Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T21:05:48.335Z Has data issue: false hasContentIssue false

1 - Evolutionary aspects on the frontal lobes

Published online by Cambridge University Press:  11 September 2009

Jarl Risberg
Affiliation:
Lunds Universitet, Sweden
Jordan Grafman
Affiliation:
National Institute of Health, Bethesda, MD, USA
Get access

Summary

Introduction

The purpose of this chapter is to introduce you to the fascinating story about the evolution of the human brain and especially of its frontal lobes. The story begins in south east Africa some six million years ago and ends with the recent development of modern behavior and mental abilities like symbolic language and creative thinking. Some disadvantages linked to the dangers and demands of a large size brain will be dealt with. A discussion of the anatomical differences between the human brain and that of our close relatives, the African great apes, will follow. Evolutionary advantages linked to the big brain and its advanced frontal lobes will be described, with special focus on the evolution of language and abstract thinking. Our still very limited knowledge about what changes of the human genome, that made it possible to develop modern behavior, is then summarized. The chapter will end by discussing two very old and specifically human mental disturbances, schizophrenia and attention deficit hyperactivity disorder, from an evolutionary perspective.

Early history of human evolution and “the creative explosion”

The tremendous success of humanity, regarding population growth and ability to occupy practically all parts of the earth, is not due to any great bodily advantages of our species. Our main advantage is the possession of a brain that makes it possible for us to outsmart and control most of our competitors and enemies on the planet Earth and to change and use the environment to our (short-term) advantage.

