Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T22:12:33.816Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  12 December 2024

Richard Montgomery
Affiliation:
University of California, Santa Cruz
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarseth, S. (2003) Gravitational N-Body Simulations, Cambridge Monographs on Mathematical Physics, Cambridge University Press.Google Scholar
Abraham, R. and Marsden, J. E. (1978) Foundations of Mechanics, 2nd ed., Benjamin/Cummings.Google Scholar
Albouy, A. (2002) Lectures on the two-body problem. In Classical and Celestial Mechanics. The Recife Lectures, Cabral, H. and Diacu, F. (eds.), Princeton University Press, pp. 63116.Google Scholar
Albouy, A. (1996) The symmetric central configurations of four equal masses. Contemp. Math. 198, 131136.CrossRefGoogle Scholar
Albouy, A. and Dullin, R. (2020) Relative equilibria of the 3-body problem in4, Journal of Geometric Mechanics 12, 323341. www.aimsciences.org/article/doi/10.3934/jgm.2020012.Google Scholar
Albouy, A., Cabral, H., and Santos, A. (2012) Some problems on the classical N-body problem. Celest. Mech. Dyn. Astron. 113, 369375.CrossRefGoogle Scholar
Albouy, A. and Kaloshin, V. (2012) Finiteness of central configurations of five bodies in the plane. Ann. Math. 176, 535588.CrossRefGoogle Scholar
Albouy, A. and Chenciner, A. (1998) Le probléme des N corps et les distances mutuelles. Invent. Math. 131, 151184.CrossRefGoogle Scholar
Albouy, A. and Zhao, L. (2022) Darboux Inversions of the Kepler Problem. Reg. Chaotic Dyn. 27, no. 3, 253280.CrossRefGoogle Scholar
Arnol’d, V. I. (1983) Singularities of systems of rays. Uspehy Math. Nauk 38, no. 2, 77147.Google Scholar
Arnol’d, V. I. (1989) Mathematical Methods in Classical Mechanics, translated by Weinstein, A. and Vogtman, K., 2nd ed., Springer-Verlag.CrossRefGoogle Scholar
Arnol’d, V.I. (1990), Huyghens & Barrow, Newton & Hooke, Birkhauser Verlag.CrossRefGoogle Scholar
Aubin, T. (1982) Nonlinear Analysis on Manifolds, Monge-Ampére Equations, Grundlehren der math. 252, Springer-Verlag.Google Scholar
Bahri, A. and Rabinowitz, P. (1991) Periodic solutions of hamiltonian systems of 3-body type. Annales de l’I. H. P. Analyse non lineaire 8, no. 6, 561649.Google Scholar
Benettin, G., Fassò, F., and Guzzo, M. (1998) Nekhoroshev-stability of L4 and L5 in the spatial restricted three-body problem. Reg. Chaotic Dyn. 3, no. 3, 5672.CrossRefGoogle Scholar
Bernshtein, D.N. (1975) The number of roots of a system of equations. Fun. Anal. Appl. 9, 183185.CrossRefGoogle Scholar
Bierstone, E. (1980) The Structure of Orbit Spaces and the Singularities of Equivariant Mappings, Instituto de Matemática Pura e Aplicada.Google Scholar
Binney, J. and Tremaine, S. (1987) Galactic Dynamics, Princeton University Press.Google Scholar
Birkhoff, G. D. (1927) Dynamical Systems, American Mathematical Society.Google Scholar
Birman, J. (1974) Braids, Links, and Mapping Class Groups, Princeton University Press.Google Scholar
Borisov, A., Mamaev, I., and Kilin, A. (2004) Two-body problem on a sphere. Reduction, stochasticity, periodic orbits. Reg. Chaotic Dyn. 9, no. 3, 265279.CrossRefGoogle Scholar
Broucke, R. (1975) On relative periodic solutions of the planar general three-body problem. Celest. Mech. 12, 439462.CrossRefGoogle Scholar
Burago, D., Burago, Y., and Ivanov, S. (2001) A Course in Metric Geometry, Graduate Studies in Mathematics 33, American Mathematical Society.Google Scholar
Chandrasekhar, S. (1995) Newton’s Principia: For the Common Reader, Oxford University Press.CrossRefGoogle Scholar
Chazy, J. (1922) Sur l'allure du mouvement dans le problème des trois corps quand le temps croît indéfiniment. Ann. Sci. École Norm. Sup. 39, 29130.CrossRefGoogle Scholar
Chen, K-C. (2003) Variational methods on periodic and quasi-periodic solutions for the N-body problem. Ergod. Th. Dyn. Sys. 23, 16911715.CrossRefGoogle Scholar
