Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-03T03:25:13.706Z Has data issue: false hasContentIssue false

5 - The radiative forcing due to clouds and water vapor

Published online by Cambridge University Press:  12 August 2009

Anand Inamdar
Affiliation:
Center for Atmospheric Sciences, Scripps Institution of Oceanography, University of California, San Diego, CA
J. T. Kiehl
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado
V. Ramanathan
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego
Get access

Summary

Introduction

As the previous chapters have noted, the climate system is forced by a number of factors, e.g., solar impact, the greenhouse effect, etc. For the greenhouse effect, clouds, water vapor, and CO2 are of the utmost importance. The emergence of computers as a viable scientific tool in the 1960s in conjunction with the availability of spectroscopic data enabled us to treat the numerous complexities of infrared-radiative transfer in the atmosphere. While such calculations set the stage for estimating accurately (decades later in the 1990s) the radiative forcing due to greenhouse gases and clouds, they did not yield the necessary insights into the physics of the problem nor did they yield any explanation of the relevant phenomenon. Such insights needed physically based analytic approaches to the problem. It is in this arena that Dr. Robert Cess excelled and provided the community with important insights into numerous radiative processes in the atmosphere of Earth and other planets including Mars, Venus, Jupiter, and Saturn. A few examples that are relevant to the main theme of this chapter are given below.

Within the lower atmosphere of many planets (first 10km of Earth; 5km for Mars; and 60 km for Venus) the greenhouse effect is dominated by pressure-broadened vibration–rotational lines (e.g., CO2 and CH4) or pure rotational lines (H2O) of polyatomic gases. Typically, the absorption and emission of radiation occurs in discrete bands with thousands of rotational lines within each band.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×