Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T19:45:28.704Z Has data issue: false hasContentIssue false

4 - Morphological largess: can morphology offer more and be modelled as a stochastic evolutionary process?

Published online by Cambridge University Press:  05 November 2012

Robert J. Asher
Affiliation:
University of Cambridge
Johannes Müller
Affiliation:
Museum für Naturkunde; Humboldt Universität zu Berlin
Get access

Summary

Introduction

If ‘nothing in biology makes sense except in light of evolution’ (Dobzhansky 1973), then evolutionary rates must be the currency exchange rate of biology and species are the currency. Rates of evolutionary change influence ultimate biological factors, such as rates of adaptation, speciation and extinction. These, in turn, determine even higher biological functions, such as ecosystem size and complexity, whose interactions cause truly large-scale biogeographic patterns, such as latitudinal diversity gradients. For example, the higher diversities in the tropics have been hypothesized to be driven by higher rates of mutation and speciation in those climates (Rohde 1992; Allen et al. 2002), faster genetic drift in smaller populations in these regions (Fedorov 1966), and more intense biotic interactions driving higher rates of evolution (Dobzhansky 1950).

Despite their great reach, rates of evolutionary change are determined by proximate drivers – the most basic of which are genetic mutations and developmental variation. Genetic mutations are generally considered random, with their rates driven primarily by stochastic perturbations to the processes of genetic replication, such as copy error, point mutations and unequal recombination. Developmental variation is exposed through the phenotypic plasticity present in all morphological traits (West-Eberhard 2003). Phenotypic plasticity involves different drivers which impart local fitness peaks in different populations (Crispo 2007) or are the result of spurious environmental influences on developmental processes. The latter are epigenetic influences on development that may drive the creation of a continuous or discontinuous set of phenotypic traits (Waddington 1942). Both these processes, mutation and epigenetic developmental variation, provide the ingredients for natural selection. The rate at which the phenotype evolves from these variations is what we are interested in expanding in this chapter. To further complicate matters, the tempo and mode of natural selection upon these proximate heritable variations is determined by a suite of factors, such as population size, body size, generation time and metabolic rate.

Type
Chapter
Information
From Clone to Bone
The Synergy of Morphological and Molecular Tools in Palaeobiology
, pp. 83 - 115
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerly, D. 2009 Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signalProceedings of the National Academy of Sciences of the United States of America 106 19 699CrossRefGoogle ScholarPubMed
Adams, D. C.Collyer, M. L. 2009 A general framework for the analysis of phenotypic trajectories in evolutionary studiesEvolution 63 1CrossRefGoogle ScholarPubMed
Adams, D. C.Berns, C. M.Kozak, K. H.Wiens, J. J. 2009 Are rates of species diversification correlated with rates of morphological evolution?Proceedings of the Royal Society B–Biological Sciences 276 2729CrossRefGoogle ScholarPubMed
Allen, A. P.Brown, J. H.Gillooly, J. F. 2002 Global biodiversity, biochemical kinetics, and the energetic-equivalence ruleScience 297 1545CrossRefGoogle ScholarPubMed
Alroy, J.Aberhan, M.Bottjer, D. J. 2008 Phanerozoic trends in the global diversity of marine invertebratesScience 321 97CrossRefGoogle ScholarPubMed
Barraclough, T. G.Savolainen, V. 2001 Evolutionary rates and species diversity in flowering plantsEvolution 55 677CrossRefGoogle ScholarPubMed