Chen, K-C., Ouyang, T., and Xia, Z. (2012) Action-minimizing periodic and quasi-periodic solutions in the N-body problem. Math. Res. Lett. 19, no. 02, 483497.CrossRefGoogle Scholar
Chen, Y. Q., Glover, H. H., and Jensen, C. A. (2008) The center of some braid groups and the Farrell cohomology of certain pure mapping class groups. Algebraic and Geometric Topology 7, 19872006.CrossRefGoogle Scholar
Chenciner, A. (1997) À l'infini en temps fini. In Seminaire Bourbaki, 1996/97, 323353.Google Scholar
Chenciner, A. (2002) Action minimizing solutions of the Newtonian N -body problem: From homology to symmetry. International Congress of Mathematicians.CrossRefGoogle Scholar
Chenciner, A. (2011) The Lagrange reduction of the N-body problem, a survey. arXiv:1111.1334.Google Scholar
Chenciner, A. and Jimeńez-Pérez, H. (2013) Angular momentum and Horn’s problem. Moscow Math. Jour. 13, 612630.Google Scholar
Chenciner, A. and Montgomery, R. (2000) A remarkable periodic solution of the three body problem in the case of equal masses. Ann. Math. 152, 881901.CrossRefGoogle Scholar
Chenciner, A. and Venturelli, A. (2000) Minima de l’intégrale d’action du problème de 4 corps de masses égales dans R3: orbites hip-hop. Cel. Mech. Dyn. Ast. 77, 139152.CrossRefGoogle Scholar
Chenciner, A., Gerver, J., Montgomery, R., and Simó, C. (2002) Simple choreographies of N bodies: A preliminary study. In Geometry, Mechanics, and Dynamics, Newton, P., Holmes, P., and Weinstein, A. (eds.), Springer-Verlag.Google Scholar
Chierchia, L. and Pinzari, G., (2011) The planetary N-body problem: Symplectic foliation, reductions and invariant tori. Invent. Math. 186, no. 1, 177.CrossRefGoogle Scholar
Chirikov, B.V. and Shepelyansky, D. (2008) Chirikov Standard Map. Scholarpedia 3, no. 3, 3550. www.scholarpedia.org/article/Chirikov_standard_map.CrossRefGoogle Scholar
Clarke, A., Féjoz, J., and Guardia, M. (2022) Why are inner planets not inclined? arXiv:2210.11311.Google Scholar
Deprit, A. and Deprit-Bartholome, A. (1967) Stability of the triangular Lagrangian points. Astron. J. 72, 173179.CrossRefGoogle Scholar
Derezínski, J. and Gérard, C. (1997) Scattering Theory of Classical and Quantum N? Particle Systems, Texts and Monographs in Physics, Springer.Google Scholar
Devaney, R. (1980) Triple collision in the planar isosceles three-body problem. Invent. Math. 60, 249267.CrossRefGoogle Scholar
Diacu, F. (2013) The curved N-body problem: Risks and rewards. Math. Intelligencer 35, no. 3, 2433.CrossRefGoogle Scholar
Diacu, F., Perez-Chavela, and E., Santoprete, M. (2012) The n-body problem in spaces of constant curvature. J. Nonlinear Sci. 22, no. 2, 247266. arXiv:0807.1747v6CrossRefGoogle Scholar
Dirac, P. A. M. (1950) Generalized Hamiltonian dynamics. Canad. J. Math. 2, 129148.CrossRefGoogle Scholar
Duignan, N. and Dullin, H. (2021) On the C8/3-regularisation of simultaneous binary collisions in the planar four-body problem. Nonlinearity 34, no. 7, 49444982.CrossRefGoogle Scholar
Duignan, N., Moeckel, R., Montgomery, R., and Yu, G. (2020) Chazy-type asymptotics and hyperbolic scattering for the n-body problem. Archive Rat. Mech. Anal. 238, no. 1, 255297.CrossRefGoogle Scholar
Duistermaat, J. J. (2004) Symplectic Geometry, Course Notes, Summer Course, Utrecht University.Google Scholar
Dullin, H. and Scheurle, J. (2020) Symmetry reduction of the 3-body problem in R4. J. Geom. Mech. 12, no. 3, 377394.Google Scholar
Dumas, H. S. (2014) The KAM Story: A Friendly Introduction to the Content, History, and Significance of Classical Kolmogorov-Arnold-Moser Theory, World Scientific.CrossRefGoogle Scholar
Easton, R. (1971) Regularization of vector fields by surgery. J. Diff. Eq. 10, no. 1, 9299.CrossRefGoogle Scholar
Easton, R. (1971) Some topology of the 3-body problem. J. Diff. Eq. 10, 371377CrossRefGoogle Scholar
Einstein, A. (1945) The Meaning of Relativity, 2nd ed., Princeton University Press.CrossRefGoogle Scholar
Elbialy, M. S. (1990) Collision singularities in celestial mechanics. SIAM J. Math. Anal. 21, 15631593.CrossRefGoogle Scholar
