Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T14:15:05.575Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  12 December 2024

Robert P. Lucht
Affiliation:
Purdue University, Indiana
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseyev, V., Grasiuk, A., Ragulsky, V., Sobel’man, I., and Faizulov, F. (1968). S-6-Stimulated Raman scattering in gases and gain pressure dependence. IEEE Journal of Quantum Electronics, QE-4, 654656.CrossRefGoogle Scholar
Amiot, C., Bacis, A., and Guelachvili, G. (1978). Infrared study of the v = 0, 1, 2 levels of 14N16O. Preliminary results on the v = 0, 1 levels of 14N17O, 14N18O, and 15N16O. Canadian Journal of Physics, 56, 251265.CrossRefGoogle Scholar
Bassani, F., Forney, J. J., and Quattropani, A. (1977). Choice of gauge in two-photon transitions: 1s-2s transitions in atomic hydrogen. Physical Review Letters, 39, 10701073.CrossRefGoogle Scholar
Beaud, P., Frey, H.-M., Lang, T., and Motzkus, M. (2001). Flame thermometry by femtosecond CARS. Chemical Physics Letters, 344, 407412.CrossRefGoogle Scholar
Becker, R. (1964). Electromagnetic Fields and Interactions. Cambridge: Dover Publications.Google Scholar
Becker, R. (2006). Electromagnetic Fields and Interactions. Cambridge: Dover.Google Scholar
Bennett, R. J. M. (1970). Hönl–London factors for doublet transitions in diatomic molecules. Monthly Notices of the Royal Astronomical Society, 147, 3546.CrossRefGoogle Scholar
Bérard, M., Lallemand, P., Cebe, J. P., and Giraud, M. (1983). Experimental and theoretical analysis of the temperature dependence of the rotational Raman linewidths of oxygen. Journal of Chemical Physics, 78, 672687.CrossRefGoogle Scholar
Bernath, P. F. (2016). Spectra of Atoms and Molecules, 3rd edition. Cambridge: Oxford University Press.Google Scholar
Bethe, H. A. and Saltpeter, E. E. (1957). Quantum Mechanics of One- and Two-Electron Atoms. Cambridge: Springer-Verlag.CrossRefGoogle Scholar
Beyer, W. H. (1978). Handbook of Mathematical Sciences, 5th edition. Cambridge: CRC Press.Google Scholar
Billoux, T., Cressault, Y., and Gleizes, A. (2014). Tables of radiative transition probabilities for the main diatomic molecular systems of OH, CH, CH+, CO, and CO+ occurring in CO-H2 syngas-type plasma. Journal of Quantitative Spectroscopy and Radiative Transfer, 133, 434444. DOI: https://doi.org/10.1016/j.jqsrt.2013.09.005.CrossRefGoogle Scholar
Bohlin, A., Bengtsson, P.-E., and Marrocco, M. (2011). On the sensitivity of rotational CARS N2 thermometry to the Herman–Wallis factor. Journal of Raman Spectroscopy, 42, 18431847.CrossRefGoogle Scholar
Bohlin, A. and Kliewer, C. J. (2013). Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot. Journal of Chemical Physics, 138, Article No. 221101. DOI: https://doi.org/10.1063/1.4815927.CrossRefGoogle Scholar
Bohlin, A. and Kliewer, C. J. (2014). Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging. Applied Physics Letters, 104, Article No. 031107. DOI: https://doi.org/10.1063/1.4862980.CrossRefGoogle Scholar
Bohlin, A., Jainski, C., Patterson, B. D., Dreizler, A., and Kliewer, C. J. (2017). Multiparameter spatio-thermochemical probing of flame-wall interactions with coherent Raman imaging. Proceedings of the Combustion Institute, 36, 45574564. DOI: https://doi.org/10.1016/j.proci.2016.07.062.CrossRefGoogle Scholar
Boyd, R. W. (2008). Nonlinear Optics, 3rd edition. Cambridge: Academic Press.Google Scholar
Brazier, C. R., Ram, R. S., and Bernath, P. F. (1986). Fourier transform spectroscopy of the A3Π-X3Σ transition of NH. Journal of Molecular Spectroscopy, 120, 381402.CrossRefGoogle Scholar
Brooke, J. S. A., Bernath, P. F., Western, C. M., Sneden, C., Afşar, M., Li, G., and Gordon, I. E. (2016). Line strengths of rovibrational and rotational transitions in the ground state of OH. Journal of Quantitative Spectroscopy and Radiative Transfer, 168, 142157. DOI: https://doi.org/10.1016/j.jqsrt.2015. 07.021CrossRefGoogle Scholar
Brooke, J. S. A., Ram, R. S., Western, C. M., Schwenke, D. W., Li, G., and Bernath, P. F. (2014). Einstein A coefficients and oscillator strengths for the (red) and (violet) systems and rovibrational transitions in the state of CN. The Astrophysical Journal Supplement Series, 210, 23 (15 pp.). DOI: https://doi.org/10.1088/0067-0049/210/2/23.CrossRefGoogle Scholar
