Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T22:39:29.596Z Has data issue: false hasContentIssue false

16 - The discrete Fourier transform

Published online by Cambridge University Press:  05 June 2012

R. J. Beerends
Affiliation:
Ministry of Defence, The Hague
H. G. ter Morsche
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
J. C. van den Berg
Affiliation:
Agricultural University, Wageningen, The Netherlands
E. M. van de Vrie
Affiliation:
Open Universiteit
Get access

Summary

INTRODUCTION

From parts 2 and 3 it is obvious that Fourier series and Fourier integrals play an important role in the analysis of continuous-time signals. In many cases we are forced to calculate the Fourier coefficients or the Fourier integral on the basis of a given sampling of the signal. We are therefore interested in a transformation that will transform a discrete-time signal, in this case a sampling, directly into the frequency domain. In general, such transformations are called discrete transforms. A particularly important discrete transform is the so-called discrete Fourier transform, abbreviated as DFT, and it will be the central theme of the present chapter. It arises naturally if one approximates the Fourier coefficients of a periodic continuous-time signal numerically using the trapezoidal rule. This is the subject of the first section of this chapter, which also introduces the DFT as a transform defined for periodic discrete-time signals. In the next section we introduce the inverse DFT in the so-called fundamental theorem of the discrete Fourier transform, which very much resembles the fundamental theorem of Fourier series. In the remaining sections, all kinds of properties of the DFT are treated, and again we will encounter many similarities with Fourier series and Fourier integrals. For example, one can formulate a Parseval theorem for periodic discrete-time signals. Following the introduction of the so-called cyclical convolution we can derive convolution theorems, which look very similar to the ones derived for continuous-time signals.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×