Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-04T19:29:04.267Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 January 2022

Robert Connelly
Affiliation:
Cornell University, New York
Simon D. Guest
Affiliation:
University of Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adriaenssens, S., Block, P., Veenendaal, D., and Williams, C., editors (2014). Shell Structures for Architecture: Form Finding and Optimization. Routledge, London and New York. 37CrossRefGoogle Scholar
Alexandrov, A. D. (2005). Convex polyhedra. Springer Monographs in Mathematics. Springer-Verlag, Berlin. Translated from the 1950 Russian edition by N. S. Dair-bekov, S. S. Kutateladze, and A. B. Sossinsky, With comments and bibliography by V. A. Zalgaller and appendices by L. A. Shor and Yu. A. Volkov. 51, 54Google Scholar
Alfakih, A. Y. (2007). On dimensional rigidity of bar-and-joint frameworks. Discrete Appl. Math., 155(10):12441253. 132Google Scholar
Alfakih, A. Y. (2017). Graph connectivity and universal rigidity of bar frameworks. Discrete Appl. Math., 217(part 3):707710. 150Google Scholar
Alfakih, A. Y. and Ye, Y. (2013). On affine motions and bar frameworks in general position. Linear Algebra Appl., 438(1):3136. 102Google Scholar
Altmann, S. L. and Herzig, P. (1994). Point-Group Theory Tables. Clarendon Press, Oxford. 215, 229Google Scholar
Asimow, L. and Roth, B. (1978). The rigidity of graphs. Trans. Amer. Math. Soc., 245: 279289. 145CrossRefGoogle Scholar
Asimow, L. and Roth, B. (1979). The rigidity of graphs. II. J. Math. Anal. Appl., 68(1): 171190. 145CrossRefGoogle Scholar
Atkins, P. W., Child, M. S., and Phillips, C. S. G. (1970). Tables for Group Theory. Oxford University Press, Oxford. 215, 229Google Scholar
Bang, S.-J., Williams, J. C., Isaacs, I. M., Connelly, R., Hubbard, J. H., Whiteley, W., Rudin, W., Canfield, E. R., Golomb, S. W., Zha, H., Krafft, O., and Schaefer, M. (1993). Problems and solutions: Problems: 10306-10313. Amer. Math. Monthly, 100(5): 498499. 108Google Scholar
Barvinok, A. I. (1995). Problems of distance geometry and convex properties of quadratic maps. Discrete Comput. Geom., 13(2):189202. 109Google Scholar
Belk, M. (2007). Realizability of graphs in three dimensions. Discrete Comput. Geom., 37(2):139162. 134Google Scholar
Belk, M. and Connelly, R. (2007). Realizability of graphs. Discrete Comput. Geom., 37(2):125137. 134Google Scholar
Berg, A. R. and Jordán, T. (2003). A proof of Connelly’s conjecture on 3-connected circuits of the rigidity matroid. J. Combin. Theory Ser. B, 88(1):7797. 152Google Scholar
Bezdek, K. and Connelly, R. (2006). Stress matrices and m matrices. Oberwolfach Reports, 3(1):678680. 109Google Scholar
Biedl, T., Demaine, E., Demaine, M., Lazard, S., Lubiw, A., O’Rourke, J., Robbins, S., Streinu, I., Toussaint, G., and Whitesides, S. (2002). A note on reconfiguring tree linkages: trees can lock. Discrete Appl. Math., 117(1-3):293297. 170Google Scholar
Bishop, D. M. (1973). Group Theory and Chemistry. Clarendon Press, Oxford. 6, 187, 203, 229, 230Google Scholar
Bochnak, J., Coste, M., and Roy, M.-F. (1998). Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin. Translated from the 1987 French original, Revised by the authors. 11, 64, 176Google Scholar
Bolker, E. D. and Crapo, H. (1979). Bracing rectangular frameworks. I. SIAM J. Appl. Math., 36(3):473490. 60Google Scholar
Bolker, E. D. and Roth, B. (1980). When is a bipartite graph a rigid framework? Pacific J. Math., 90(1):2744. 59, 152, 154Google Scholar
Bottema, O. (1960). Die bahnkurven eines merkwürdigen zwölfstabgetriebes. Osterr. Ingen Archiv, 14:218222. 159Google Scholar
Bricard, R. (1897). Mémoire sur la theórie de l’octaédre articuleé. J. Math. Pures Appl., 5:113148. 157, 159, 162Google Scholar