Barrett, P. M.McGowan, A. J.Page, V 2009 Dinosaur diversity and the rock recordProceedings of the Royal Society B–Biological Sciences 276 2667CrossRefGoogle ScholarPubMed
Bell, G. 2008 Selection: The Mechanism of EvolutionOxford, UKOxford University PressGoogle Scholar
Benton, M. J.Donoghue, P. C. J.Asher, R. J. 2009 Calibrating and constraining molecular clocksThe Timetree of LifeHedges, S. B.Kumar, S.35Oxford, UKOxford University PressGoogle Scholar
Bodenbender, B. E.Fisher, D. C. 2001 Stratocladistic analysis of blastoid phylogenyJournal of Paleontology 75 351CrossRefGoogle Scholar
Bromham, L. 2009 Why do species vary in their rate of molecular evolution?Biology Letters 5 401CrossRefGoogle ScholarPubMed
Bromham, L.Penny, D. 2003 The modern molecular clockNature Reviews Genetics 4 216CrossRefGoogle ScholarPubMed
Bromham, L.Penny, D.Rambaut, A.Hendy, M. D. 2000 The power of relative rates tests depends on the dataJournal of Molecular Evolution 50 296CrossRefGoogle ScholarPubMed
Bromham, L.Woolfit, M.Lee, M. S. Y.Rambaut, A. 2002 Testing the relationship between morphological and molecular rates of change along phylogeniesEvolution 56 1921CrossRefGoogle ScholarPubMed
Brusatte, S. L.Benton, M. J.Ruta, M.Lloyd, G. T. 2008 Superiority, competition, and opportunism in the evolutionary radiation of dinosaursScience 276 1485CrossRefGoogle Scholar
Clarke, J. A.Zhou, Z.Zhang, F. 2006 Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Journal of Anatomy287CrossRefGoogle Scholar
Cracraft, J. 1987 Species concepts and the ontology of evolutionBiology and Philosophy 2 329CrossRefGoogle Scholar
Crispo, E. 2007 The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticityEvolution 61 2469CrossRefGoogle ScholarPubMed
Darwin, C. 1859 On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for LifeLondonJohn MurrayGoogle Scholar
Davies, T. J.Savolainen, V. 2006 Neutral theory, phylogenies, and the relationship between phenotypic change and evolutionary ratesEvolution 60 476CrossRefGoogle ScholarPubMed
Dececchi, T. A.Larsson, H. C. E. 2009 Patristic evolutionary rates suggest a punctuated pattern in forelimb evolution before and after the origin of birdsPaleobiology 35 1CrossRefGoogle Scholar
Dobzhansky, T. 1950 Evolution in the tropicsAmerican Scientist 38 209Google Scholar
Dobzhansky, T. 1973 Nothing in biology makes sense except in the light of evolutionThe American Biology Teacher 35 125CrossRefGoogle Scholar
Dorus, S.Evans, P. D.Wyckoff, G. J.Choi, S. S.Lahn, B. T. 2004 Rate of molecular evolution of the seminal protein gene SEMG2 correlates with levels of female promiscuityNature Genetics 36 1326CrossRefGoogle ScholarPubMed
Drummond, A. J.Rambaut, A. 2007 BEAST: Bayesian evolutionary analysis by sampling treesBMC Evolutionary Biology 7CrossRefGoogle ScholarPubMed
Eizirik, E.Murphy, W. J.O'Brien, S. J. 2001 Molecular dating and biogeography of the early placental mammal radiationJournal of Heredity 92 212CrossRefGoogle ScholarPubMed
Eldredge, N.Gould, S. J. 1972 Punctuated equilibria: an alternative to phyletic gradualismModels in PaleobiologySchopf, T. J. M.82San Francisco, CAFreeman, CooperGoogle Scholar
Estes, S.Arnold, S. J. 2007 Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescalesAmerican Naturalist 169 227CrossRefGoogle ScholarPubMed
Fedorov, A. A. 1966 The structure of the tropical rain forest and speciation in the humid tropicsJournal of Ecology 54 1CrossRefGoogle Scholar
Felsenstein, J. 2003 Inferring PhylogeniesSunderland, MASinauer AssociatesGoogle Scholar
Foote, M. 1991 Morphologic patterns of diversification: examples from trilobitesPalaeontology 34 461Google Scholar
Foote, M. 1994 Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological spacePaleobiology 20 320CrossRefGoogle Scholar