Type
Chapter
Information
The Frontal Lobes
Development, Function and Pathology
, pp. 1 - 20
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allman, J. M. (2000). Evolving Brains. New York: Freeman.Google Scholar
Allman, J., Hakeem, A. & Watson, K. (2002). Two phylogenetic specializations in the human brain. Neuroscientist, 8, 335–46.CrossRefGoogle ScholarPubMed
Arcadi, A. C. (2000). Vocal responsiveness in male wild chimpanzees: implications for the evolution of language. Journal of Human Evolution, 39, 205–23.CrossRefGoogle ScholarPubMed
Barkley, R. (1990). Attention Deficit Hyperactivity Disorder: A Handbook for Diagnosis and Treatment. New York: Guilford Press.Google Scholar
Bemporad, J. R. (1991). Dementia praecox as a failure of neoteny. Theoretical Medicine, 12, 45–51.CrossRefGoogle ScholarPubMed
Berlim, M. T., Mattevi, B. S., Belmonte-de-Abreu, P. & Crow, T. J. (2003). The etiology of schizophrenia and the origin of language: Overview of a theory. Comprehensive Psychiatry, 44, 7–14.CrossRefGoogle ScholarPubMed
Bickerton, D. (1990). Language and Species. Chicago: University of Chicago Press.Google Scholar
Blinkov, S. M. & Glezer, I. I. (1968). Das Zentralnervensystem in Zahlen und Tabellen. Jena: Fischer.Google Scholar
Bodamer, M. D. & Gardner, R. A. (2002). How cross-fostered chimpanzees (Pan troglodytes) initiate and maintain conversations. Journal of Comparative Psychology, 116, 12–26.CrossRefGoogle ScholarPubMed
Brodmann, K. (1912). Neue Ergebnisse über die vergleichende histologische Lokalisation der Grosshirnrinde mit besondere Berücksichrigung des Stirnhirns. Anatomische Anzeiger, 41, 157–216.Google Scholar
Brüne, M. (2000). Neoteny, psychiatric disorders and the social brain hypothesis. Anthropological Medicine, 7, 301–18.CrossRefGoogle Scholar
Brüne, M. (2004). Schizophrenia – an evolutionary enigma?Neuroscience and Biobehavioural Reviews, 28, 41–53.CrossRefGoogle ScholarPubMed
Burns, J. K. (2004). An evolutionary theory of schizophrenia. Cortical connectivity, metarepresentation, and the social brain. The Behavioral and Brain Sciences, 27, 831–55.CrossRefGoogle ScholarPubMed
Calvin, W. H. (2004). A Brief History of the Mind: From Apes to Intellect and Beyond. New York: Oxford University Press.Google Scholar
Calvin, W. H. & Bickerton, D. (2000). Lingua ex Machina: Reconciling Darwin and Chomsky with the Human Brain. Cambridge, MA: MIT Press.Google Scholar
Carter, M. & Watts, C. A. H. (1971). Possible biological advantages among schizophrenics relatives. British Journal of Psychiatry, 118, 453–60.CrossRefGoogle ScholarPubMed
Chou, H. H., Hayakawa, T., Diaz, S., et al. (2002). Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proceedings of the National Academy of Science U.S.A., 99, 11736–41.CrossRefGoogle ScholarPubMed
Corballis, M. C. (2002). From Hand to Mouth: The Origins of Language. Princeton, NJ: Princeton University Press.Google Scholar
Corballis, M. C. (2004a). FOXP2 and the mirror system. Trends in Cognitive Sciences, 8, 95–6.CrossRefGoogle Scholar
Corballis, M. C. (2004b). The origins of modernity: Was autonomous speech the critical factor?Psychological Review, 111, 543–52.CrossRefGoogle Scholar
Crow, T. J. (1988). Sex chromosomes and psychosis. The case for a pseudoautosomal locus. British Journal of Psychiatry, 153, 675–83.CrossRefGoogle ScholarPubMed
Crow, T. J. (1997). Is schizophrenia the price that Homo sapiens pays for language?Schizophrenia Research, 28, 127–41.CrossRefGoogle ScholarPubMed
Crow, T. J. (1998). Sexual selection, timing and the descent of man: a theory of the genetic origins of language. Current Psychology of Cognition, 17, 1079–114.Google Scholar
Cunnane, S. C. & Crawford, M. A. (2003). Survival of the fattest: fat babies were the key to evolution of the large human brain. Comparative Biochemistry and Physiology Part A, 136, 17–26.CrossRefGoogle ScholarPubMed
DeLisi, L. E., Shaw, S., Sherrington, R., et al. (2000). Failure to establish linkage on the X chromosome in 301 families with schizophrenia or schizoaffective disorder. American Journal of Medical Genetics, 96, 335–41.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Egan, M. F., Goldberg, T. E., Kolachana, B. S., et al. (2001). Effect of COMT val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Science U.S.A., 98, 6917–22.CrossRefGoogle ScholarPubMed
Enard, W., Przeworski, M., Fisher, S. E., et al. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–72.CrossRefGoogle ScholarPubMed
