Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T16:51:59.430Z Has data issue: false hasContentIssue false

13 - Further properties, distributions, and the fundamental theorem

Published online by Cambridge University Press:  05 June 2012

R. J. Beerends
Affiliation:
Ministry of Defence, The Hague
H. G. ter Morsche
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
J. C. van den Berg
Affiliation:
Agricultural University, Wageningen, The Netherlands
E. M. van de Vrie
Affiliation:
Open Universiteit
Get access

Summary

INTRODUCTION

In the first three sections of this chapter the number of properties of the Laplace transform will be extended even further. We start in section 13.1 with the treatment of the by now well-known convolution product. As for the Fourier transform, the convolution product is transformed into an ordinary product by the Laplace transform.

In section 13.2 we treat two theorems that have not been encountered earlier in the Fourier transform: the so-called initial and final value theorems for the Laplace transform. The initial value theorem relates the ‘initial value’ f(0+) of a function f(t) to the behaviour of the Laplace transform F(s) for s → ∞. Similarly, the final value theorem relates the ‘final value’ limt→∞f(t) to the behaviour of F(s) for s → 0. Hence, the function F(s) can provide information about the behaviour of the original function f(t) shortly after switching on (the value f(0+)) and ‘after a considerable amount of time’ (the value limt→∞f(t)).

In section 13.3 we will see how the Laplace transform of a periodic function can be determined. It will turn out that this is closely related to the Laplace transform of the function which arises when we limit the periodic function to one period.

In order to determine the Laplace transform of a periodic function, it is not necessary to turn to the theory of distributions. This is in contrast to the Fourier transform (see section 9.1.2).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×