Euler, L. (1767) De motu rectilineo trium corporum se mutuo attrahentium. Novi Commentarti academiae scientiarum Petropolitanae 11, 144151.Google Scholar
Fasso, F. Guzzo, M., and Benettin, G. (1998) Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems. Comm. Math. Phys. 197, 347360.Google Scholar
Fathi, A. (2014) Weak KAM theory: The connection between Aubry–Mather theory and viscosity solutions of the Hamilton–Jacobi equation. Proc. International Congress of Mathematicians III, 597621.Google Scholar
Féjoz, J. (2002) Quasi periodic solutions in the planar three-body problem. J. Diff. Eq. 183, no. 2, 303341.CrossRefGoogle Scholar
Féjoz, J. (2004) Démonstration du “théorème d’Arnol’d” sur la stabilité du système planétaire (d’après Herman). Erg. Th. Dyn. Sys. 24, no. 5, 15211582.CrossRefGoogle Scholar
Féjoz, J., Knauf, A., and Montgomery, R. (2017) Lagrangian relations and linear point billiards. Nonlinearity 30, no. 4, 1326.CrossRefGoogle Scholar
Féjoz, J, Knauf, A. and Montgomery, R. (2021) Classical N-body scattering with long-range potentials. Nonlinearity 34, no. 11, 80178054.CrossRefGoogle Scholar
Ferrario, D. and Terracini, S. (2004) On the existence of collisionless equivariant minimizers for the classical n-body problem. Invent. Math. 155, no. 2, 305362.CrossRefGoogle Scholar
Feynman, R. P. (1942) The principle of least action in quantum mechanics. PhD thesis, Princeton University. Published as Feynman’s Thesis: A New Approach to Quantum Theory, Brown, L. M. (ed.), World Scientific (2005).Google Scholar
Feynman, R. and Wheeler, J. (1949) Classical electrodynamics in terms of direct interparticle action. Rev. Mod. Phys. 21, no. 3, 425433.Google Scholar
Feynman, R., Leighton, R.B., and Sands, M. (1963) The Feynman Lectures on Physics, Addison-Wesley.Google Scholar
Fusco, G., Gronchi, G. F., and Negrini, P. (2011) Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem. Invent. Math. 185, 283332.CrossRefGoogle Scholar
Gelfand, I. and Fomin, S. (2000) Calculus of Variations, Dover.Google Scholar
Gerver, J., Huang, G., and Xue, J. (2022) A new mechanism for noncollision singularities. arXiv:2202.08534.Google Scholar
Glimm, J. (1964) Formal stability of Hamiltonian systems. Comm. Pure Appl. Math. XVI, 509526.CrossRefGoogle Scholar
Gordon, W. (1975) Conservative dynamical systems involving strong forces. Trans. AMS 204, 113135.CrossRefGoogle Scholar
Gordon, W. (1977) A minimizing property of Keplerian orbits. Am. J. Math. 99, no. 5, 961971.CrossRefGoogle Scholar
Grandati, Y., Bérard, A., and Mohrbach, H. (2008) Bohlin–Arnold–Vassiliev’s duality and conserved quantities. https://arxiv.org/pdf/0803.2610.pdf.Google Scholar
Guardia, M., Martín, P., Paradela, J., Seare, T. M., (2022) Hyperbolic dynamics and oscillatory motions in the 3 body problem. arXiv:2207.14351.Google Scholar
Hale, J. (1969) Ordinary Differential Equations, Wiley-Interscience.Google Scholar
Hampton, M. (2019) Planar N-body central configurations with a homogeneous potential. Celest. Mech. Dyn. Astr. 131, 20. https://doi.org/10.1007/s10569-019-9898-0.CrossRefGoogle Scholar
Hampton, M. and Moeckel, R. (2006) Finiteness of relative equilibria of the four-body problem. Invent. Math. 163, 289312.CrossRefGoogle Scholar
Hansen, V. L. (1989) Braids and Coverings. London Mathematical Society Student Texts 18, Cambridge University Press.Google Scholar
Heggie, D. (1974) A global regularisation of the gravitational N-body problem. Celest. Mech. 10, 217241.CrossRefGoogle Scholar
Heggie, D. (2000) A new outcome of binary-binary scattering. Mon. Not. R. Astron. Soc. 318, 6163.CrossRefGoogle Scholar
Heggie, D. and Hut, P. (2003) The Gravitational Million-Body Problem, Cambridge University Press.CrossRefGoogle Scholar
Hénon, M (1976) A family of periodic solutions of the planar three-body problem, and their stability. Celest. Mech. 13, 267285.CrossRefGoogle Scholar