Brown, J. M., Hougen, J. T., Huber, K.-P., Johns, J. W. C., Kopp, I., Lefebvre-Brion, H., Merer, A. J., Ramsay, D. A., Rostas, J., and Zare, R. N. (1975). The labeling of parity doublet levels in linear molecules. Journal of Molecular Spectroscopy, 55: 500503.CrossRefGoogle Scholar
Brown, J. M., Kaise, M., Kerr, C. M. L., and Milton, D. J. (1978). A determination of fundamental Zeeman parameters of the OH radical. Molecular Physics, 36, 553582.CrossRefGoogle Scholar
Brown, J. M. and Merer, A. J. (1979). Lambda-type doubling parameters for molecules in Π electronic states of triplet and higher multiplicity. Journal of Molecular Spectroscopy, 74, 488494.CrossRefGoogle Scholar
Brown, J. M., Cheung, A. S.-C., and Merer, A. J. (1987). Λ-type doubling parameters for molecules in Δ electronic states. Journal of Molecular Spectroscopy, 124, 464475.CrossRefGoogle Scholar
Brown, J. M. and Carrington, A. (2003). Rotational Spectroscopy of Diatomic Molecules. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Brouard, M., Chadwick, H. Chang, Y.-P., Howard, B. J., Marinakis, S., Screen, N., Seamons, S. A., and La Via, A. (2012). The hyperfine structure of . Journal of Molecular Spectroscopy, 282, 4249. DOI: https://doi.org/10.1016/j.jms.2012.11.003CrossRefGoogle Scholar
Bouanich, J. P. and Brodbeck, C. (1976). Vibration-rotation matrix elements for diatomic molecules; vibration-rotation interaction functions for CO. Journal of Quantitative Spectroscopy and Radiative Transfer, 16, 153163.CrossRefGoogle Scholar
Buldakov, M. A., Chrepanov, V. N., Korolev, B. V., and Matrosov, I. I. (2003). Role of intramolecular interactions in Raman spectra of N2 and O2 molecules. Journal of Molecular Spectroscopy, 217, 18.CrossRefGoogle Scholar
Butcher, P. N. and Cotter, D. (1990). The Elements of Nonlinear Optics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chang, A. Y., DiRosa, M. D., and Hanson, R. K. (1992). Temperature dependence of collision broadening and shift in the NO band in the presence of argon and nitrogen. Journal of Quantitative Spectroscopy and Radiative Transfer, 47, 375390.CrossRefGoogle Scholar
Chou, S.-I., Baer, D. S., and Hanson, R. K. (1999a). Spectral intensity and lineshape measurements in the first overtone band of HF using tunable diode lasers. Journal of Molecular Spectroscopy, 195, 123131.CrossRefGoogle ScholarPubMed
Chou, S.-I., Baer, D. S., and Hanson, R. K. (1999b). Diode-laser measurements of He-, Ar-, and N2-broadened HF lineshapes in the first overtone band. Journal of Molecular Spectroscopy, 196, 7076.CrossRefGoogle Scholar
Condon, E. U. and Shortley, G. H. (1951). The Theory of Atomic Spectra. Cambridge: Cambridge University Press.Google Scholar
Cowan, R. D. (1981). The Theory of Atomic Structure and Spectra. Cambridge: University of California Press.CrossRefGoogle Scholar
Craig, D. P. and Thirunamachandran, T. (1984). Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions. Cambridge: Academic Press.Google Scholar
Dedic, C. E., Miller, J. D., and Meyer, T. R. (2014). Dual-pump vibrational/rotational femtosecond/picosecond coherent anti-Stokes Raman scattering temperature and species measurements. Optics Letters, 39, 66086611. DOI: https://doi.org/10.1364/OL39.006608.CrossRefGoogle ScholarPubMed
Dennis, C. N., Satija, A., and Lucht, R. P. (2016a). High dynamic range thermometry at 5 kHz in hydrogen–air diffusion flame using chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering. Journal of Raman Spectroscopy, 47, 177188. DOI: https://doi.org/10.1002/jrs.4773CrossRefGoogle Scholar
Dennis, C. N., Slabaugh, C. D., Boxx, I. G., Meier, W., and Lucht, R. P. (2016b). 5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS. Part 1: Temporally resolved swirl-flame thermometry. Combustion and Flame, 173, 441453. DOI: https://doi.org/10.1016/j.combustflame.2016.02.033CrossRefGoogle Scholar
Dion, P. and May, A. D. (1973). Motional narrowing and other effects in the Q branch of HD. Canadian Journal of Physics, 51, 3639.CrossRefGoogle Scholar
Dirac, P. A. M. (1958). The Principles of Quantum Mechanics, 4th edition. Cambridge: Oxford University Press.CrossRefGoogle Scholar
Dreier, T., Schiff, G. and Suvernev, A. A. (1994). Collisional effects in Q branch coherent anti-Stokes Raman spectra of N2 and O2 at high pressure and high temperature. Journal of Chemical Physics, 100, 6275–6289. DOI: https://doi.org/10.1063/1.467090CrossRefGoogle Scholar