Calladine, C. R. (1978). Buckminster Fuller’s “Tensegrity” structures and Clerk Maxwell’s rules for the construction of stiff frames. Int. J. Solids Struct., 14:161172. 36, 116, 208Google Scholar
Calladine, C. R. (1982). Modal stiffnesses of a pretensioned cable net. Int. J. Solids Struct., 18(10):829846. 116Google Scholar
Cantarella, J., Demaine, E., Iben, H., and O’Brian, J. (2004). An energy-driven approach to linkage unfolding. Proceedings of the Twentieth Annual Symposium on Computational Geometry, pages 134–143. SGC’04. 175, 176Google Scholar
Carwardine, G. (1935). Improvements in equipoising mechanism. UK Pat. 433 617 (filed 10 February and 7 March 1934, granted 12 August 1935). 80Google Scholar
Castigliano, C. A. P. (1879). Théorie de l’équilibre des systèmes élastiques et ses applications. A. F. Negra, Turin. 78Google Scholar
Cauchy, A. L. (1813). Sur les polygones et polyèdres. second mémoire, Journal de l’Ecole Polytechnique, 19:8798. 49, 51Google Scholar
Chern, S. S. (1967). Studies in global geometry and analysis. Number 4. The Mathematical Association of America, Washington, DC. 106Google Scholar
Coates, R., Coutie, M., and Kong, F. (1988). Structural Analysis. Chapman and Hall, London, third edition. 37Google Scholar
Connelly, R. (1974). An attack on rigidity I, II. Preprint, available at http://www .math.cornell.edu/∼connelly/Attack.I.eps and http://www.math .cornell.edu/∼connelly/Attack.II.eps. Russian translation available in the book: A. N. Kolmoogorov, S. P. Novikov (eds.) Issledovaniya po metricheskoj teorii poverkhnostej, Moscow: Mir, 1980, pp. 164–209. 161Google Scholar
Connelly, R. (1978). The rigidity of suspensions. J. Differential Geom., 13(3):399408. 162CrossRefGoogle Scholar
Connelly, R. (1979a). A flexible sphere. Math. Intelligencer, 1(3):130131. 166Google Scholar
Connelly, R. (1979b). The rigidity of polyhedral surfaces. Math. Mag., 52(5):275283. 166Google Scholar
Connelly, R. (1980). The rigidity of certain cabled frameworks and the second-order rigidity of arbitrarily triangulated convex surfaces. Adv. in Math., 37(3):272299. 131Google Scholar
Connelly, R. (1982). Rigidity and energy. Invent. Math., 66(1):1133. 106Google Scholar
Connelly, R. (1991). On generic global rigidity. In Applied geometry and discrete mathematics, volume 4 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 147155. American Math Society, Providence, RI. 152Google Scholar
Connelly, R. (1993). Rigidity. In Handbook of convex geometry, Vol. A, B, p. 223271. North-Holland, Amsterdam. 131Google Scholar
Connelly, R. (2005). Generic global rigidity. Discrete Comput. Geom., 33(4):549563. 5, 147, 148Google Scholar
Connelly, R., Demaine, E. D., Demaine, M. L., Fekete, S. P., Langerman, S., Mitchell, J. S. B., Ribo, A., and Rote, G. (2010). Locked and unlocked chains of planar shapes. Discrete Comput. Geom., 44(2):439462. 181Google Scholar
Connelly, R., Demaine, E. D., and Rote, G. (2003). Straightening polygonal arcs and convexifying polygonal cycles. Discrete Comput. Geom., 30(2):205239. U.S.-Hungarian Workshops on Discrete Geometry and Convexity (Budapest, 1999/Auburn, AL, 2000). 171, 172, 173, 176Google Scholar
Connelly, R., Fowler, P. W., Guest, S. D., Schulze, B., and Whiteley, W. J. (2009). When is a symmetric pin-jointed framework isostatic? Int. J. Solids Struct., 46:762773. 225Google Scholar
Connelly, R. and Gortler, S. J. (2015). Iterative universal rigidity. Discrete Comput. Geom., 53(4):847877. 95, 132Google Scholar
Connelly, R. and Gortler, S. J. (2017). Prestress stability of triangulated convex polytopes and universal second-order rigidity. SIAM J. Discrete Math., 31(4):27352753. 131Google Scholar