Erlenmeyer-Kimling, L. (1968). Mortality rates in the offspring of schizophrenic patients and a physiological advantage hypothesis. Nature, 220, 798–800.CrossRefGoogle Scholar
Falk, D., Hildebolt, C., Smith, K., et al. (2005). The brain of LB1, Homo floresiensis. Science, 308, 242–5.Google ScholarPubMed
Foley, R. (1987). Another Unique Species. Patterns in Human Evolutionary Ecology. Harlow, UK: Longman Scientific & Technical.Google Scholar
Gallinat, J., Sander, T., Schlattmann, P., et al. (2003). Association of the G1947A COMT (Val108/158Met) gene polymorphism with prefrontal P300 during information processing. Biological Psychiatry, 54, 40–8.CrossRefGoogle Scholar
Hallowell, E. & Ratey, J. (1994). Driven to Distraction. New York: Touchstone.Google Scholar
Hartmann, T. (1993). Attention Deficit Disorder: A Different Perception. Lancaster, UK: Underwood-Miller.Google Scholar
Hecker, E. (1871). Die Hebephrenie. Archiv für Pathologie und Anatomie (Berlin), 52, 394–429. (American translation 1985, American Journal of Psychiatry, 142, 1265–71.)Google Scholar
Henshilwood, C. S., d'Errico, F., Yates, R., et al. (2002). Emergence of modern human behavior: Middle stone age engravings from South Africa. Science, 295, 1278–80.CrossRefGoogle ScholarPubMed
Henshilwood, C., d'Errico, F., Vanhaeren, M, Niekerk, K. & Jacobs, Z. (2004). Middle stone age shell beads from South Africa. Science, 304, 404.CrossRefGoogle ScholarPubMed
Holliday, M. (1971). Metabolic rate and organ size during growth from infancy to maturity. Pediatrics, 50, 590.Google Scholar
Huxley, J., Mayr, E., Osmond, H. & Hoffer, A. (1964). Schizophrenia as a genetic morphism. Nature, 204, 220–1.CrossRefGoogle ScholarPubMed
Ingman, M., Kaessemann, H., Pääbo, S. & Gyllensten, U. (2000). Mitochondrial genome variation and the origin of modern humans. Nature, 408, 708–13.CrossRefGoogle ScholarPubMed
Isaac, G. (1978). The food-sharing behavior of protohuman hominids. Scientific American, 238, 90–108.CrossRefGoogle ScholarPubMed
Jablensky, A. (2000). Epidemiology of schizophrenia: the global burden of disease and disability. European Archives of Psychiatry and Clinical Neuroscience, 250, 274–85.CrossRefGoogle ScholarPubMed
Jensen, P. K. A. (1996). Menneskets Oprindelse og Udvikling. Copenhagen: G.E.C. Gad.Google Scholar
Jensvold, M. L. A. & Gardner, R. A. (2000). Interactive use of sign language by cross-fostered chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 114, 335–46.CrossRefGoogle Scholar
Joober, R., Gauthier, J., Lal, S., et al. (2002). Catechol-O-methyltransferase Val 108/158-Met gene variants associated with performance on the Wisconsin Card Sorting Test. Archives of General Psychiatry, 59, 662–3.CrossRefGoogle ScholarPubMed
Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F. & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–23.CrossRefGoogle Scholar
Leakey, R. & Lewin, R. (1978). People at the Lake. New York: Anchor Press/Doubleday.Google Scholar
Leakey, R. & Lewin, R. (1992). Origins Reconsidered. In Search of What Makes Us Human. New York: Doubleday.Google Scholar
Leonard, W. R. (2002). Food for thought. Dietary change was a driving force in human evolution. Scientific American, 287, 106–15.CrossRefGoogle ScholarPubMed
Leonard, W. R., Robertson, M. L., Snodgrass, J. J. & Kuzawa, C. W. (2003). Metabolic correlates of hominid brain evolution. Comparative Biochemistry and Physiology Part A, 136, 5–15.CrossRefGoogle ScholarPubMed
Liégeois, F., Baldeweg, T., Connelly, A., et al. (2003). Language fMRI abnormalities associated with FOXP2 gene mutation. Nature Neuroscience, 6, 1230–7.CrossRefGoogle ScholarPubMed
Malhotra, A. K., Kestler, L. J., Mazzanti, C., et al. (2002). A functional polymorphism in the COMT gene and performance on a test of prefrontal function. American Journal of Psychiatry, 159, 652–4.CrossRefGoogle Scholar
Marcus, G. F. & Fischer, S. E. (2003). FOXP2 in focus: what can genes tell us about speech and language?Trends in Cognitive Sciences, 7, 257–62.CrossRefGoogle ScholarPubMed
Millar, T. P. (1987). Schizophrenia: an etiological speculation. Perspectives in Biology and Medicine, 30, 597–607.CrossRefGoogle ScholarPubMed
Neidle, C., Kegl, J., MacLaughlin, D., Bahan, B. & Lee, R. G. (2000). The Syntax of American Sign Language. Cambridge, MA: MIT Press.Google Scholar
Nilsson, G. (1996). Brain and body requirements of Gnathonemus petersii, a fish with an exceptionally large brain. Journal of Experimental Biology, 199, 603–7.Google ScholarPubMed