Herman, M. (1998) Some open problems in dynamical systems. Proc. Int. Congress of Math. II, 797808.Google Scholar
Hsiang, Wu-Yi (1994) Geometric study of the three-body problem I, report -620, Center for Pure and Applied Math, University of California at Berkeley.Google Scholar
Hsiang, Wu-Yi (1997) Kinematic geometry of mass-triangles and reduction of Schrödinger’s equation of three-body systems to partial differential equations solely defined on triangular parameters. Proc. Nat. Acad. Sci. U.S.A. 94, no. 17, 89368938.CrossRefGoogle ScholarPubMed
Hsiang, Wu-Yi and Straume, E. (1995) Kinematic geometry of triangles with given mass distribution, report PAM-636, Center for Pure and Applied Math, University of California at Berkeley.Google Scholar
Hut, P. and Bahcall, J. N. (1983) Binary-single star scattering. I. Numerical experiments for equal masses, Astrophys. J. 268, 319341.CrossRefGoogle Scholar
Iwai, T. (1987) A gauge theory for the quantum planar three-body problem. J. Math. Phys. 26, 964974.CrossRefGoogle Scholar
Iwai, T. (1987) A geometric setting for classical molecular dynamics. Ann. Inst. Henri Poincaire Phys. Th. 47, no. 2, 199219.Google Scholar
Iwai, T. (1987) A geometric setting for internal motions of the quantum three-body system. J. Math. Phys. 28, 13151326.CrossRefGoogle Scholar
Kadowaki, K. (2018) A Note on Saari’s treatment of rotation curve analysis. Astroph. J. 869, 160.CrossRefGoogle Scholar
Kapela, T. and Simó, C. (2007) Computer assisted proofs for nonsymmetric planar choreographies and for stability of the Eight. Nonlinearity 20, 12411255.CrossRefGoogle Scholar
Katok, A. and Hasselblatt, B. (1995) Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press.CrossRefGoogle Scholar
Kelley, A. (1967) The stable, center-stable, center, center-unstable and unstable manifold. J. Diff. Eq. 3, no. 4, 546570.CrossRefGoogle Scholar
Kendall, D. G. (1984) Shape manifolds, procrustean metrics, and complex projective space. Bull. London Math. Soc. 16, 81121.CrossRefGoogle Scholar
Khesin, B. A. and Tabachnikov, S. L. (eds.) (2014) Arnold: Swimming Against the Tide, American Mathematical Society.CrossRefGoogle Scholar
Klein, M. and Knauf, A. (1992) Classical Planar Scattering by Coulombic Potentials, Lecture Notes in Physics 13, Springer-Verlag.Google Scholar
Knauf, A. (2012) Mathematical Physics: Classical Mechanics, Springer.Google Scholar
Knauf, A. (2018) Asymptotic velocity for four celestial bodies. Phil. Trans. R. Soc. A. 376, 20170426.CrossRefGoogle ScholarPubMed
Knauf, A. and Krapf, M. (2008) The non-trapping degree of scattering. Nonlinearity 21, 20232041.CrossRefGoogle Scholar
Lagrange, J. (1772) Essai sur le problème des trois corps. In Prix de l’Académie Royale des Sciences de Paris, IX, pp. 229331.Google Scholar
Lagrange, J. (1788) Mécanique Analytique, 1st ed., Veuve Desaint.Google Scholar
Landau, I. and Lifshitz, E. (1976) Mechanics, Pergamon Press.Google Scholar
Laskar, J. (1996) Large scale chaos and marginal stability in the solar system. Celest. Mech. Dyn. Astron. 64, 115162.CrossRefGoogle Scholar
Laskar, J. (2013) Is the solar system stable? Prog. Math. Phys. 66, 239270.CrossRefGoogle Scholar
Laskar, J. (2014) Michel Hénon and the Stability of the Solar System. arXiv:1411.4930.Google Scholar
Lemaitre, G. (1952) Coordonnées symétriques dans le problème des trois corps. Bull. Cl. Sc. Acad. Belg. 38, no. 5, 582592, 1218–1234.Google Scholar
Lemaitre, G. (1955) Regularization of the three body problem. Vistas Astron. 1, 207215.CrossRefGoogle Scholar
Levi-Civita, T. (1920) Sur la régularisation du problème des trois corps. Acta Math. 42, no. 1, 99144.CrossRefGoogle Scholar
Lerman, E., Montgomery, R., and Sjamaar, R. (1993) Examples of Singular Reduction. In Symplectic Geometry, Salamon, D. (ed.), Cambridge University Press, pp. 127155.Google Scholar
Li, X. and Liao, S. (2018) Collisionless periodic orbits in the free-fall three-body problem. arXiv:1805.07980.Google Scholar