Connelly, R., Gortler, S. J., and Theran, L. (2018). Affine rigidity and conics at infinity. Int. Math. Res. Not. IMRN, (13):40844102. 101Google Scholar
Connelly, R., Gortler, S. J., and Theran, L. (2020). Generically globally rigid graphs have generic universally rigid frameworks. Combinatorica, 40(1):137. 150Google Scholar
Connelly, R. and Henderson, D. W. (1980). A convex 3-complex not simplicially isomorphic to a strictly convex complex. Math. Proc. Cambridge Philos. Soc., 88(2): 299306. 184Google Scholar
Connelly, R., Hendrickson, B., and Terrell, M. (1994). Kaleidoscopes and mechanisms. In Intuitive geometry (Szeged, 1991), volume 63 of Colloquia Mathematica Societatis János Bolyai, pages 6775. North-Holland, Amsterdam. 182Google Scholar
Connelly, R., Rybnikov, K., and Volkov, S. (2001). Percolation of the loss of tension in an infinite triangular lattice. J. Statist. Phys., 105(1–2):143171. 131Google Scholar
Connelly, R., Sabitov, I., and Walz, A. (1997). The bellows conjecture. Beiträge Algebra Geom., 38(1):110. 170Google Scholar
Connelly, R. and Schlenker, J.-M. (2010). On the infinitesimal rigidity of weakly convex polyhedra. European J. Combin., 31(4):10801090. 54Google Scholar
Connelly, R. and Servatius, H. (1994). Higher-order rigidity—what is the proper definition? Discrete Comput. Geom., 11(2):193200. 180, 270Google Scholar
Connelly, R. and Terrell, M. (1995). Tenségrités symétriques globalement rigides. Structural Topology, (21):59–78. Dual French–English text. 262, 268Google Scholar
Connelly, R. and Whiteley, W. (1996). Second-order rigidity and prestress stability for tensegrity frameworks. SIAM J. Discrete Math., 9(3):453491. 128, 129Google Scholar
Coxeter, H. S. M. and Greitzer, S. L. (1967). Geometry Revisited. The Mathematical Association of America, Washington, DC. 177Google Scholar
Crapo, H. (1979). Structural rigidity. Structural Topology, (1):26–45, 73. 145Google Scholar
Crapo, H. and Whiteley, W. (1982). Statics of frameworks and motions of panel structures, a projective geometric introduction. Structural Topology, (6):43–82. With a French translation. 14, 40Google Scholar
Crapo, H. and Whiteley, W. (1993). Autocontraintes planes et polyèdres projetés. I. Le motif de base. Structural Topology, (20):55–78. Dual French-English text. 40Google Scholar
Crapo, H. and Whiteley, W. (1994a). Spaces of stresses, projections and parallel drawings for spherical polyhedra. Beiträge Algebra Geom., 35(2):259281. 40, 183Google Scholar
Crapo, H. and Whiteley, W. (1994b). Spaces of stresses, projections and parallel drawings for spherical polyhedra. Beiträge Algebra Geom., 35(2):259281. 57Google Scholar
Cremona, L. (1890). Graphical Statics. Oxford University Press, London. English Translation. 38Google Scholar
Danzer, L. (1963). Endliche punktmengen auf der 2-sphäre mit möglichst grossem mini-malabstand. Habilitationsschrift, Universität Göttingen. 76Google Scholar
Davis, P. J. (1983). The Thread: A Mathematical Yarn. Birkhauser, Basel. 177Google Scholar
Dehn, M. (1916). Über die Starrheit konvexer Polyeder. Math. Ann., 77(4):466473. 51Google Scholar
Demaine, E. (1993). Web page. pages 1–100. Animation at http://theory.lcs.mit.edu/ ∼edemaine/linkage/. 172Google Scholar
Demaine, E. D. and O’Rourke, J. (2007). Geometric Folding Algorithms. Cambridge University Press, Cambridge. Linkages, origami, polyhedra. 181Google Scholar
Donev, A., Connelly, R., Stillinger, F. H., and Torquato, S. (2007). Underconstrained jammed packings of nonspherical hard particles: ellipses and ellipsoids. Phys. Rev. E (3), 75(5):051304, 32. 76Google Scholar
