Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T03:03:10.628Z Has data issue: false hasContentIssue false

3 - Review of Mathematical Principles

from Part I - Preliminaries

Published online by Cambridge University Press:  25 October 2017

Wesley E. Snyder
Affiliation:
North Carolina State University
Hairong Qi
Affiliation:
University of Tennessee
Get access

Summary

Practical problems require good math.

– R. Chellappa

Introduction

This chapter is a review of several of the topics that are prerequisite for use of this book as a text. The student should have had an undergraduate calculus experience equivalent to about three semesters and some exposure to differential equations and partial differential equations. The student should have coursework containing concepts from probability and statistics, including prior probabilities, conditional probability, Bayes’ rule, and expectations. Finally, and very important, the student should have strong undergraduate-level training in linear algebra.

This chapter reviews and refreshes many of the concepts in those courses, but only as a review, not as a presentation of totally new material.

• (Section 3.2) We briefly review important concepts in linear algebra, including various vector and matrix operations, the derivative operators, eigendecomposition, and its relationship to singular value decomposition.

• (Section 3.3) Since almost all Computer Vision topics can be formulated as minimization problems, in this section, we briefly introduce function minimization, and discuss gradient descent and simulated annealing, the two minimization techniques that can lead to local and global minima, respectively.

• (Section 3.4) In Computer Vision, we are often interested in the probability of certain measurement occurring. In this section, we briefly review concepts like probability density functions and probability distribution functions.

A Brief Review of Linear Algebra

In this section, we very briefly review vector and matrix operations. Generally, we denote vectors in boldface lowercase, scalars in lowercase italic Roman, and matrices in uppercase Roman.

Vectors

Vectors are always considered to be column vectors. If we need to write one horizontally for the purpose of saving space in a document, we use transpose notation. For example, we denote a vector that consists of three scalar elements as:

The Inner Product

The inner product of two vectors is a scalar, c = xTy. Its value is the sum of products of the corresponding elements of the two vectors:

You will also sometimes see the notation <x,y> used for inner product. We do not like this because it looks like an expected value of a random variable. One sometimes also sees the “dot product” notation x · y for inner product.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[3.1] R., Burden, J., Faires, and A., Reynolds. Numerical Analysis. Prindle, 1981.
[3.2] G., Dahlquist and A., Bjorck. Numerical Methods. Prentice-Hall, 1974.
[3.3] B., Gottfried and J., Weisman. Introduction to Optimization Theory. Prentice Hall, 1973.
[3.4] J., van Laarhoven and E., Aarts. Simulated Annealing: Theory and Applications. D.Reidel, 1988.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×