Li, X. and Liao, S. (2021) Movies of the collisionless periodic orbits in the freefall three-body problem in real space or on shape sphere. https://numericaltank.sjtu.edu.cn/free-fall-3b/free-fall-3b-movies.htm.Google Scholar
Lyapunov, M. (1947) Probléme Général de la Stabilité du Mouvement, Princeton University Press.Google Scholar
Maderna, E. and Venturelli, A. (2020) Viscosity solutions and hyperbolic motions: A new PDE method for the N-body problem. Ann. Math. 192, 499550.CrossRefGoogle Scholar
Mañe, R (1990) Global Variational Methods in Conservative Dynamics, Colóquio Brasileiro de Mathematica, IMPA.Google Scholar
Maclaurin, C. (1742), Treatise of Fluxions: In Two Books, Ruddimans.Google Scholar
Marchal, C. (1990) The Three-Body Problem, Elsevier.Google Scholar
Marchal, C. (2002) How the method of minimization of action avoids singularities. Celest. Mech. Dyn. Astron. 83, 325353.CrossRefGoogle Scholar
Marsden, J. E. and Weinstein, A. (1974) Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121130.CrossRefGoogle Scholar
Martinez, R. and Simó, C (1999) Simultaneous binary collisions in the planar four-body problem. Nonlinearity 12, no. 4, 903930.CrossRefGoogle Scholar
McGehee, R. (1973) A stable manifold theorem for degenerate fixed points with applications to celestial mechanics. J. Diff. Eq. 14, 7088.CrossRefGoogle Scholar
McGehee, R. (1974) Triple collision in the collinear three-body problem. Invent. Math. 27, 191227.CrossRefGoogle Scholar
Meyer, K. (1973) Symmetries and integrals in mathematics. In Dynamical Systems, Peixoto, M (ed.), Academic Press, pp. 259272.CrossRefGoogle Scholar
Meyer, K. (1999) Periodic Solutions of the N-body Problem, Lecture Notes in Math., Springer.Google Scholar
Meyer, K. and Hall, G. (1991) Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Math. Sciences, series 90, 1st ed., Springer-Verlag.Google Scholar
Meyer, K. and Schmidt, D. (1986) The stability of the Lagrange triangular point and a theorem of Arnol’d. J. Diff. Eq. 62, no. 2, 222236.CrossRefGoogle Scholar
Milnor, J. (1973) Morse Theory, Annals of Math. Studies, Princeton University Press.Google Scholar
Minton, G. (n.d.), choreo.2.3.js. http://gminton.Org/#choreoGoogle Scholar
Moczurad, M. and Zgliczyński, P (2019) Central configurations in planar n-body problem for n = 5,6,7 with equal masses. Celest. Mech. Dyn. Astron. 131, 4674.CrossRefGoogle Scholar
Moeckel, R. (1981) Orbits of the three-body problem which pass infinitely close to triple collision. Amer. J. Math. 103, no. 6, 13231341.CrossRefGoogle Scholar
Moeckel, R. (1983) Orbits near triple collision in the three-body problem. Indiana U. Math. J. 32, 221239.CrossRefGoogle Scholar
Moeckel, R. (1984) Heteroclinic phenomena in the isosceles three-body problem. SIAM J. Math. Anal. 15, 857876.CrossRefGoogle Scholar
Moeckel, R. (1988) Some qualitative features of the three-body problem. Contemp. Math. 81, 121.CrossRefGoogle Scholar
Moeckel, R. (1989) Chaotic dynamics near triple collision. Arch. Rat. Mech. 107, no. 1, 3769.CrossRefGoogle Scholar
Moeckel, R. (2005) A variational proof of the existence of transit orbits in the restricted three-body problem. Dyn. Sys. 20, 4558.CrossRefGoogle Scholar
Moeckel, R. (2007) Symbolic dynamics in the planar three-body problem. Reg. Chaotic Dyn. 12, no. 5, 449475.CrossRefGoogle Scholar
Moeckel, R. (2008) A proof of Saari’s conjecture for the three-body problem in ℝd. Dis. Cont. Dynam. Sys. 1, no. 4, 631646.Google Scholar
Moeckel, R. (2014) Central configurations. Scholarpedia 9(4), 10667. www.scholarpedia.org/article/Central_configurations.CrossRefGoogle Scholar
Moeckel, R. and Montgomery, R. (2013) Symmetric regularization, reduction, and blow-up of the planar three-body problem. Pac. J. Math. 262, no. 1, 129189.CrossRefGoogle Scholar
Moeckel, R. and Montgomery, R. (2015) Realizing all reduced syzygy sequences in the planar threebody problem. Nonlinearity 28, 19191935.CrossRefGoogle Scholar