Foote, M. 2003 Origination and extinction through the Phanerozoic: a new approachJournal of Geology 111 125CrossRefGoogle Scholar
Foote, M.Hunter, J. P.Janis, C. M.Sepkoski, J. J. 1999 Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammalsScience 283 1310CrossRefGoogle ScholarPubMed
Fox, D. L.Fisher, D. C.Leighton, L. R. 1999 Reconstructing phylogeny with and without temporal dataScience 284 1816CrossRefGoogle ScholarPubMed
Gingerich, P. D. 1993 Quantification and comparison of evolutionary ratesAmerican Journal of Science 293 453CrossRefGoogle Scholar
Gingerich, P. D 2009 Rates of evolutionAnnual Review of Ecology, Evolution, and Systematics 40 657CrossRefGoogle Scholar
Gould, S. J. 1980 Is a new and general theory of evolution emerging?Paleobiology 6 119CrossRefGoogle Scholar
Gould, S. J. 1984 Smooth curve of evolutionary rate: a psychological and mathematical artefactScience 226 994CrossRefGoogle Scholar
Gould, S. J.Lewontin, R. C 1979 The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programmeProceedings of the Royal Society of London B–Biological Sciences 205 581CrossRefGoogle Scholar
Grant, P. R. 1999 Ecology and Evolution of Darwin's FinchesPrinceton, NJPrinceton University PressGoogle Scholar
Graur, D.Martin, W. 2004 Reading the entrails of chickens: molecular timescales of evolution and the illusion of precisionTrends in Genetics 20 80CrossRefGoogle ScholarPubMed
Guindon, S.Gascuel, O 2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihoodSystematic Biology696CrossRefGoogle ScholarPubMed
Haldane, J. B. S. 1949 Suggestions as to the quantitative measurement of rates of evolutionEvolution 3 51CrossRefGoogle ScholarPubMed
Harmon, L. J.Schulte, J. A.Larson, A.Losos, J. B. 2003 Tempo and mode of evolutionary radiation in iguanian lizardsScience 301 961CrossRefGoogle ScholarPubMed
Hay, J. M.Subramanian, S.Millar, C. D.Mohandesan, E.Lambert, D. M. 2008 Rapid molecular evolution in a living fossilTrends in Genetics 24 106CrossRefGoogle Scholar
Hendry, A. P.Kinnison, M. T. 1999 The pace of modern life: measuring rates of contemporary microevolutionEvolution 53 1637CrossRefGoogle ScholarPubMed
Herlyn, H.Zischler, H. 2007 Sequence evolution of the sperm ligand zonadhesin correlates negatively with body weight dimorphism in primatesEvolution 61 289CrossRefGoogle ScholarPubMed
Ho, S. Y. W. 2009 An examination of phylogenetic models of substitution rate variation among lineagesBiology Letters 5 421CrossRefGoogle ScholarPubMed
Holder, M.Lewis, P. O. 2003 Phylogeny estimation: traditional and Bayesian approachesNature Reviews Genetics 4 275CrossRefGoogle ScholarPubMed
Holtz, T. R.Molnar, R. E.Currie, P. J. 2004 Basal TetanuraeThe DinosauriaWeishampel, D. B.Dodson, P.Osmólska, H.71Berkeley, CAUniversity of California PressCrossRefGoogle Scholar
Huelsenbeck, J. P.Larget, B.Swofford, D. 2000 A compound Poisson process for relaxing the molecular clockGenetics 154 1879Google ScholarPubMed
Huelsenbeck, J. P.Rannala, B.Masly, J. P. 2000 Accommodating phylogenetic uncertainty in evolutionary studiesScience 288 2349CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P.Ronquist, F.Nielsen, R.Bollback, J. P. 2001 Bayesian inference of phylogeny and its impact on evolutionary biologyScience 294 2310CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P.Larget, B.Alfaro, M. E. 2004 Bayesian phylogenetic model selection using reversible jump Markov chain Monte CarloMolecular Biology and Evolution 21 1123CrossRefGoogle ScholarPubMed
Hunt, G. 2007 The relative importance of directional change, random walks, and stasis in the evolution of fossil lineagesProceedings of the National Academy of Sciences 104 18 404CrossRefGoogle ScholarPubMed
Hunt, G.Bell, M. A.Travis, M. P. 2008 Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineageEvolution 62 700CrossRefGoogle Scholar