Duxbury, G., Kelly, J. F., Blake, T. A., and Langford, N. (2012). Sub-Doppler spectra of infrared hyperfine transitions of nitric oxide using a pulse modulated quantum cascade laser: Rapid passage, free induction decay, and the ac Stark effect. Journal of Chemical Physics, 136, Art. No. 174319. DOI: https://doi.org/10.1063/1.4710542Google ScholarPubMed
Earls, L. T. (1935). Intensities in the transitions in diatomic molecules. Physical Review, 48, 423424CrossRefGoogle Scholar
Eckbreth, A. C. (1996). Laser Diagnostics for Combustion Temperature and Species, 2nd edition. Cambridge: Gordon and Breach Publishers.Google Scholar
Edmonds, A. R. (1960). Angular Momentum in Quantum Mechanics. Cambridge: Princeton University Press.Google Scholar
Engleman, R. and Rouse, P. E. (1971). The and bands of nitric oxide observed during the flash photolysis of nitrosyl chloride. Journal of Molecular Spectroscopy, 37, 240251.CrossRefGoogle Scholar
Fernando, A. M., Bernath, P. F., Hodges, J. N., and Masseron, T. (2018). A new line list for the transition of the NH free radical. Journal of Quantitative Spectroscopy and Radiative Transfer, 217, 2934. DOI: https://doi.org/10.1016/j.jqsrt.2018.05.021CrossRefGoogle Scholar
Forney, J. J., Quattropani, A., and Bassani, F. (1977). Choice of gauge in optical transitions. Il Nuovo Cimento, 37, 7888.CrossRefGoogle Scholar
Galatry, L. (1961). Simultaneous effect of Doppler and foreign gas broadening on spectral lines. Physical Review, 122, 12181223.CrossRefGoogle Scholar
Gersten, J. I. and Foley, H. M. (1968). Combined Doppler and collision broadening. Journal of the Optical Society of America, 58, 933937.CrossRefGoogle Scholar
Goldsmith, J. E. M. and Rahn, L. A. (1988). Doppler-free two-photon-excited fluoresecence spectroscopy of OH in flames. Journal of the Optical Society of America B, 5, 749755.CrossRefGoogle Scholar
Gottfried, K. and Yan, T.-M. (2003). Quantum Mechanics: Fundamentals, 2nd edition. Cambridge: Springer-Verlag.CrossRefGoogle Scholar
Gu, M., Satija, A., and Lucht, R. P. (2019). Effects of self-phase modulation (SPM) on femtosecond coherent anti-Stokes Raman scattering spectroscopy. Optics Express, 27, 3395533967. DOI: https://doi.org/10.1364/OE.27.033954CrossRefGoogle ScholarPubMed
Gu, M., Satija, A., and Lucht, R. P. (2020). Impact of moderate pump-Stokes chirp on femtosecond coherent anti-Stokes Raman scattering spectra. Journal of Raman Spectroscopy, 51, 115124. DOI: https://doi.org/10.1002/jrs.5754CrossRefGoogle Scholar
Hall, R. J., Verdieck, J. F., and Eckbreth, A. C. (1980). Pressure-induced narrowing of the CARS spectrum of N2. Optics Communications, 35, 6975.CrossRefGoogle Scholar
Hall, R. J. (1983). Coherent anti-Stokes Raman spectroscopic modeling for combustion diagnostics. Optical Engineering, 22, 322329CrossRefGoogle Scholar
Hanson, R. K., Spearrin, R. M., and Goldenstein, C. S. (2016). Spectroscopy and Optical Diagnostics for Gases. Cambridge: Springer.CrossRefGoogle Scholar
Herbert, F. (1974). Spectrum line profiles: A generalized Voigt function including collisional narrowing. Journal of Quantitative Spectroscopy and Radiation Transfer, 14, 943951.CrossRefGoogle Scholar
Herman, R. and Wallis, R. F. (1955). Influence of vibration-rotation interaction on line intensities in vibration-rotation bands of diatomic molecules. Journal of Chemical Physics, 23, 637646.CrossRefGoogle Scholar
Hilborn, R. C. (1982). Einstein coefficients, cross sections, f values, dipole moments, and all that. American Journal of Physics, 50, 982986.CrossRefGoogle Scholar
Hougen, J. T. (1970). “The Calculation of Rotational Energy Levels and Rotational Intensities in Diatomic Molecules,” N.B.S. Monograph 115, Washington, D. C.CrossRefGoogle Scholar
Incropera, Frank P. (1974). Introduction to Molecular Structure and Thermodynamics. Cambridge: John Wiley and Sons.Google Scholar
James, T. C. and Klemperer, W. (1959). Line intensities in the Raman effect of diatomic molecules. Journal of Chemical Physics, 31, 130134.CrossRefGoogle Scholar
James, T. C. (1963). Intensity distribution in the forbidden transition of SiO. Journal of Chemical Physics, 38, 10941097.CrossRefGoogle Scholar
James, T. C. (1971). Transition moments, Franck–Condon factors, and lifetimes of forbidden transitions. Calculation of the intensity of the Cameron system of CO. Journal of Chemical Physics, 55, 41184124.CrossRefGoogle Scholar