Moeckel, R. and Montgomery, R. (2023) No infinite spin for the planar N-body problem. arXiv:2302.00177Google Scholar
Montaldi, J. and Steckles, K. (2013) Classification of symmetry groups for planar n-body choreographies. Forum of Mathematics, Sigma 1, e5 doi:10.1017/fms.2013.5.CrossRefGoogle Scholar
Montgomery, R. (1996) The geometric phase of the three-body problem. Nonlinearity 9, no. 5, 13411360.CrossRefGoogle Scholar
Montgomery, R. (1998) The N-body problem, the braid group, and actionminimizing periodic orbit. Nonlinearity 11, no. 2, 363376.CrossRefGoogle Scholar
Montgomery, R. (2000) Action spectrum and collisions in the planar three-body problem. Contemp. Math. 282, 173184.Google Scholar
Montgomery, R. (2002) A Tour Of Subriemannian Geometries, their Geodesics, and Applications, Mathematical Surveys and Monographs 91, American Mathematical Society.Google Scholar
Montgomery, R. (2002) Infinitely many syzygies. Arch. Rat. Mech. Anal. 164, no. 4, 311340.CrossRefGoogle Scholar
Montgomery, R. (2007) The zero angular momentum three-body problem: All but one solution has syzygies. Erg. Th. Dyn. Sys. 27, no. 6, 19331946.CrossRefGoogle Scholar
Montgomery, R. (2015) The three-body problem and the shape sphere. Amer. Math. Monthly 122, no. 4, 299321.CrossRefGoogle Scholar
Montgomery, R. (2018) Blow-Up, Homotopy and Existence for Periodic Solutions of the Planar Three-Body Problem. In Geometrical Themes Inspired by the N-body Problem, Hernández-Lamoneda, L., Herrera, H., and Herrera, R. (eds.), Springer, pp. 4989.CrossRefGoogle Scholar
Montgomery, R. (2019) The three body problem. Scientific American 321, no. 2, 6773.CrossRefGoogle ScholarPubMed
Montgomery, R. (2020) Minimizers for the Kepler problem. Qual. Theory Dyn. Sys. 19, no. 31. https://doi.org/10.1007/s12346-020-00363-8Google Scholar
Montgomery, R. (2023) Brake orbits fill the N-body Hill region. Reg. Chaotic Dyn. 28, 374394.CrossRefGoogle Scholar
Montgomery, R. (2023) Dropping bodies. Math. Intell. 45, 168174.CrossRefGoogle Scholar
Montgomery, R. (2023) Lyapunov Instability. Unpublished notes, available at https://peopleweb.prd.web.aws.ucsc.edu/~rmont/papers/unpublished/Lyapunov_Instability.pdf.Google Scholar
Moore, C. (1993) Braids in classical gravity. Phys. Rev. Lett. 70, 36753679.CrossRefGoogle Scholar
Moore, C. and Nauenberg, M. (2005) New periodic orbits for the N-body problem. J. Comput. Nonlinear Dynam. 1, no. 4, 307311.CrossRefGoogle Scholar
Moser, J. (1973) Stable and Random Motion, Princeton University Press.Google Scholar
Moulton, F. R. (1910) The straight line solutions of the problem of n bodies. Ann. Math. 12, 117.CrossRefGoogle Scholar
Musso, M. (2022) Bubbling blow-up in critical elliptic and parabolic problems. Notices Amer. Math. Soc. 69, no. 10, 17001706.CrossRefGoogle Scholar
Nauenberg, M. (2001) Periodic orbits for three particles with finite angular momentum. Phys. Lett. 292, 9399.CrossRefGoogle Scholar
Newton, I. (1667) Philosophiae Naturalis Principia Mathematica, translated by Motte, Andrew. Available at http://en.wikisource.org/wiki/The_Mathematical_Principles_of_Natural_Philosophy_%281846%29.Google Scholar
Newton, I. (1667) Philosophiae Naturalis Principia Mathematica. www.thelatinlibrary.com/newton.scholium.htmlGoogle Scholar
Niederman, L. (1998) Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system. Nonlinearity 11, 14651479.CrossRefGoogle Scholar
Ouyang, T. and Xie, Z. (2017) A continuum of periodic solutions to the four-body problem with various choices of masses. J. Diff. Eq. 264, no. 7, 44254455.CrossRefGoogle Scholar
Palais, R. (1993) The principle of symmetric criticality. Comm. Math. Phys. 69, 1930.CrossRefGoogle Scholar
Palmore, J. (1973) Classifying relative equilibria, I. Bull. Amer. Math. Soc. 79, 904908.CrossRefGoogle Scholar
Poincaré, H. (1892) Les Methodes Nouvelles de la Mécanique Céleste, vol. 1, ch. 3, Gauthier-Villars et fils. See also New Methods of Celestial Mechanics, translated by Goroff, D.. Introduction, p. I (1993).Google Scholar