Hurle, B.Swanson, W.Green, E. D. 2007 Comparative sequence analyses reveal rapid and divergent evolutionary changes of the WFDC locus in the primate lineageGenome Research 17 276CrossRefGoogle ScholarPubMed
Jackson, J. B. C.Cheetham, A. H. 1994 Phylogeny reconstruction and the tempo of speciation in cheilostome BryozoaPaleobiology 20 407CrossRefGoogle Scholar
Jones, M. E. H.Tennyson, A. J. D.Worthy, J. P.Evans, S. E.Worthy, T. H 2009 A sphenodontine (Rhynchocephalia) from the Miocene of New Zealand and the paleobiology of the Tuatara (Sphenodon)Proceedings of the Royal Society B–Biological Sciences 276 1385CrossRefGoogle Scholar
Kimura, M. 1983 The Neutral Theory of Molecular EvolutionCambridge, UKCambridge University PressCrossRefGoogle Scholar
Kingsolver, J. G.Hoekstra, H. E.Hoekstra, J. M. 2001 The strength of phenotypic selection in natural populationsAmerican Naturalist 157 245CrossRefGoogle ScholarPubMed
Korber, B. 2000 Timing the ancestor of the HIV-1 pandemic strainsScience 288 1789CrossRefGoogle ScholarPubMed
Lanfear, R.Welch, J. J.Bromham, L. 2010 Watching the clock: studying variation in rates of molecular evolution between speciesTrends in Ecology and Evolution 25 495CrossRefGoogle ScholarPubMed
Larsson, H. C. E. 2000
Lavoué, S.Miya, M.Arnegard, M. E. 2011 Remarkable morphological stasis in an extant vertebrate despite tens of millions of years of divergenceProceedings of the Royal Society B–Biological Sciences 278 1003CrossRefGoogle Scholar
Lee, A. H.Werning, S. 2008 Sexual maturity in growing dinosaurs does not fit reptilian growth modelsProceedings of the National Academy of Sciences of the United States of America 105 582CrossRefGoogle Scholar
Lewis, P. O. 2001 A likelihood approach to estimating phylogeny from discrete morphological character dataSystematic Biology 50 913CrossRefGoogle ScholarPubMed
Liow, L. H.Fortelius, M.Bingham, E. 2008 Higher origination and extinction rates in larger mammalsProceedings of the National Academy of Sciences of the United States of America 105 6097CrossRefGoogle ScholarPubMed
Livezey, B. C.Zusi, R 2006 Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy.I. Methods and charactersBulletin of Carnegie Museum of Natural History 37 1CrossRefGoogle Scholar
Livezey, B. C.Zusi, R. L 2007 Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussionZoological Journal of the Linnean Society 149 1CrossRefGoogle ScholarPubMed
Luo, Z.-X.Chen, P.Li, G.Chen, M. 2007 A new eutriconodont mammal and evolutionary development in early mammalsNature 446 288CrossRefGoogle ScholarPubMed
Magallón, S. 2010 Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiospermsSystematic Biology 59 384CrossRefGoogle ScholarPubMed
Marjanović, D.Laurin, M 2008 Assessing confidence intervals for stratigraphic ranges of higher taxa: the case of LissamphibiaActa Palaeontologica Polonica 53 413CrossRefGoogle Scholar
Marshall, C. R. 1994 Confidence intervals on stratigraphic ranges: partial relaxation of the assumption of randomly distributed fossil horizonsPaleobiology 20 459CrossRefGoogle Scholar
Marshall, C. R. 1997 Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizonsPaleobiology 23 165CrossRefGoogle Scholar
Marshall, C. R. 2008 A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration pointsAmerican Naturalist 171 726CrossRefGoogle ScholarPubMed
Millar, J. S.Zammuto, R. M. 1983 Life histories of mammals: an analysis of life tablesEcology 64 631CrossRefGoogle Scholar
Müller, J.Reisz, R. R. 2005 Four well-constrained calibration points from the vertebrate fossil record for molecular clock estimatesBioEssays 27 1069CrossRefGoogle ScholarPubMed
Nesbitt, S. J.Smith, N. D.Irmis, R. B. 2009 A complete skeleton of a Late Triassic saurischian and the early evolution of dinosaursScience 326 1530CrossRefGoogle ScholarPubMed