Judd, B. R. (1975). Angular Momentum Theory for Diatomic Molecules. Cambridge: Academic Press.Google Scholar
Kataoka, H., Maeda, S., and Hirose, C. (1982). Effects of laser linewidth on the coherent anti-Stokes Raman spectroscopy spectral profile. Applied Spectroscopy, 36, 565569.CrossRefGoogle Scholar
Kearney, S. P. and D. J. Scoglietti, D. J. (2013). Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe. Optics Letters, 38, 833835.CrossRefGoogle ScholarPubMed
Ketter, R. L. and Prawel, S. P. (1969). Modern Methods of Engineering Computation. Cambridge: McGraw-Hill.Google Scholar
Kleiman, Valeria D., Park, Hongkun, Gordon, Robert J., and Zare, Richard N. (1998). Companion to Angular Momentum. Cambridge: John Wiley and Sons.Google Scholar
Kobe, D. H., and Smirl, A. L. (1978). Gauge invariant formulation of the interaction of electromagnetic radiation and matter. American Journal of Physics, 46, 624633.CrossRefGoogle Scholar
Koszykowski, M. L., Farrow, R. L., and Palmer, R. E. (1985). Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra. Optics Letters, 10, 478480.CrossRefGoogle ScholarPubMed
Kovacs, I. (1960). Intensities in Σ−Δ and Π−Δ transitions in diatomic molecules. Canadian Journal of Physics, 38, 955963.CrossRefGoogle Scholar
Kovacs, I. (1969). Rotational Structure in the Spectra of Diatomic Molecules. Cambridge: Hilger.Google Scholar
Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2022). NIST Atomic Spectra Database (version 5.10), [Online]. Available: https://physics.nist.gov/asd [Fri Apr 14 2023]. National Institute of Standards and Technology, Cambridge. DOI: https://doi.org/10.18434/T4W30FGoogle Scholar
Kulatilaka, W. D., Hsu, P. S., Stauffer, H. U., Gord, J. R., and Roy, S. (2010). Direct measurement of rotationally resolved H2 Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering. Applied Physics Letters, 97, Art. No. 081112.CrossRefGoogle Scholar
Kulatilaka, W. D. and Lucht, R. P. (2017). Two-photon-absorption line strengths for nitric oxide: Comparison of theory and sub-Doppler, laser-induced fluorescence measurements. Journal of Chemical Physics, 146, Article No. 124311. DOI: https://doi.org/10.1063/1.4978921CrossRefGoogle ScholarPubMed
Lamb, W. E. Jr. (1952). Fine structure of the hydrogen atom. III. Physical Review, 85, 259276.CrossRefGoogle Scholar
Lamb, W. E. Jr., Schlicher, R. R., and Scully, M. O. (1987). Matter–field interaction in atomic physics and quantum optics. Physical Review A, 36, 27632772.CrossRefGoogle ScholarPubMed
Lang, T., Motzkus, M., Frey, H. M., and Beaud, P. (2001). High resolution coherent anti-Stokes Raman scattering: Determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature. Journal of Chemical Physics, 115, 54185426.CrossRefGoogle Scholar
Lang, T. and Motzkus, M. (2002). Single-shot femtosecond coherent anti-Stokes Raman-scattering thermometry. Journal of the Optical Society of America, B, 19, 340344.CrossRefGoogle Scholar
Lapp, M. (1980). Lecture notes, Raman short course. Sandia National Laboratories, Livermore, CA.Google Scholar
Laurendeau, Normand M. (2005). Statistical Thermodynamics: Fundamentals and Applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lavorel, B., Millot, G., Saint-Loup, R., Wenger, C., Berger, H., Sala, J. P., Bonamy, J., and Robert, D. (1986). Rotational collisional line broadening at high temperatures in the N2 fundamental Q-branch studied with stimulated Raman spectroscopy. Journal of Physics France, 47, 417425.CrossRefGoogle Scholar
Lempert, W., Rosasco, G. J., and Hurst, W. S. (1984). Rotational collisional narrowing in the NO fundamental Q branch, studied with cw stimulated Raman spectroscopy. Journal of Chemical Physics, 81, 42414245.CrossRefGoogle Scholar
Le Roy, R. J. (2017a). RKR1: A computer program implementing the first-order RKR method for determining diatomic molecule potential energy functions. Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 158167. DOI: https://doi.org/10.1016/j.jqsrt.2016.03.030.CrossRefGoogle Scholar
Le Roy, R. J. (2017b). LEVEL: A computer program for solving the radial Schrödinger equation for bound and quasibound levels. Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 167178. DOI: https://doi.org/10.1016/j.jqsrt.2016.05.028.CrossRefGoogle Scholar