Donev, A., Torquato, S., Stillinger, F. H., and Connelly, R. (2004). A linear programming algorithm to test for jamming in hard-sphere packings. J. Comput. Phys., 197(1): 139166. 3, 76Google Scholar
Dudeney, H. E. (1902). Puzzles and prizes. Weekly Dispatch. The puzzle appeared in the April 6 issue of this column, and the solution appeared on May 4. 181Google Scholar
Edmondson, A. C. (1987). A Fuller explanation. Design Science Collection. Birkhäuser Boston Inc., Boston, MA. The synergistic geometry of R. Buckminster Fuller, A Pro Scientia Viva Title. 3Google Scholar
Fogelsanger, A. (1988). Web page. pages 1–60. A scanned version of his thesis www.armadillodanceproject.com/AF/Cornell/rigidity.htm. 147Google Scholar
Fowler, P. W. and Guest, S. D. (2000). A symmetry extension of Maxwell’s rule for rigidity of frames. International Journal of Solids and Structures, 37(12):17931804. 187, 223Google Scholar
Frank, S. and Jiang, J. (2011). New classes of counterexamples to Hendrickson’s global rigidity conjecture. Discrete Comput. Geom., 45(3):574591. 152Google Scholar
French, M. J. and Widden, M. B. (2000). The spring-and-lever balancing mechanism, George Carwardine and the Anglepoise lamp. Proc. Inst. Mech. Eng. C – J. Mech. Eng. Sci., 214(3):501508. 80Google Scholar
Gaifullin, A. A. (2014). Generalization of Sabitov’s theorem to polyhedra of arbitrary dimensions. Discrete Comput. Geom., 52(2):195220. 170Google Scholar
Gale, D. (1960). The Theory of Linear Economic Models. McGraw-Hill Book Co., Inc., New York. 69Google Scholar
Gluck, H. (1975). Almost all simply connected closed surfaces are rigid. In Geometric topology (Proc. Conf., Park City, Utah, 1974), pages 225239. Lecture Notes in Math., Vol. 438. Springer, Berlin. 39, 51, 155Google Scholar
Gomez-Jauregui, V. (2010). Tensegrity Structures and their Application to Architecture [Perfect Paperback]. PUbliCan; 1st edition. 3Google Scholar
Gordon, J. E. (1978). Structures; Or Why Things Don’t Fall Down. Da Capo Press. 1Google Scholar
Gortler, S. J., Healy, A. D., and Thurston, D. P. (2010). Characterizing generic global rigidity. Amer. J. Math., 132(4):897939. 5, 148Google Scholar
Gortler, S. J. and Thurston, D. P. (2014). Characterizing the universal rigidity of generic frameworks. Discrete Comput. Geom., 51(4):10171036. 149Google Scholar
Graver, J., Servatius, B., and Servatius, H. (1993). Combinatorial rigidity, volume 2 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI. 15Google Scholar
Graver, J. E. (2001). Counting on frameworks, volume 25 of The Dolciani Mathematical Expositions. Mathematical Association of America, Washington, DC. 135Google Scholar
Grünbaum, B. and Shephard, G. C. (1975). Lectures on lost mathematics. pages 1–79. Lecture notes at https://digital.lib.washington.edu/researchworks/handle/1773/15700. 61, 263Google Scholar
Guest, S. and Fowler, P. (2007). Symmetry conditions and finite mechanisms. Journal of Mechanics of Materials and Structures, 2(2):293301. 231, 232, 233Google Scholar
Guest, S. D. (1999). Mechanisms of the icosahedral compound of ten tetrahedra. Period. Math. Hungar., 39(1-3):213223. Discrete geometry and rigidity (Budapest, 1999). 182Google Scholar
Guest, S. D. (2006). The stiffness of prestressed frameworks: a unifying approach. International Journal of Solids and Structures, 43(3–4):842854. 115Google Scholar
Guest, S. D. (2011). The stiffness of tensegrity structures. IMA Journal of Applied Mathematics, 76(1):5766. 116Google Scholar
Haas, R., Orden, D., Rote, G., Santos, F., Servatius, B., Servatius, H., Souvaine, D., Streinu, I., and Whiteley, W. (2005). Planar minimally rigid graphs and pseudo-triangulations. Comput. Geom., 31(1-2):3161. 175Google Scholar
Hatcher, A. (2002). Algebraic Topology. Cambridge University Press, Cambridge. 50Google Scholar