Poincaré, H. (1896) Sur les solutions périodiques et le principe de moindre action, C.R.A.S. t. 123, 915918, in Oeuvres, tome VII.Google Scholar
Pollard, H. (1966) Celestial Mechanics, Prentice Hall.Google Scholar
Pöschel, J. (1993) Nekhoroshev estimates for quasi-convex Hamiltonian systems. Math. Z. 213, no. 2, 187216.CrossRefGoogle Scholar
Reed, C. (2022) A note on Newton’s shell-point equivalency theorem. Am. J. Phys. 90, 394396.CrossRefGoogle Scholar
Reed, M. and Simon, S. (1979) Scattering Theory, Methods of Modern Mathematical Physics, vol. 3, Academic Press.Google Scholar
Roberts, G. (2007) Linear stability analysis of the figure-eight orbit in the three-body problem. Erg. Th. Dyn. Sys. 27, 19471963.CrossRefGoogle Scholar
Robinson, C. (1984) Homoclinic orbits and oscillations for the planar three-body problem. J. Diff. Eq. 52, 356377.CrossRefGoogle Scholar
Rose, D. (2015) Geometric phase and periodic orbits of the equal-mass, planar three-body problem with vanishing angular momentum. PhD thesis, University of Sydney.Google Scholar
Royden, H. L. (1968) Real Analysis, 2nd ed., Macmillan.Google Scholar
Rutherford, E. (1911) The scattering of a and ß particles by matter and the structure of the atom. Phil. Mag. Series 6, 21, 669688.CrossRefGoogle Scholar
Saari, D. (1971) Improbability of collisions in Newtonian gravitational systems. Trans. AMS 162, 267271.CrossRefGoogle Scholar
Saari, D. (1975) Collisions are of first category. Proc. AMS 47, 442445.CrossRefGoogle Scholar
Saari, D. (1977) A global existence theorem for the four body problem of Newtonian mechanics. J. Diff. Eq. 26, 80111.CrossRefGoogle Scholar
Saari, D. (1984) From rotation and inclination to zero configurational velocity surfaces, I, a natural rotating coordinate system. Celest. Mech. 33, 299318.CrossRefGoogle Scholar
Saari, D. (1988) Symmetry in n-particle systems. In Hamiltonian Dynamical Systems, Contemp. Math. 81, pp. 2342, AMS.CrossRefGoogle Scholar
Saari, D. (2005) Collisions, Rings, and Other Newtonian N-Body Problems, CBMS conference series, no. 104, AMS.CrossRefGoogle Scholar
Saari, D. (2015) Mathematics and the dark matter puzzle. Am. Math. Mon. 122, no. 5, 407423.CrossRefGoogle Scholar
Saari, D. and Hulkower, N. (1981) On the manifold of total collapse orbits and of complete parabolic orbits for the n-body problem. J. Diff. Eq. 41, 2743.CrossRefGoogle Scholar
Schubart, J. (1956) Nulerische Aufsuchung periodischer Lösungen im Dreikor-perproblem. Astronomische Nachriften 283, 1722.CrossRefGoogle Scholar
Seifert, H. (1948) Periodische Bewegungen Mechanischer System. Math. Z, 51, 197216. See also, Periodic motions of mechanical systems. Translated by McCain, Bill. https://peopleweb.prd.web.aws.ucsc.edu/~rmont/papers/periodicMcCain.pdf.CrossRefGoogle Scholar
Shub, M. (1970) Appendix to Smale’s paper: Diagonals and relative equilibria. In Manifolds, Springer Lecture Notes in Mathematics 197, 199201.Google Scholar
Simó, C. (1978) Relative equilibrium solutions in the four-body problem. Celest. Mech. 18, 165184.CrossRefGoogle Scholar
Simó, C. (2000) Dynamical properties of the figure eight solution of the three-body problem. In Proc. Cele. Mech. Conference dedicated to D. Saari for his 60th birthday, pp 209228, American Mathematical Society.Google Scholar
Simó, C. (2001) New families of solutions in N-body problems. In Proc. 3rd European Congress of Mathematics, Progress in Mathematics series 201, 101115, Birkhäuser.CrossRefGoogle Scholar
Simó, C. (2001) Periodic orbits of the planar N-body problem with equal masses and all bodies on the same path. In The Restless Universe: Applications of N-Body Gravitational Dynamics to Planetary, Stellar and Galactic Systems, NATO Advanced Study Institute, IOP Publishing.Google Scholar
Siegel, C. and Moser, J. (1971) Lectures on Celestial Mechanics, Springer-Verlag.CrossRefGoogle Scholar
