Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- 0 Prelude
- 1 Fundamentals
- 2 ℕ: Natural Numbers
- 3 ℤ: Integers
- 4 ℤm: Modular Arithmetic
- 5 ℚ: Rational Numbers
- 6 ℝ: Real Numbers I, Dedekind Cuts
- 7 ℝ: Real Numbers II, Cauchy Sequences
- 8 ℝ: Real Numbers III, Complete Ordered Fields
- 9 ℂ: Complex Numbers
- 10 Further Extensions
- Answers to Exercises
- Bibliography
- Index
6 - ℝ: Real Numbers I, Dedekind Cuts
Published online by Cambridge University Press: 05 December 2024
- Frontmatter
- Dedication
- Contents
- Preface
- 0 Prelude
- 1 Fundamentals
- 2 ℕ: Natural Numbers
- 3 ℤ: Integers
- 4 ℤm: Modular Arithmetic
- 5 ℚ: Rational Numbers
- 6 ℝ: Real Numbers I, Dedekind Cuts
- 7 ℝ: Real Numbers II, Cauchy Sequences
- 8 ℝ: Real Numbers III, Complete Ordered Fields
- 9 ℂ: Complex Numbers
- 10 Further Extensions
- Answers to Exercises
- Bibliography
- Index
Summary
We define real numbers as equivalence classes of left rays of rational numbers. We show the existence of the square root of 2, and summarize the properties of the real numbers using the concept of a complete ordered field.
- Type
- Chapter
- Information
- From Counting to ContinuumWhat Are Real Numbers, Really?, pp. 81 - 104Publisher: Cambridge University PressPrint publication year: 2024