Niklas, K. J. 1978 Coupled evolutionary rates and the fossil recordBrittonia 30 373CrossRefGoogle Scholar
Norell, M. A. 1993 Tree-based approaches to understanding history: comments on ranks, rules, and the quality of the fossil recordAmerican Journal of Science 293 407CrossRefGoogle Scholar
Nylander, J. A. A.Ronquist, F.Huelsenbeck, J. P.Nieves-Aldrey, J. L. 2004 Bayesian phylogenetic analysis of combined dataSystematic Biology 53 47CrossRefGoogle ScholarPubMed
Olson, E. C. 1966 Community evolution and the origin of mammalsEcology 47 291CrossRefGoogle Scholar
Omland, K. E. 1997 Correlated rates of molecular and morphological evolutionEvolution 51 1381CrossRefGoogle ScholarPubMed
Orr, H. A. 2000 Adaptation and the cost of complexityEvolution 54 13CrossRefGoogle ScholarPubMed
Osborn, H. F. 1922 Orthogenesis as observed from paleontological evidence beginning in the year 1889American Naturalist 56 134CrossRefGoogle Scholar
Osborn, H. F. 1933 Biological inductions from the evolution of the ProboscideaProceedings of the National Academy of Sciences of the United States of America 19 159CrossRefGoogle ScholarPubMed
Rambaut, A. 2000 Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogeniesBioinformatics 16 395CrossRefGoogle ScholarPubMed
Rannala, B. 2002 Identifiability of parameters in MCMC Bayesian inference of phylogenySystematic Biology 51 754CrossRefGoogle ScholarPubMed
Riedl, R. 1978 Order in Living Organisms: A Systems Analysis of EvolutionNew YorkWileyGoogle Scholar
Robinson, M.Gouy, M.Gautier, C.Mouchiroud, D. 1998 Sensitivity of the relative-rate test to taxonomic samplingMolecular Biology and Evolution 15 1091CrossRefGoogle ScholarPubMed
Rohde, K. 1992 Latitudinal gradients in species diversity: the search for the primary causeOikos 65 514CrossRefGoogle Scholar
Ruta, M.Wagner, P. J.Coates, M. I 2006 Evolutionary patterns in early tetrapods. I. Rapid initial diversification followed by decrease in rates of character changeProceedings of the Royal Society B–Biological Sciences 273 2107CrossRefGoogle ScholarPubMed
Rutschmann, F 2006 Molecular dating of phylogenetic trees: a brief review of current methods that estimate divergence timesDiversity Distributions 12 35CrossRefGoogle Scholar
Sánchez-Villagra, M.Ladevèze, S.Horovitz, I. 2007 Exceptionally preserved North American Paleogene metatherians: adaptations and discovery of a major gap in the opossum fossil recordBiology Letters 3 318CrossRefGoogle Scholar
Sanderson, M. J. 2002 Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approachMolecular Biology and Evolution 19 101CrossRefGoogle ScholarPubMed
Schopf, T. J. M.Raup, D. M.Gould, S. J.Simberloff, D. S. 1975 Genomic versus morphologic rates of evolution: influence of morphologic complexityPaleobiology 1 63CrossRefGoogle Scholar
Shapiro, B.Ho, S. Y. W.Drummond, A. J. 2011 A Bayesian phylogenetic method to estimate unknown sequence agesMolecular Biology and Evolution 28 879CrossRefGoogle ScholarPubMed
Sidor, C. A.Hopson, J. A. 1998 Ghost lineages and ‘mammalness’: assessing the temporal pattern of character acquisition in the SynapsidaPaleobiology 24 254Google Scholar
Siepielski, A. M.DiBattista, J. D.Carlson, S. M. 2009 It's about time: the temporal dynamics of phenotypic selection in the wildEcology Letters 12 1261CrossRefGoogle ScholarPubMed
Simpson, G. G. 1944 Tempo and Mode in EvolutionNew YorkColumbia University PressGoogle Scholar
Simpson, G. G. 1949 Meaning of EvolutionNew Haven, CTYale University PressGoogle Scholar
Simpson, G. G 1953 The Major Features of EvolutionNew YorkColumbia University PressGoogle Scholar
Smith, A. B. 1994 Rooting molecular trees: problems and strategiesBiological Journal of the Linnean Society 51 279CrossRefGoogle Scholar
Smith, A. B.Peterson, K. J. 2002 Dating the time of origin of major clades: molecular clocks and the fossil recordAnnual Review of Earth and Planetary Sciences 30 65CrossRefGoogle Scholar