Lepard, D. W. (1970). Theoretical calculations of electronic Raman effects in the NO and O2 molecules. Canadian Journal of Physics, 48, 16641674.CrossRefGoogle Scholar
Li, H., Farooq, A., Jeffries, J. B., and Hanson, R. K. (2008). Diode laser measurements of temperature-dependent collisional–narrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and 1397.8 nm. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 132143.CrossRefGoogle Scholar
Long, Derek A. (2002). The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. Cambridge: John Wiley and Sons.CrossRefGoogle Scholar
Lofthus, A. and Krupenie, P. H. (1977). The spectrum of molecular nitrogen. Journal of Physical and Chemical Reference Data, 6, 113307 DOI: https://doi.org/10.1063/1.555546CrossRefGoogle Scholar
Lorentz, H. A. (2011). The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, 2nd edition. Cambridge: Dover Publications.Google Scholar
Lucht, R. P. (1987). Three-laser coherent anti-Stokes Raman scattering measurements of two species. Optics Letters, 12, 7880.CrossRefGoogle ScholarPubMed
Lucht, R. P., Roy, S., Meyer, T. R., and Gord, J. R. (2006). Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence. Applied Physics Letters, 89, Art. No. 251112.CrossRefGoogle Scholar
Lucht, R. P., Kinnius, P. J., Roy, S., and Gord, J. R. (2007). Theory of femtosecond coherent anti-Stokes Raman scattering for gas-phase transitions. Journal of Chemical Physics, 127, 044316. DOI: https://doi.org/10.1063/1.2751184CrossRefGoogle ScholarPubMed
Luque, J. and Crosley, D. R. (1996a). Electronic transition moment and rotational transition in CH. I. A2Δ-X2Π system. Journal of Chemical Physics, 104, 21462155.CrossRefGoogle Scholar
Luque, J. and Crosley, D. R. (1996b). Electronic transition moment and rotational transition in CH. II. B2Σ--X2Π system. Journal of Chemical Physics, 104, 39073913.CrossRefGoogle Scholar
Luque, J. and Crosley, D. R. (1998). Transition probabilities in the A2Σ+-X2Πi electronic system of OH. Journal of Chemical Physics, 109, 439448.CrossRefGoogle Scholar
Luque, J. and Crosley, D. R. (1999a). LIFBASE: database and spectral simulation program (v. 2.0). SRI International Report MP, 99-009. https://www.sri.com/engage/products-solution/lifbase.Google Scholar
Luque, J. and Crosley, D. R. (1999b). Transition probabilities and electronic transition moments of the A2Σ+-X2Π and D2Σ+-X2Π Systems of NO. Journal of Chemical Physics, 111, 74057415.CrossRefGoogle Scholar
Luthe, J. C., Beiting, E. J., and Yueh, F. Y. (1986). Algorithms for calculating coherent anti-Stokes Raman spectra: Application to several small molecules. Computer Physics Communications, 42, 7392.CrossRefGoogle Scholar
Marcuse, D. (1980). Principles of Quantum Electronics. Cambridge: Academic Press.Google Scholar
Marion, Jerry B. and Heald, Mark A. (1980). Classical Electromagnetic Radiation, 2nd edition. Cambridge: Academic Press.Google Scholar
Maroulis, G. (2003). Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2. Journal of Chemical Physics, 118, 26732687.CrossRefGoogle Scholar
Martin, W. C. and Wiese, W. L. (2002), Atomic, Molecular, and Optical Physics Handbook (version 2.2). [Online]. Available:https://www.nist.gov/pml/atomic-spectroscopy-compendium-basic-ideas-notation-data-and-formulas [2023, April 12]. National Institute of Standards and Technology, Cambridge.Google Scholar
Marrocco, M. (2007). A quantitative approach to evaluate the problem of coherence of spectral components of the third-order susceptibility generating coherent anti-Stokes Raman signals. Journal of Raman Spectroscopy, 38, 452459. DOI: https://doi.org/10.1002/jrs.2201CrossRefGoogle Scholar
Marrocco, M. (2009). Comparative analysis of Herman–Wallis factor for uses in coherent anti-Stokes Raman spectra of light molecules. Journal of Raman Spectroscopy, 40, 741747.CrossRefGoogle Scholar
Marrocco, M. (2010). CARS thermometry revisited in light of the intramolecular perturbation. Journal of Raman Spectroscopy, 41, 870874.CrossRefGoogle Scholar
Marrocco, M., Magnotti, G., and Cutler, A. D. (2012). Herman–Wallis corrections in dual-pump CARS intensities for combustion temperature and species. Journal of Raman Spectroscopy, 43, 595598.CrossRefGoogle Scholar
Marrocco, M. (2012). Vibration-rotation interaction in time-resolved coherent anti-Stokes Raman scattering for gas-phase thermometry. Journal of Raman Spectroscopy, 43, 621626.CrossRefGoogle Scholar