Nimchinsky, E. A., Gilissen, E., Allman, J. M., et al. (1999). A neuronal morphologic type unique to humans and great apes. Proceedings of the National Academy of Science U.S.A., 96, 5268–73.CrossRefGoogle ScholarPubMed
Nimchinsky, E., Vogt, B. A., Morrison, J. & Hof, P. R. (1995). Spindle neurones of the human anterior cingulate cortex. Journal of Comparative Neurology, 355, 27–37.CrossRefGoogle Scholar
Nishimura, D. Y., Searby, C. C., Alward, W. L., et al. (2001). A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental deficits of the anterior chamber of the eye. American Journal of Human Genetics, 68, 364–72.CrossRefGoogle Scholar
Nishitani, N. & Hari, R. (2000). Temporal dynamics of cortical representation for action. Proceedings of the National Academy of Science U.S.A., 97, 913–18.CrossRefGoogle Scholar
Pfeiffer, J. E. (1982). The Creative Explosion. New York: Harper and Row.Google Scholar
Premack, D. (2004). Is language the key to human intelligence?Science, 303, 318–20.CrossRefGoogle ScholarPubMed
Premack, D. & Premack, A. (2003). Original Intelligence. New York: McGraw-Hill.Google Scholar
Rizzolatti, G. & Arbib, M. A. (1998). Language within our grasp. Trends in Neuroscience, 21, 188–94.CrossRefGoogle ScholarPubMed
Sacks, O. (1989). Seeing Voices: A Journey into the World of the Deaf. Berkeley: University of California Press.Google Scholar
Saugstad, L. F. (1989). Age and puberty and mental illness. Towards a neurodevelopmental aetiology of Kraepelin's endogenous psychoses. British Journal of Psychiatry, 155, 536–44.CrossRefGoogle ScholarPubMed
Schenker, N. M., Desgoutte, A.-M. & Semendeferi, K. (2005). Neural connectivity and cortical substrates of cognition in hominoids. Journal of Human Evolution, 49, 547–69.CrossRefGoogle ScholarPubMed
Schoenemann, P. T., Sheehan, M. J. & Glotzer, L. D. (2005). Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature Neuroscience, 8, 242–52.CrossRefGoogle ScholarPubMed
Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K. & Hoesen, G. W. (1998). Limbic frontal cortex in hominoids: a comparative study of area 13. American Journal of Physical Anthropology, 106, 129–55.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K. & Hoesen, G. W. (2001). Prefrontal cortex in humans and apes: a comparative study of area 10. American Journal of Physical Anthropology, 114, 224–41.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Semendeferi, K., Lu, A., Schenker, N. & Damasio, H. (2002). Humans and great apes share a large frontal cortex. Nature Neuroscience, 5, 272–6.CrossRefGoogle Scholar
Shelley-Tremblay, J. F. & Rosen, L. A. (1996). Attention deficit hyperactivity disorder: An evolutionary perspective. The Journal of Genetic Psychology, 157, 443–54.CrossRefGoogle Scholar
Sherwood, C. C., Holloway, R. L., Semendeferi, K. & Hof, P. R. (2005). Is prefrontal white matter enlargement a human evolutionary specialization?Nature Neuroscience, 8, 537–8.CrossRefGoogle ScholarPubMed
Shu, W., Yang, H., Zhang, L., Lu, M. M. & Morrisey, E. E. (2001). Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act as transcriptional repressors. The Journal of Biological Chemistry, 276, 27488–97.CrossRefGoogle ScholarPubMed
Sommer, I., Aleman, A., Ramsey, N., Bouma, A. & Kahn, R. (2001). Handedness, language lateralisation and anatomical asymmetry in schizophrenia. Meta-analysis. British Journal of Psychiatry, 178, 344–51.CrossRefGoogle ScholarPubMed
Sommer, I. E. C., Ramsey, N. F., Mandl, R. C. W., Oel, C. J. & Kahn, R. S. (2004). Language activation in monozygotic twins discordant for schizophrenia. British Journal of Psychiatry, 184, 128–35.CrossRefGoogle Scholar
Stevenson, J. (1991). Evidence for a genetic etiology in hyperactive children. Behavior Genetics, 22, 337–44.CrossRefGoogle Scholar
Vargha-Khadem, F., Watkins, K., Alcock, K., Fletcher,, P. & Passingham, R. (1995). Praxis and non-verbal deficits in a large family with genetically transmitted speech and language disorder. Proceedings of the National Academy of Science U.S.A., 92, 930–3.CrossRefGoogle Scholar
Winterer, G. & Goldman, D. (2003). Genetics of human prefrontal function. Brain Research Reviews, 43, 134–63.CrossRefGoogle ScholarPubMed
Witelson, S., Kigar, D. L. & Harvey, T. (1999). The exceptional brain of Albert Einstein. Lancet, 353, 2149–53.CrossRefGoogle ScholarPubMed
Wrangham, R. & Conklin-Brittain, N (2003). Cooking as a biological trait. Comparative Biochemistry and Physiology Part A, 136, 35–46.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×