Singer, S. (2003) Symmetry in Mechanics: A Gentle, Modern Introduction, Birkhäuser.Google Scholar
Smale, S. (1970) Topology and mechanics, II. Invent. Math. 11, 4564.CrossRefGoogle Scholar
Smale, S. (1998) Mathematical problems for the next century. Math. Intell. 20, no. 2, 715.CrossRefGoogle Scholar
Stiefel, E. L. and Scheifele, G. (1971) Linear and Regular Celestial Mechanics, Grundlehren der mathematischen Wissenschaften series, 174, Springer.CrossRefGoogle Scholar
Strömgren, E. (1933) Connaissance actuelle des orbites dans le problème des trois corps. Bull. Astronomique 9, 87130.Google Scholar
Sundman, K. (1906) Recherches sur le probléme de trois corps. Acta Soc. Scientiarum Fennicae 34, 143.Google Scholar
Sundman, K. (1913) Mémoire sur le probléme de trois corps. Acta Math. 36, 105179.CrossRefGoogle Scholar
Sussman, H. (1973) Orbits of families of vector fields and integrability of distributions. Trans. AMS 180, 171188.CrossRefGoogle Scholar
Szebehely, V. and Peters, C. (1967) Complete solution of a general problem of three bodies. AJ 72, 876882. https://articles.adsabs.harvard.edu/pdf/1967AJ.....72..876S.CrossRefGoogle Scholar
Tanikawa, K. and Mikkola, S. (2000) One-dimensional three-body problem via symbolic dynamics. Chaos 10, no. 3, 649657. https://ui.adsabs.harvard.edu/abs/2000Chaos..10..649T/abstract.CrossRefGoogle Scholar
Tanikawa, K. and Mikkola, S. (2000) Triple collisions in the one-dimensional three-body problem. Celest. Mech. Dyn. Astr. 76, 2334.CrossRefGoogle Scholar
Terracini, S. (2006) On the variational approach to the periodic n-body problem. Celest. Mech. Dyn. Astr. 95, 325.CrossRefGoogle Scholar
Todhunter, M. A. (1871) Researches in the Calculus of Variations, Principally on the Theory of Discontinuous Solutions, Cambridge, Macmillan and Co.Google Scholar
Todhunter, M. A. (1871) History of the Calculus of Variations, Cambridge, Macmillan and Co.Google Scholar
Venturelli, A. (2002) Application de la minimisation de l’action au Probléme des N corps dans le plan et dans l’espace. PhD thesis, University of Paris.Google Scholar
Waldvogel, J. (1972) A new regularization of the problem of three bodies. Celest. Mech. 6, 221231.CrossRefGoogle Scholar
Weinstein, A. (1981) Symplectic Geometry. Bull. Amer. Math. Soc. 5, no. 1, 114.CrossRefGoogle Scholar
Weinstein, A. (1984) The local structure of Poisson manifolds. J. Diff. Geom. 18, 523557.Google Scholar
Wikipedia. (2023) Stability of the solar system. https://en.wikipedia.org/wiki/Stability_of_the_Solar_System.Google Scholar
Wintner, A. (1941) The Analytical Foundations of Celestial Mechanics, Princeton University Press. Reprinted by Dover Press, 2014.Google Scholar
Xia, Z. (1991) Central configurations with many small masses. J. Diff. Eq. 91, no.1, 168179.CrossRefGoogle Scholar
Xia, Z. (1992) The existence of noncollision singularities in Newtonian systems. Ann. Math. 135, no. 3, 411468.CrossRefGoogle Scholar
Young, L. C. (1980) Lectures on the Calculus of Variations and Optimal Control Theory, Chelsea Publishing Company.Google Scholar
Yu, X. (2022) On the stability of Lagrange relative equilibrium in the planar three-body problem. arXiv:1911.12269.Google Scholar
Zehnder, E. (2010) Lectures on Dynamical Systems, European Mathematical Society.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Richard Montgomery, University of California, Santa Cruz
  • Book: Four Open Questions for the <i>N</i>-Body Problem
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009200608.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Richard Montgomery, University of California, Santa Cruz
  • Book: Four Open Questions for the <i>N</i>-Body Problem
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009200608.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Richard Montgomery, University of California, Santa Cruz
  • Book: Four Open Questions for the <i>N</i>-Body Problem
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009200608.019
Available formats
×