Hendrickson, B. (1995). The molecule problem: exploiting structure in global optimization. SIAM J. Optim., 5(4):835857. 151Google Scholar
Henneberg, L. (1911). Die graphische Statik der starren Systeme. Leipzig. 26Google Scholar
Herder, J. L. (2001). Energy-Free Systems. Theory, Conception and Design of Statically Balanced Spring Mechanisms. PhD thesis, Delft University of Technology. 80Google Scholar
Heyman, J. (1998). Structural Analysis: a Historical Approach. Cambridge University Press. 78Google Scholar
Hilbert, D. and Cohn-Vossen, S. (1981). Naglyadnaya geometriya. “Nauka”, Moscow, third edition. Translated from the German by S. A. Kamenetskiĭ. 100Google Scholar
Izmestiev, I. and Schlenker, J.-M. (2010). Infinitesimal rigidity of polyhedra with vertices in convex position. Pacific J. Math., 248(1):171190. 54Google Scholar
Jackson, B. and Jordán, T. (2005). Connected rigidity matroids and unique realizations of graphs. J. Combin. Theory Ser. B, 94(1):129. 5, 152Google Scholar
Jackson, B. and Jordán, T. (2010). Globally rigid circuits of the direction-length rigidity matroid. J. Combin. Theory Ser. B, 100(1):122. 152Google Scholar
Jackson, B., Jordán, T., and Szabadka, Z. (2006). Globally linked pairs of vertices in equivalent realizations of graphs. Discrete Comput. Geom., 35(3):493512. 152Google Scholar
Jackson, B., Servatius, B., and Servatius, H. (2007). The 2-dimensional rigidity of certain families of graphs. J. Graph Theory, 54(2):154166. 152Google Scholar
Jacobs, D. J. and Hendrickson, B. (1997). An algorithm for two-dimensional rigidity percolation: the pebble game. J. Comput. Phys., 137(2):346365. 5, 143, 145Google Scholar
Jacobs, D. J. and Thorpe, M. F. (1996). Generic rigidity percolation in two dimensions. Physical Review E, 53(4):36823693. 5, 153Google Scholar
James, G. and Liebeck, M. (2001). Representations and Characters of Groups. Cambridge University Press. 6, 87, 187, 197, 200, 203, 206Google Scholar
Jordán, T., Király, C., and Tanigawa, S.-i. (2014). Generic global rigidity of body-hinge frameworks. Technical Report TR-2014-06, Egerváry Research Group, Budapest. www.cs.elte.hu/egres/www/tr-14-06.html. 152Google Scholar
Jordán, T. and Szabadka, Z. (2009). Operations preserving the global rigidity of graphs and frameworks in the plane. Comput. Geom., 42(6-7):511521. 151Google Scholar
Juan, S. H. and Tur, J. M. M. (2008). Tensegrity frameworks: Static analysis review. Mechanism and Machine Theory, 43(7):859881. 3Google Scholar
Kangwai, R. D. and Guest, S. D. (1999). Detection of finite mechanisms in symmetric structures. International Journal of Solids and Structures, 36(36):55075527. 231, 232Google Scholar
Kangwai, R. D. and Guest, S. D. (2000). Symmetry-adapted equilibrium matrices. International Journal of Solids and Structures, 37(11):15251548. 187, 231Google Scholar
Kangwai, R. D., Guest, S. D., and Pellegrino, S. (1999). An introduction to the analysis of symmetric structures. Computers & Structures, 71(6):671688. 187Google Scholar
Katoh, N. and Tanigawa, S.-i. (2011). A proof of the molecular conjecture. Discrete Comput. Geom., 45(4):647700. 153Google Scholar
Kirby, R. (1995). Problems in Low-Dimensional Topology. Website. Problem 5.18 in http://math.berkeley.edu/∼kirby/. 170Google Scholar
Krantz, S. G. and Parks, H. R. (2002). The implicit function theorem. Birkhäuser Boston Inc., Boston, MA. History, theory, and applications. 48Google Scholar
Kuznetsov, E. N. (1991). Underconstrained Structural Systems. Springer-Verlag, New York. 127CrossRefGoogle Scholar
Lakatos, I. (1976). Proofs and Refutations. Cambridge University Press, Cambridge. The logic of mathematical discovery, Edited by John Worrall and Elie Zahar. 50Google Scholar
