Book contents
- Frontmatter
- Contents
- Preface
- Nomenclature
- 1 Introduction to Multiphase Flow
- 2 Single-Particle Motion
- 3 Bubble or Droplet Translation
- 4 Bubble Growth and Collapse
- 5 Cavitation
- 6 Boiling and Condensation
- 7 Flow Patterns
- 8 Internal Flow Energy Conversion
- 9 Homogeneous Flows
- 10 Flows with Bubble Dynamics
- 11 Flows with Gas Dynamics
- 12 Sprays
- 13 Granular Flows
- 14 Drift Flux Models
- 15 System Instabilities
- 16 Kinematic Waves
- Bibliography
- Index
7 - Flow Patterns
Published online by Cambridge University Press: 05 June 2014
- Frontmatter
- Contents
- Preface
- Nomenclature
- 1 Introduction to Multiphase Flow
- 2 Single-Particle Motion
- 3 Bubble or Droplet Translation
- 4 Bubble Growth and Collapse
- 5 Cavitation
- 6 Boiling and Condensation
- 7 Flow Patterns
- 8 Internal Flow Energy Conversion
- 9 Homogeneous Flows
- 10 Flows with Bubble Dynamics
- 11 Flows with Gas Dynamics
- 12 Sprays
- 13 Granular Flows
- 14 Drift Flux Models
- 15 System Instabilities
- 16 Kinematic Waves
- Bibliography
- Index
Summary
Introduction
From a practical engineering point of view one of the major design difficulties in dealing with multiphase flow is that the mass, momentum, and energy transfer rates and processes can be quite sensitive to the geometric distribution or topology of the components within the flow. For example, the geometry may strongly effect the interfacial area available for mass, momentum, or energy exchange between the phases. Moreover, the flow within each phase or component will clearly depend on that geometric distribution. Thus we recognize that there is a complicated two-way coupling between the flow in each of the phases or components and the geometry of the flow (as well as the rates of change of that geometry). The complexity of this two-way coupling presents a major challenge in the study of multiphase flows and there is much that remains to be done before even a superficial understanding is achieved.
An appropriate starting point is a phenomenological description of the geometric distributions or flow patterns that are observed in common multiphase flows. This chapter describes the flow patterns observed in horizontal and vertical pipes and identifies a number of the instabilities that lead to transition from one flow pattern to another.
Topologies of Multiphase Flow
Multiphase Flow Patterns
A particular type of geometric distribution of the components is called a flow pattern or flow regime and many of the names given to these flow patterns (such as annular flow or bubbly flow) are now quite standard.
- Type
- Chapter
- Information
- Fundamentals of Multiphase Flow , pp. 127 - 154Publisher: Cambridge University PressPrint publication year: 2005
- 1
- Cited by