Published online by Cambridge University Press: 05 June 2012
The [n, k] codes that we have studied to this point are called block codes because we encode a message of k information symbols into a block of length n. On the other hand convolutional codes use an encoding scheme that depends not only upon the current message being transmitted but upon a certain number of preceding messages. Thus “memory” is an important feature of an encoder of a convolutional code. For example, if x(1), x(2), … is a sequence of messages each from to be transmitted at time 1, 2, …, then an (n, k) convolutional code with memory M will transmit codewords c(1), c(2), … where depends upon x(i), x(i − 1), …, x(i − M). In our study of linear block codes we have discovered that it is not unusual to consider codes of fairly high lengths n and dimensions k. In contrast, the study and application of convolutional codes has dealt primarily with (n, k) codes with n and k very small and a variety of values of M.
Convolutional codes were developed by Elias in 1955. In this chapter we will only introduce the subject and restrict ourselves to binary codes. While there are a number of decoding algorithms for convolutional codes, the main one is due to Viterbi; we will examine his algorithm in Section 14.2.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.