Smith, A. B.Lafay, B.Christen, R 1992 Comparative variation of morphological and molecular evolution through geologic time: 28S ribosomal RNA versus morphology in echinoidsPhilosophical Transactions of the Royal Society of London B–Biological Sciences 338 365CrossRefGoogle ScholarPubMed
Smocovitis, V. B 1992 Unifying biology: the evolutionary synthesis and evolutionary biologyJournal of the History of Biology 25 1CrossRefGoogle ScholarPubMed
Sneath, P. H.Sokal, R. R. 1972 Numerical Taxonomy: The Principles and Practice of Numerical ClassificationSan Francisco, CAFreemanGoogle Scholar
Stamatakis, A 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed modelsBioinformaticsOxfordUK 22 2688Google Scholar
Stanley, S. M. 1985 Rates of evolutionPaleobiology 11 13CrossRefGoogle Scholar
Subramanian, S.Hay, J. M.Mohandesan, E.Millar, C. D.Lambert, D. M 2009 Molecular and morphological evolution in the tuatara are decoupledTrends in Genetics 25 16CrossRefGoogle Scholar
Suchard, M. AWeiss, R. E.Sinsheimer, J. S. 2001 Bayesian selection of continuous-time Markov chain evolutionary modelsMolecular Biology and Evolution 18 1001CrossRefGoogle ScholarPubMed
Sullivan, J.Joyce, P 2005 Model selection in phylogeneticsAnnual Review of Ecology, Evolution, and Systematics 36 445CrossRefGoogle Scholar
Tajima, F. 1993 Simple methods for testing the molecular evolutionary clock hypothesisGenetics 135 599Google ScholarPubMed
Takezaki, N.Rzhetsky, ANei, M 1995 Phylogenetic test of the molecular clock and linearized treesMolecular Biology and Evolution 12 823Google ScholarPubMed
Waddington, C. H. 1942 The canalization of development and the inheritance of acquired charactersNature 150CrossRefGoogle Scholar
Wagner, P. J. 1997 Patterns of morphologic diversification among the RostroconchiaPaleobiology 23 115CrossRefGoogle Scholar
Wagner, P. J. 2000 Likelihood tests of hypothesized durations: determining and accommodating biasing factorsPaleobiology 26 4312.0.CO;2>CrossRefGoogle Scholar
Wagner, P. J.Ruta, M.Coates, M. I 2006 Evolutionary patterns in early tetrapods. II. Differing constraints on available character space among cladesProceedings of the Royal Society B–Biological Sciences 273 2113CrossRefGoogle ScholarPubMed
Wall, P. D.Ivany, L. C.Wilkinson, B. H. 2009 Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniquesPaleobiology 35 146CrossRefGoogle Scholar
Weir, J. T.Schluter, D. 2008 Calibrating the avian molecular clockMolecular Ecology 17 2321CrossRefGoogle ScholarPubMed
Welch, J. J.Bromham, L. 2005 Molecular dating when rates varyTrends in Ecology and Evolution 20 320CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. 2003 Developmental Plasticity and EvolutionNew YorkOxford University PressGoogle Scholar
Western, D. 1979 Size, life history and ecology in mammalsAfrican Journal of Ecology 17 185CrossRefGoogle Scholar
Wray, G. A.Levinton, J. S.Shapiro, L. H. 1996 Molecular evidence for deep Precambrian divergences among metazoan phylaScience 274 568CrossRefGoogle Scholar
Wright, S. 1945 Tempo and mode in evolution: a critical reviewEcology 26 415CrossRefGoogle Scholar
Yang, Z. 2006 Computational Molecular EvolutionOxford, UKOxford University PressCrossRefGoogle Scholar
Yoder, A. D.Yang, Z. 2000 Estimation of primate speciation dates using local molecular clocksMolecular Biology and Evolution 17 1081CrossRefGoogle ScholarPubMed
Zhao, Z.Zhou, Y.Ji, G. 2006 The periodic growth increments of biological shells and the orbital parameters of Earth-Moon systemEnvironmental Geology 51 1271Google Scholar
Zuckerkandl, E.Pauling, L. 1965 Evolutionary divergence and convergence, in proteinsEvolving Genes and ProteinsBryson, V.Vogel, H.97New YorkAcademic PressCrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×