Laman, G. (1970). On graphs and rigidity of plane skeletal structures. J. Engrg. Math., 4:331340. 140Google Scholar
Levy, M. and Salvadori, M. (2002). Why Buildings Fall Down–How Structures Fail. W. W. Norton & Company, Castle House, 75/76 Wells Street, London WIT 3QT. 2Google Scholar
Livesley, R. K. (1964). Matrix Methods of Structural Analysis (Commonwealth Library) [Paperback]. Pergamon Press. 6Google Scholar
Lovász, L. (2001). Steinitz representations of polyhedra and the Colin de Verdière number. J. Combin. Theory Ser. B, 82(2):223236. 108Google Scholar
Lovász, L., Saks, M., and Schrijver, A. (1989). Orthogonal representations and connectivity of graphs. Linear Algebra Appl., 114/115:439454. 150Google Scholar
Lovász, L., Saks, M., and Schrijver, A. (2000). A correction: “Orthogonal representations and connectivity of graphs” [Linear Algebra Appl. 114/115 (1989), 439–454; MR0986889 (90k:05095)]. Linear Algebra Appl., 313(1-3):101105. 150Google Scholar
Lovász, L. and Yemini, Y. (1982). On generic rigidity in the plane. SIAM J. Algebraic Discrete Methods, 3(1):9198. 145Google Scholar
Maxwell, J. C. (1864a). On reciprocal figures and diagrams of forces. Philosophical Magazine Series 4, (27):250261. 37Google Scholar
Maxwell, J. C. (1864b). On the calculation of the equilibrium and stiffness of frames. Philosophical Magazine, 27:294299. 12, 36, 209Google Scholar
Maxwell, J. C. (1869–1872). On reciprocal figures, frames and diagrams of forces. Trans Royal Soc. Edinburgh, (26):1–40. 37, 38Google Scholar
Menshikov, M. V., Rybnikov, K. A., and Volkov, S. E. (2002). The loss of tension in an infinite membrane with holes distributed according to a Poisson law. Adv. in Appl. Probab., 34(2):292312. 131Google Scholar
Motro, R. (2003). Tensegrity: Structural Systems for the Future. A Butterworth-Heinemann Title. 3Google Scholar
Owen, J. C. and Power, S. C. (2010). Frameworks symmetry and rigidity. International Journal of Computational Geometry & Applications, 20(6):723750. 231Google Scholar
Pandia Raj, R. and Guest, S. D. (2006). Using symmetry for tensegrity form-finding. Journal of the International Association for Shell and Spatial Structures, 47(3): 245252. xiiGoogle Scholar
Parkes, E. W. (1965). Braced Frameworks: An Introduction to the Theory of Structures (Commonwealth and International Library. Structures and Solid Body Mechanics Division) [Hardcover]. Pergamon. 6Google Scholar
Pellegrino, S. (1993). Structural computations with the singular value decomposition of the equilibrium matrix. International Journal of Solids and Structures, 30(21): 30253035. 209CrossRefGoogle Scholar
Pellegrino, S. and Calladine, C. R. (1986). Matrix analysis of statically and kinematically indeterminate frameworks. International Journal of Solids and Structures, 22(4): 409428. 116Google Scholar
Penne, R. and Crapo, H. (2007). A general graphical procedure for finding motion centers of planar mechanisms. Adv. in Appl. Math., 38(4):419444. 57Google Scholar
Petroski, H. (2008). Design Paradigms–Case Histories of Error and Judgment in Engineering. W. W. Norton & Company, Cambridge University Press. 2Google Scholar
Pollaczek-Geiringer, H. (1927). über die gliederung ebener fachwerke. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 7(1):5872. 140Google Scholar
Pollaczek-Geiringer, H. (1932). Zur gliederung räumlicher fachwerke. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 12(6):369376. 140Google Scholar
Pugh, A. (1976). Introduction to Tensegrity [Paperback]. University of California Press. 3Google Scholar
Ramana, M. V. (1997). An exact duality theory for semidefinite programming and its complexity implications. Math. Programming, 77(2, Ser. B):129162. Semidefinite programming. 121CrossRefGoogle Scholar