Mavrodineanu, Radu, and Boiteux, Henri (1965). Flame Spectroscopy. Cambridge: John Wiley and Sons.Google Scholar
Miller, J. D., Slipchenko, M. N., and Meyer, T. R. (2011a). Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature. Optics Express, 19, 1332613333.CrossRefGoogle ScholarPubMed
Miller, J. D., Roy, S., Slipchenko, M. N., Gord, J. R., and Meyer, T. R. (2011b). Single-shot gas phase thermometry using pure rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering. Optics Express, 19, 1562715640.CrossRefGoogle ScholarPubMed
Morse, P. M. (1929). Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical Review, 34, 5764.CrossRefGoogle Scholar
Nicholls, R. W. and Stewart, A. L. (1962). Allowed transitions. In: Atomic and Molecular Processes (edited by Bates, D. R.). Cambridge: Academic Press.Google Scholar
Noda, C. and Zare, R. N. (1982). Relation between classical and quantum formulations of the Franck–Condon principle: The generalized r-centroid approximation. Journal of Molecular Spectroscopy, 95, 254270.CrossRefGoogle Scholar
Oron, D., Dudovich, N., and Silberberg, Y. (2003). Femotsecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy. Physical Review Letters, 90, Art. No. 213902. DOI: 10.1103/PhysRevLett.90.213902CrossRefGoogle Scholar
Ouyang, X. and Varghese, P. L. (1989). Reliable and efficient program for fitting Galatry and Voigt profiles to spectral data on multiple lines. Applied Optics, 28, 15381545.CrossRefGoogle ScholarPubMed
Owono, L. C. O., Abdallah, D. B., Jaidane, N. and Lakhdar, Z. B. (2008). Theoretical radiative properties between states of the triplet manifold of NH radical. Journal of Chemical Physics, 128, 084309. DOI: https://doi.org/10.1063/1.2884923Google Scholar
Owyoung, A. (1978). High-resolution cw stimulated Raman spectroscopy in molecular hydrogen. Optics Letters, 2, 9193.CrossRefGoogle ScholarPubMed
Owyoung, A., Patterson, C. W. and McDowell, R. S. (1978). Cw stimulated Raman gain spectroscopy of the v1 fundamental of methane. Chemical Physics Letters, 59, 156162.CrossRefGoogle Scholar
Palmer, R. E. (1989). The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information. Sandia Report SAND89–8206, Sandia National Laboratories.CrossRefGoogle Scholar
Parigger, Christian G. and Hornkohl, J. O. (2010). Diatomic molecular spectroscopy with standard and anomalous commutators. International Review of Atomic and Molecular Physics, 1, 2543.Google Scholar
Paul, P. H. (1997). Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide. Journal of Quantitative Spectroscopy and Radiative Transfer, 57, 581589. DOI: https://doi.org/10.1016/S0022-4073(96)00158-6.CrossRefGoogle Scholar
Pekeris, C. L. (1934). The rotation-vibration coupling in diatomic molecules. Physical Review, 45, 98103.CrossRefGoogle Scholar
Peticolas, W. L., Norris, R., and Rieckhoff, K. E. (1965). Polarization effects in the two-photon excitation of anthracene. Journal of Chemical Physics, 42, 41644169.CrossRefGoogle Scholar
Pine, A. S. (1980). Collisional narrowing of HF fundamental band spectral lines by neon and argon. Journal of Molecular Spectroscopy, 82, 435448.CrossRefGoogle Scholar
Prince, B. D., Chakraborty, A., Prince, B. M., and Stauffer, H. U. (2006). Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra. Journal of Chemical Physics, 125, 044502. DOI: https://doi.org/10.1063/1.2219439.CrossRefGoogle ScholarPubMed
Qin, Z., Zhao, J. M., and Liu, L. H. (2017). Radiative transition probabilities for the main diatomic electronic systems of produced in the plasma of atmospheric entry. Journal of Quantitative Spectroscopy and Radiative Transfer, 202, 286301. DOI: https://doi.org/10.1016/j.jqsrt.2016.08.010.CrossRefGoogle Scholar
Rahn, L. A. and Palmer, R. E. (1986). Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy. Journal of the Optical Society of America B, 3, 11641169.CrossRefGoogle Scholar
Rahn, L. A., Palmer, R. E., Koszykowski, M. L., and Greenhalgh, D. A. (1987). Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2. Chemical Physics Letters, 133, 513516.CrossRefGoogle Scholar
Rahn, L. A., Farrow, R. L., and Rosasco, G. J. (1991). Measurement of the self-broadening of the H2 Q(0–5) Raman transitions from 295 to 1000 K. Phyiscal Review A, 43, 60756088.CrossRefGoogle ScholarPubMed
