (1978) Adaptive tracking filter for maneuvering targets, IEEE Transactions on Aerospace and Electronic Systems, 14(1), 185–193.CrossRefGoogle Scholar
Ristic, B. and Morelande, M. (2007) Comments on: Cramer–Rao lower bound for tracking multiple targets, in Proceedings of the IET Radar Sonar Navigation, 1(1), 74–76.CrossRefGoogle Scholar
Ristic, B., Farina, A. and Hernandez, M. (2004) Cramer–Rao lower bound for tracking multiple targets, in Proceedings of the IET Radar Sonar Navigation, 151(3), 129–134.CrossRefGoogle Scholar
Ross, S. M. (2003) Introduction to Probability Models. Orlando, FL: Academic Press.Google Scholar
Roumeliotis, S. I. and Bekey, G. A. (1997) An extended Kalman filter for frequent local and infrequent global sensor data fusion, in Proc. SPIE (Sensor Fusion and Decentralized Control in Autonomous Robotic Systems), Pittsburgh, PA, October 14–19, pp. 11–22.CrossRefGoogle Scholar
Salmond, D. (1990) Mixture reduction algorithms for target tracking in clutter, Proc. SPIE: Signal and Data Processing of Small Targets, 1990, O. E., Drummond (ed.), pp. 434–445.CrossRefGoogle Scholar
Sidenbladh, H. (2003) Multi-target particle filtering for the probability hypothesis density, in Proc. 6th International Conference on Information Fusion, Fusion 2003, Cairns, Australia, July, pp. 800–806.Google Scholar
Singer, R. A., Sea, R. G. and Housewright, K. B. (1974) Derivation and evaluation of improved tracking filters for use in dense multitarget environments, IEEE Transactions on IT, IT-20(4), 423–432.CrossRefGoogle Scholar
Stigler, S. M. (1986) The History of Statistics, The Measurement of Uncertainty before 1900. The Belknap Press of Harvard University Press.Google Scholar
Sworder, D. D. and Boyd, J. E. (1999) Estimation Problems in Hybrid Systems. New York: Cambridge University Press.CrossRefGoogle Scholar
Tan, T. N., Sullivan, G. D. and Baker, K. D. (1998) Model-based localization and recognition of road vehicles, International Journal of Computer Vision, 27(1), 5–25.CrossRefGoogle Scholar
Thomopoulos, S. C. A. and Zhang, L. (1994) Decentralized filtering with random sampling and delay, Information Sciences, 81(1), 117–131.CrossRefGoogle Scholar
Tichavský, P., Muravchik, C. H. and Hehorai, A. (1998) Posterior Cramér–Rao bounds for discrete-time nonlinear filtering, IEEE Transactions on Signal Processing, 46(5), 1386–1396.CrossRefGoogle Scholar
Tugnait, J. K. (1982) Detection and estimation for abruptly changing systems, Automatica, 18(5), 607–615.CrossRefGoogle Scholar
Van Trees, H. L. (1968) Detection, Estimation, and Modulation Theory, Part 1. New York: Wiley.Google Scholar
Vo, B. and Ma, W. (2006) The Gaussian mixture probability hypothesis density filter, IEEE Transactions on Signal Processing, 54(11), 4091–4104.CrossRefGoogle Scholar
Vo, B., Singh, S. and Doucet, A. (2005) Sequential Monte Carlo methods for multi-target filtering with random finite sets, IEEE Transactions on Aerospace and Electronic Systems, 41(4), 1224–1245.Google Scholar
Vo, B. T., Vo, B. N. and Cantoni, A. (2006) The cardinalized probability hypothesis density filter for linear Gaussian multi-target models, in Proc. 40th Annual Conference on Information Sciences and Systems, pp. 681–686.Google Scholar
Wang, X. and Challa, S. (2003) Augmented state IMM-PDA for OOSM solution to maneuvering target tracking in clutter, in Proc. 2003 International Radar Conference, pp. 479–485.CrossRefGoogle Scholar
Wang, X. and Mušicki, D. (2007) Low elevation sea-surface target tracking, using IPDA type filters, IEEE Transactions on Aerospace and Electronic Systems, 43(2), 759–774.CrossRefGoogle Scholar
Wang, X., Challa, S., Evans, R. J. and Li, X. R. (2003) Minimal submodel-set algorithm for maneuvering target tracking, IEEE Transactions on Aerospace and Electronic Systems, 39(4), 1218–1231.CrossRefGoogle Scholar
Wang, X., Mušicki, D., Richard, E. and Fletcher, F. (2008) Efficient and enhanced multitarget tracking with Doppler measurements, IEEE Transactions on Aerospace and Electronic Systems, to appear.Google Scholar
Williams, J. L. and Mayback, P. S. (2003) Cost-function-based Gaussian mixture reduction for target tracking, in Proc. 5th International Conference on Information Fusion, Fusion 2003, Cairns, Australia, July, pp. 1047–1054.CrossRefGoogle Scholar
Wren, C. R., Azarbayejani, A., Darrell, T. and Pentland, A. P. (1997) Pfinder: real-time tracking of the human body, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 780–785.CrossRefGoogle Scholar
Zajic, T. and Mahler, R. (2003) A particle-systems implementation of the PHD multi-target tracking filter, in Proc. SPIE Signal Process, Sensor Fusion Target Recognition XII, pp. 291–299.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×