Ramar, P. R. and Guest, S. D. (2011). Minimizing the self-weight deflection of tensegrity structures. In Proceedings of IABSE-IASS 2011: Taller, Stronger, Lighter. xiiGoogle Scholar
Rankine, W. J. M. (1858). A Manual of Applied Mechanics. Richard Griffin and Company, Publishers to the University of Glasgow, London and Glasgow. 37Google Scholar
Roth, B. (1980). Questions on the rigidity of structures. Structural Topology, 4:6771. Special issue on research objectives and open problems, Part 1. 129Google Scholar
Roth, B. and Whiteley, W. (1981). Tensegrity frameworks. Trans. Amer. Math. Soc., 265(2):419446. 71Google Scholar
Sabitov, I. K. (1998). The volume as a metric invariant of polyhedra. Discrete Comput. Geom., 20(4):405425. 170Google Scholar
Schek, H. J. (1974). The force density method for form finding and computation of general networks. Computer Methods in Applied Mechanics and Engineering, 33:115134. 28, 88Google Scholar
Schenk, M., Guest, S. D., and Herder, J. L. (2007). Zero stiffness tensegrity structures. International Journal of Solids and Structures, 44:65696583. 80Google Scholar
Schoenberg, I. J. and Zaremba, S. C. (1967). On Cauchy’s lemma concerning convex polygons. Canad. J. Math., 19:10621071. 106Google Scholar
Schulze, B. (2010a). Block-diagonalized rigidity matrices of symmetric frameworks and applications. Contributions to Algebra and Geometry, 51(2):427466. 231Google Scholar
Schulze, B. (2010b). Symmetric laman theorems for the groups c2 and cs . Electronic Journal of Combinatorics, 17(1). 229CrossRefGoogle Scholar
Schulze, B. (2010c). Symmetric versions of Laman’s theorem. Discrete & Computational Geometry, 44(4):946972. 229Google Scholar
Schulze, B. (2010d). Symmetry as a sufficient condition for a finite flex. SIAM Journal on Discrete Mathematics, 24(4):12911312. 231Google Scholar
Schulze, B. and Tanigawa, S.-i. (2015). Infinitesimal rigidity of symmetric bar-joint frameworks. SIAM Journal on Discrete Mathematics, 29(3):1259–1–286. 231Google Scholar
Servatius, B., Shai, O., and Whiteley, W. (2010). Geometric properties of Assur graphs. European J. Combin., 31(4):11051120. 60Google Scholar
Skelton, R. E. and de Oliveira, M. C. (2010). Tensegrity Systems [Paperback]. Springer. 3Google Scholar
Snelson, K. (1948). www.kennethsnelson.net/. 3Google Scholar
Snelson, K. (2009). Forces made Visible. Hard Press Editions, Lenox, MA. 110Google Scholar
Spivak, M. (1965). Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus. W. A. Benjamin, Inc., New York-Amsterdam. 48, 137Google Scholar
Spivak, M. (1979). A Comprehensive Introduction to Differential Geometry. Vol. V. Publish or Perish Inc., Wilmington, Del., second edition. 14Google Scholar
Stachel, H. (1992). Zwei bemerkenswerte bewegliche Strukturen. J. Geom., 43(1-2):1421. 182Google Scholar
Stoker, J. J. (1968). Geometrical problems concerning polyhedra in the large. Comm. Pure Appl. Math., 21:119168. 54Google Scholar
Strang, G. (2009). Introduction to Linear Algebra. Wellesley-Cambridge Press, 4th edition edition. 6, 203, 206, 208Google Scholar
Streinu, I. (2005). Pseudo-triangulations, rigidity and motion planning. Discrete Comput. Geom., 34(4):587635. 173Google Scholar
Sturmfels, B. and Whiteley, W. (1991). On the synthetic factorization of projectively invariant polynomials. J. Symbolic Comput., 11(5-6):439453. Invariant-theoretic algorithms in geometry (Minneapolis, MN, 1987). 57Google Scholar
Sullivan, D. (1971). Combinatorial invariants of analytic spaces. In Proceedings of Liverpool Singularities—Symposium, I (1969/70), pages 165168, Berlin. Springer. 176Google Scholar