Rakestraw, D. J., Lucht, R. P., and Dreier, T. (1989). Use of a charge-coupled device camera for broadband coherent anti-Stokes Raman scattering measurements. Applied Optics, 28, 41164120.CrossRefGoogle ScholarPubMed
Ralchenko, Yu., Kramida, A. E., Reader, J., and NIST ASD Team (2010). NIST Atomic Spectra Database (version 4.0), [Online]. Available: http://physics.nist.gov/asdGoogle Scholar
Ram, R. S. and Bernath, P. F. (2010). Revised molecular constants and term values for the X3Σ and A3Π states of NH. Journal of Molecular Spectroscopy, 260, 115119.CrossRefGoogle Scholar
Rautian, S. G. and Sobel’man, I. I. (1967). The effect of collisions on the Doppler broadening of spectral lines. Soviet Physics Uspekhi, 9, 701716.CrossRefGoogle Scholar
Reisel, J. R., Carter, C. D., and Laurendeau, N. M. (1992). Einstein coefficients for rotational lines of the (0,0) band of the NO system. Journal of Quantitative Spectroscopy and Radiative Transfer, 47, 4354.CrossRefGoogle Scholar
Reitz, J. R. and Milford, F. J. (1967). Foundations of Electromagnetic Theory, 2nd edition. Reading, Cambridge: Addison-Wesley.Google Scholar
Renschler, D. L., Hunt, J. L., McCubbinJr., T. K., and Polo, S. R. (1969). Triplet structure of the rotational Raman spectrum of oxygen. Journal of Molecular Spectroscopy, 31, 173176.CrossRefGoogle Scholar
Richardson, D. R., Lucht, R. P., Roy, S., Kulatilaka, W. D., and Gord, J. R. (2013). Chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering concentration measurements. Journal of the Optical Society of America B, 30, 188196.CrossRefGoogle Scholar
Rosasco, G. J., Rahn, L. A., Hurst, W. S., Palmer, R. E., and Dohne, S. M. (1989). Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K. Journal of Chemical Physics, 90, 40594068.CrossRefGoogle Scholar
Rose, M. E. (1957). Elementary Theory of Angular Momentum. Cambridge: Dover.CrossRefGoogle Scholar
Roy, S., Richardson, D. R., Kulatilaka, W. D., Lucht, R. P., and Gord, J. R. (2009). Gas-phase thermometry at 1 kHz using femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy. Optics Letters, 34, 38573859.CrossRefGoogle ScholarPubMed
Rychlewski, J. (1980). An accurate calculation of the polarizability of the hydrogen molecule and its dependence on rotation, vibration and isotopic substitution. Molecular Physics, 41, 833842. DOI: https://doi.org/10.1080/00268978000103191CrossRefGoogle Scholar
Satija, A., Chai, N., Arendt, M. T., and Lucht, R. P. (2020). Pure rotational coherent anti-Stokes Raman scattering spectroscopy of nitric oxide: Determination of Raman tensor invariants. Journal of Raman Spectroscopy, 51, 807828. DOI: https://doi.org/10.1002/jrs.5836CrossRefGoogle Scholar
Schiff, L. I. (1968). Quantum Mechanics, 2nd edition. Cambridge: McGraw-Hill.Google Scholar
Schrötter, H. W. and Klöckner, H. W. (1979). Raman scattering cross sections in gases and liquids. In: Raman Spectroscopy of Gases and Liquids (Edited by Weber, A.). Cambridge: Springer-Verlag.Google Scholar
Schneider, H. and Barker, G. P. (1973). Matrices and Linear Algebra. 2nd edition. Cambridge: Holt, Rinehart, and Winston.Google Scholar
Scully, M. O. and Zubairy, M. S. (1997). Quantum Optics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Settersten, T. B., Patterson, B. D., and Humphries, IV, W. H. (2009). Radiative lifetimes of NO and the electronic transition moment of the system. Journal of Chemical Physics, 131, Article No. 104309.CrossRefGoogle Scholar
Siegman, A. E. (1986). Lasers. Cambridge: University Science Books.Google Scholar
Shore, B. W. and Menzel, D. H. (1968). Principles of Atomic Spectra. Cambridge: John Wiley and Sons.CrossRefGoogle Scholar
Slater, J. C. (1960a). Quantum Theory of Atomic Structure: Volume I. Cambridge: McGraw-Hill.Google Scholar
Slater, J. C. (1960b). Quantum Theory of Atomic Structure: Volume II. Cambridge: McGraw-Hill.Google Scholar
Sobelman, I. I. (1992). Atomic Spectra and Radiative Transitions, 2nd edition. Cambridge: Springer-Verlag.CrossRefGoogle Scholar
Stark, G., Brault, J. W., and Abrams, M. C. (1994). Fourier-transform spectra of the bands of OH and OD. Journal of the Optical Society of America B, 11, 332.CrossRefGoogle Scholar
Stauffer, H. U., Roy, S., Schmidt, J. B., Wrzesinski, P. J., and Gord, J. R. (2016). Two-color vibrational, femtosecond fully resonant electronically enhanced CARS (FREE-CARS) of gas-phase nitric oxide. Journal of Chemical Physics, 145, Article No. 124308. DOI: https://doi.org/10.1063/1.4962834.CrossRefGoogle ScholarPubMed
