Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T06:25:29.955Z Has data issue: false hasContentIssue false

4 - Atoms with one and two active electrons in strong laser fields

Published online by Cambridge University Press:  05 January 2013

I. A. Ivanov
Affiliation:
The Australian National University
A. S. Kheifets
Affiliation:
The Australian National University
Colm T. Whelan
Affiliation:
Old Dominion University, Virginia
Get access

Summary

Introduction

Recent years have witnessed a remarkable progress in high-power short laser pulse generation. Modern conventional and free-electron laser (FEL) systems provide peak light intensities of the order of 1020 W cm−2 or above in pulses in femtosecond and sub-femtosecond regimes. The field strength at these intensities is a hundred times the Coulomb field, binding the ground-state electron in the hydrogen atom. These extreme photon densities allow highly non-linear multiphoton processes, such as above-threshold ionization (ATI), high harmonic generation (HHG), laser-induced tunneling, multiple ionization and others, where up to a few hundred photons can be absorbed from the laser field. In parallel with these experimental developments, massive efforts have been undertaken to unveil the precise physical mechanisms behind multiphoton ionization (MPI) and other strong-field ionization phenomena. It was shown convincingly that multiple ionization of atoms by an ultrashort intense laser pulse is a process in which the highly non-linear interaction between the electrons and the external field is closely interrelated with the fewbody correlated dynamics [1]. A theoretical description of such processes requires development of new theoretical methods to simultaneously account for the field nonlinearity and the long-ranged Coulomb interaction between the particles.

In this chapter, we review our recent theoretical work in which we develop explicitly time-dependent, non-perturbative methods to treat MPI processes in many-electron atoms. These methods are based on numerical solution of the time-dependent Schrödinger equation (TDSE) for a target atom or molecule in the presence of an electromagnetic and/or static electric field. Projecting this solution onto final field-free target states gives us probabilities and cross sections for various ionization channels.

Type
Chapter
Information
Fragmentation Processes
Topics in Atomic and Molecular Physics
, pp. 98 - 115
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A., Becker, R., Dörner and R., Moshammer, J. Phys.B, 38, S753 (2005).
[2] D. A., Varshalovich, A. N., Moskalev, and V. K., Khersonskii, Quantum Theory of Angular Momentum (Singapore: World Scientific, 1988).Google Scholar
[3] E., Cormier and P., Lambropoulos, J. Phys.B, 29, 1667 (1996).
[4] W., Magnus, Comm. Pure and Appl. Math., 7, 649 (1954).
[5] T. J., Park and J. C., Light, J. Chem. Phys., 85, 5870 (1986).
[6] D., Dundas, Phys. Rev.A, 65, 023408 (2002).
[7] M., Nurhuda and F. H. M., Faisal, Phys. Rev.A, 60, 3125 (1999).
[8] H., Hasegawa, E. J., Takahashi, Y., Nabekawa, K. L., Ishikawa and K., Midorikawa, Phys. Rev.A, 71, 023407 (2005).
[9] Y., Nabekawa, H., Hasegawa, E. J., Takahashi and K., Midorikawa, Phys. Rev. Lett., 94, 043001 (2005).
[10] A. A., Sorokin, M., Wellhöfer, S.V., Bobashev, K., Tiedtke, and M., Richter, Phys. Rev.A, 75, 051402 (2007).
[11] P., Antoine et al., Phys. Rev.A, 78, 023415 (2008).
[12] I. A., Ivanov and A. S., Kheifets, Phys. Rev.A, 75, 033411 (2007).
[13] I., Bray, Phys. Rev.A, 49, 1066 (1994).
[14] I. A., Ivanov and A. S., Kheifets, Phys. Rev.A, 74, 042710 (2006).
[15] I., Bray and A. T., Stelbovics, Adv. Atom. Mol. Phys., 35, 209 (1995).
[16] D. A., Horner, F., Morales, T. N., Rescigno, F., Martin, and C. W., McCurdy, Phys. Rev.A, 76, 030701(R) (2007).
[17] J., Feist et al., Phys. Rev.A, 77, 043420 (2008).
[18] X., Guan, K., Bartschat and B. I., Schneider, Phys. Rev.A, 77, 043421 (2008).
[19] I. A., Ivanov, A. S., Kheifets and J., Dubau, Eur. Phys. J.D, 61, 563 (2011).
[20] J. S., Briggs and V., Schmidt, J. Phys.B, 33, R1 (2000).
[21] L., Avaldi and A., Huetz, J. Phys.B, 38, S861 (2005).
[22] I. A., Ivanov and A. S., Kheifets, Eur. Phys. J.D, 38, 471 (2006).
[23] I. A., Ivanov and A. S., Kheifets, Phys. Rev.A, 75, 062701 (2007).
[24] L. V., Keldysh, Sov. Phys. -JETP, 20, 1307 (1965).
[25] P. B., Corkum, Phys. Rev. Lett., 71, 1994 (1993).
[26] M., Schuricke et al., Phys. Rev.A, 83, 023413 (2011).
[27] A., Sarsa, F. J., Gálvez and E., Buendia, Atomic Data and Nuclear Data Tables, 88, 163 (2004).
[28] M. G., Pullen et al., Opt. Lett., 36, 3660 (2011).
[29] P. B., Corkum, Phys. Rev. Lett., 71, 1994 (1993).
[30] P. M., Paul et al., Phys. Rev. Lett., 94, 113906 (2005).
[31] I. A., Ivanov and A. S., Kheifets, J. Phys.B, 41, 115603 (2008).
[32] I. A., Ivanov and A. S., Kheifets, J. Phys.B, 42, 145601 (2009).
[33] I. A., Ivanov and A. S., Kheifets, Phys. Rev.A, 79, 053827 (2009).
[34] J. L., Krause, K. J., Schafer and K. C., Kulander, Phys. Rev.A, 45, 4998 (1992).
[35] I. A., Ivanov and A. S., Kheifets, Phys. Rev.A, 80, 023809 (2009).
[36] M., Schultze et al., Science, 328, 1658 (2010).
[37] K., Klünder et al., Phys. Rev. Lett., 106, 143002 (2011).
[38] A. S., Kheifets and I. A., Ivanov, Phys. Rev. Lett., 105, 233002 (2010).
[39] A. S., Kheifets, I. A., Ivanov and I., Bray, J. Phys.B, 44, 101003 (2011).
[40] L., Rosenberg, Phys. Rev.A, 52, 3824 (1995).

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×