Tanigawa, S.-i. (2015). Sufficient conditions for the global rigidity of graphs. J. Combin. Theory Ser. B, 113:123140. 152Google Scholar
Tarnai, T. (1980). Simultaneous static and kinematic indeterminacy of space trusses with cyclic symmetry. International Journal of Solids and Structures, 16:347359. 232Google Scholar
Tarnai, T. and Gáspár, Z. (1983). Improved packing of equal circles on a sphere and rigidity of its graph. Math. Proc. Cambridge Philos. Soc., 93(2):191218. 76Google Scholar
Tay, T.-S. (1984). Rigidity of multigraphs. I. Linking rigid bodies in n-space. J. Combin. Theory Ser. B, 36(1):95112. 153Google Scholar
Tay, T.-S. and Whiteley, W. (1984). Recent advances in the generic rigidity of structures. Structural Topology, (9):31–38. Dual French-English text. 153Google Scholar
Tay, T.-S. and Whiteley, W. (1985). Generating isostatic frameworks. Structural Topology, (11):21–69. Dual French–English text. 153Google Scholar
Tibert, A. G. and Pellegrino, S. (2003). Review of form-finding methods for tensegrity structures. International Journal of Space Structures, 18:209223. 88Google Scholar
Tutte, W. T. (1963). How to draw a graph. Proc. London Math. Soc. (3), 13:743767. 85Google Scholar
Vandenberghe, L. and Boyd, S. (1996). Semidefinite programming. SIAM Rev., 38(1): 4995. 121Google Scholar
White, N. L. and Whiteley, W. (1983). The algebraic geometry of stresses in frameworks. SIAM J. Algebraic Discrete Methods, 4(4):481511. 135Google Scholar
Whiteley, W. (1982). Motions and stresses of projected polyhedra. Structural Topology, (7):13–38. With a French translation. 39Google Scholar
Whiteley, W. (1984). Infinitesimal motions of a bipartite framework. Pacific J. Math., 110(1):233255. 58Google Scholar
Whiteley, W. (1988a). Infinitesimally rigid polyhedra. II. Modified spherical frameworks. Trans. Amer. Math. Soc., 306(1):115139. 182Google Scholar
Whiteley, W. (1988b). Problems on the realizability and rigidity of polyhedra. In Shaping space (Northampton, Mass., 1984), Design Sci. Collect., pages 256257, 260. Birkhäuser Boston, Boston, MA. 146, 147Google Scholar
Whiteley, W. (1989). Rigidity and polarity. II. Weaving lines and tensegrity frameworks. Geom. Dedicata, 30(3):255279. 102Google Scholar
Wunderlich, W. (1976). On deformable nine-bar linkages with six triple joints. Indagationes Mathematicae (Proceedings), 79(3):257262. 159Google Scholar
Zhang, J. Y., Guest, S. D., Connelly, R., and Ohsaki, M. (2010). Dihedral ‘star’ tensegrity structures. International Journal of Solids and Structures, 47(1):19. 266, 268Google Scholar
Zhang, J. Y. and Ohsaki, M. (2007). Stability conditions for tensegrity structures. Internat. J. Solids Structures, 44(11-12):38753886. 268Google Scholar
Zhang, J. Y. and Ohsaki, M. (2012). Self-equilibrium and stability of regular truncated tetrahedral tensegrity structures. J. Mech. Phys. Solids, 60(10):17571770. 268Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Robert Connelly, Cornell University, New York, Simon D. Guest, University of Cambridge
  • Book: Frameworks, Tensegrities, and Symmetry
  • Online publication: 13 January 2022
  • Chapter DOI: https://doi.org/10.1017/9780511843297.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Robert Connelly, Cornell University, New York, Simon D. Guest, University of Cambridge
  • Book: Frameworks, Tensegrities, and Symmetry
  • Online publication: 13 January 2022
  • Chapter DOI: https://doi.org/10.1017/9780511843297.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Robert Connelly, Cornell University, New York, Simon D. Guest, University of Cambridge
  • Book: Frameworks, Tensegrities, and Symmetry
  • Online publication: 13 January 2022
  • Chapter DOI: https://doi.org/10.1017/9780511843297.016
Available formats
×