Struve, W. S. (1988). Fundamentals of Molecular Spectroscopy. Cambridge: John Wiley and Sons.Google Scholar
Teets, R. E. (1984). Accurate convolutions of coherent anti-Stokes Raman spectra. Optics Letters, 9, 226228.CrossRefGoogle ScholarPubMed
Thomas, L. M., Lowe, A., Satija, A., Masri, A. R., and Lucht, R. P. (2019). 5 kHz thermometry in turbulent spray flames using chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering, Part I: Processing and interference analysis. Combustion and Flame, 200, 405416. DOI: https://doi.org/10.1016/j.combustflame.2018.11.004CrossRefGoogle Scholar
Tipping, R. H. and Bouanic, J.-P. (2001). On the use of Herman–Wallis factors for diatomic molecules. Journal of Quantitative Spectroscopy and Radiative Transfer, 71, 99103.CrossRefGoogle Scholar
Tipping, R. H. and Ogilvie, J. F. (1984). Herman–Wallis factors for Raman transitions of -state diatomic molecules. Journal of Raman Spectroscopy, 15, 3840.CrossRefGoogle Scholar
Utsav, K. and Varghese, P. L. (2013). Accurate temperature measurements in flames with high spatial resolution using Stokes Raman scattering from nitrogen in a multiple-pass cell. Applied Optics, 52, 50075021.CrossRefGoogle Scholar
Varberg, T. D., Stroh, F., Evenson, K. M. (1999). Far-infrared rotational and fine structure transition frequencies and molecular constants of 14NO and 15NO in the X2Π (v=0) state. Journal of Molecular Spectroscopy, 196, 513.CrossRefGoogle ScholarPubMed
Varghese, P. L. and Hanson, R. K. (1984). Collisional narrowing effects on spectral line shapes measured at high resolution. Applied Optics, 23, 23762385.CrossRefGoogle ScholarPubMed
Walecka, J. D. (2103). Topics in Modern Physics: Theoretical Foundations. Cambridge: World Scientific Publishing.Google Scholar
Weissbluth, M. (1978). Atoms and Molecules. Cambridge: Academic Press.Google Scholar
Weissbluth, M. (1989). Photon-Atom Interactions. Cambridge: Academic Press.Google Scholar
Werner, H. J., Knowles, P. J., Knizia, G., Manby, F. R., and Schütz, M. (2012). MOLPRO: a general-purpose quantum chemistry program package. Wiley Interdisciplinary Reviews – Computational Molecular Science, 2, 242253. DOI: https://doi.org/10.1002/wcms.82.CrossRefGoogle Scholar
Whiting, E. E. and Nicholls, R. M. (1974). Reinvestigation of rotational line intensity factors. The Astrophysical Journal Supplement Series No. 235, 27, 119.CrossRefGoogle Scholar
Wolniewicz, L. (1993). Relativistic energies of the ground state of the hydrogen molecule. Journal of Chemical Physics, 99, 18511868. DOI: https://doi.org/10.1063/1.465303.CrossRefGoogle Scholar
Yang, K.-H. 1976. Gauge transformations and quantum mechanics. I. Gauge invariant interpretation of quantum mechanics. Annals of Physics, 101, 6296.CrossRefGoogle Scholar
Yousefi, M., Bernath, P. F., Hodges, J., and Masseron, T. (2018). A new line list for the electronic transition of OH. Journal of Quantitative Spectroscopy and Radiative Transfer, 217, 416424. DOI: https://doi.org/10.1016/j.jqsrt.2018.06.016.CrossRefGoogle Scholar
Yuratich, M. A. (1979). Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy. Molecular Physics, 38, 625655.CrossRefGoogle Scholar
Zare, R. N., Schmeltekopf, A. L., Harrop, W. J., and Albritton, D. L. (1973). A direct approach for the reduction of diatomic spectra to molecular constants for the construction of RKR potentials. Journal of Molecular Spectroscopy, 46, 3766.CrossRefGoogle Scholar
Zare, Richard N. (1988). Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics. Cambridge: John Wiley and Sons.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Robert P. Lucht, Purdue University, Indiana
  • Book: Fundamentals of Laser Spectroscopy for Atoms and Diatomic Molecules
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781108936514.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Robert P. Lucht, Purdue University, Indiana
  • Book: Fundamentals of Laser Spectroscopy for Atoms and Diatomic Molecules
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781108936514.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Robert P. Lucht, Purdue University, Indiana
  • Book: Fundamentals of Laser Spectroscopy for Atoms and Diatomic Molecules
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781108936514.019
Available formats
×