Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T03:22:30.886Z Has data issue: false hasContentIssue false

5 - Singularities and Coxeter groups

from Part 1 - Multiplication on the tangent bundle

Published online by Cambridge University Press:  12 September 2009

Claus Hertling
Affiliation:
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig
Get access

Summary

In this section several families of massive F-manifolds which come from singularity theory are studied. The most important ones are the base spaces of semiuniversal unfoldings of hypersurface singularities. Three reasons for this are: (1) hypersurface singularities and their unfoldings are so universal objects; (2) their F-manifolds can be enriched to Frobenius manifolds (part 2); (3) one has a 1-1 correspondence between irreducible germs of massive F-manifolds with smooth analytic spectrum and stable right equivalence classes of singularities (Theorem 5.6). This is covered in section 5.1. The discussion of boundary singularities and their F-manifolds in section 5.2 is quite similar.

Sections 5.3 and 5.4 are devoted to finite irreducible Coxeter groups and their F-manifolds and Frobenius manifolds. The discriminant in the complex orbit space induces an F-manifold structure on the orbit space just as in Corollary 4.6. This follows independently from work of Dubrovin and from results in singularity theory by Brieskorn, Arnold, O.P. Shcherbak, Givental. We extend work of Givental in order to characterize these F-manifolds (Theorems 5.20, 5.21, 5.22) and use this to prove a conjecture of Dubrovin about the corresponding Frobenius manifolds (Theorem 5.26).

In section 5.5 other families of F-manifolds with quite different properties are constructed. A start is made on the classification of 3-dimensional germs of massive F-manifolds.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Singularities and Coxeter groups
  • Claus Hertling, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig
  • Book: Frobenius Manifolds and Moduli Spaces for Singularities
  • Online publication: 12 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511543104.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Singularities and Coxeter groups
  • Claus Hertling, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig
  • Book: Frobenius Manifolds and Moduli Spaces for Singularities
  • Online publication: 12 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511543104.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Singularities and Coxeter groups
  • Claus Hertling, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig
  • Book: Frobenius Manifolds and Moduli Spaces for Singularities
  • Online publication: 12 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511543104.006
Available formats
×