Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T03:22:33.231Z Has data issue: false hasContentIssue false

10 - Flows with Bubble Dynamics

Published online by Cambridge University Press:  05 June 2014

Christopher E. Brennen
Affiliation:
California Institute of Technology
Get access

Summary

Introduction

In Chapter 9, the analyses were predicated on the existence of an effective barotropic relation for the homogeneous mixture. Indeed, the construction of the sonic speed in Sections 9.3.1 and 9.3.3 assumes that all the phases are in dynamic equilibrium at all times. For example, in the case of bubbles in liquids, it is assumed that the response of the bubbles to the change in pressure, δp, is an essentially instantaneous change in their volume. In practice this would be the case only if the typical frequencies experienced by the bubbles in the flow are very much smaller than the natural frequencies of the bubbles themselves (see Section 4.4.1). Under these circumstances the bubbles would behave quasistatically and the mixture would be barotropic. However, there are a number of important contexts in which the bubbles are not in equilibrium and in which the nonequilibrium effects have important consequences. One example is the response of a bubbly multiphase mixture to high-frequency excitation. Another is a bubbly cavitating flow where the nonequilibrium bubble dynamics lead to shock waves with substantial noise and damage potential.

In this chapter we therefore examine some flows in which the dynamics of the individual bubbles play an important role. These effects are included by incorporating the Rayleigh–Plesset equation (Rayleigh 1917, Knapp et al. 1970, Brennen 1995) into the global conservation equations for the multiphase flow. Consequently the mixture no longer behaves barotropically.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×