Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T07:09:11.733Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 March 2020

David Barnes
Affiliation:
Queen's University Belfast
Constanze Roitzheim
Affiliation:
University of Kent, Canterbury
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. F.. On the non-existence of elements of Hopf invariant one. Ann. of Math. (2), 72:20–104, 1960. CrossRefGoogle Scholar
Adams, J. F.. On the groups J(X). IV. Topology, 5:21–71, 1966.Google Scholar
Adams, J. F.. Stable homotopy theory, volume 1961 of Second revised edition. Lectures delivered at the University of California at Berkeley. Springer-Verlag, Berlin and New York, 1966.Google Scholar
Adams, J. F.. Stable homotopy and generalised homology. University of Chicago Press, Chicago, IL, 1974. Chicago Lectures in Mathematics.Google Scholar
Adams, J. F.. Infinite loop spaces, volume 90 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1978.Google Scholar
Atiyah, M. F.. K-theory. Advanced Book Classics. Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, second edition, 1989. Notes by D. W. Anderson.Google Scholar
Beĭlinson, A. A., Bernstein, J., and Deligne, P.. Faisceaux pervers. In Analysis and topology on singular spaces, I (Luminy, 1981), volume 100 of Astérisque, pages 5–171. Soc. Math. France, Paris, 1982.Google Scholar
Benson, D. J.. Representations and cohomology. I, volume 30 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1998. Basic representation theory of finite groups and associative algebras.Google Scholar
Bousfield, A. K. and Friedlander, E. M.. Homotopy theory of Γ-spaces, spectra, and bisimplicial sets. In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, volume 658 of Lecture Notes in Math., pages 80–130. Springer, Berlin, 1978.Google Scholar
Borceux, F.. Handbook of categorical algebra. 2, volume 51 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge, 1994. Categories and structures.Google Scholar
Bousfield, A. K.. Types of acyclicity. J. Pure Appl. Algebra, 4:293–298, 1974.CrossRefGoogle Scholar
Bousfield, A. K.. The localization of spaces with respect to homology. Topology, 14:133–150, 1975.Google Scholar
Bousfield, A. K.. The localization of spectra with respect to homology. Topology, 18(4):257–281, 1979.Google Scholar
Baker, A. and Richter, B., editors. Structured ring spectra, volume 315 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2004.Google Scholar
Barnes, D. and Roitzheim, C.. Local framings. New York J. Math., 17:513–552, 2011.Google Scholar
Barnes, D. and Roitzheim, C.. Stable left and right Bousfield localisations. Glasg. Math. J., 56:13–42, 2014.Google Scholar
Bredon, G. E.. Topology and geometry, volume 139 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997. Corrected third printing of the 1993 original.Google Scholar
Bruner, R. R.. An Adams spectral sequence Primer. Available via the author’s website, www.rrb.wayne.edu, 2009.Google Scholar
Balmer, P. and Sanders, B.. The spectrum of the equivariant stable homotopy category of a finite group. Invent. Math., 208(1):283–326, 2017.Google Scholar
Cohen, J. M.. The decomposition of stable homotopy. Ann. of Math. (2), 87:305–320, 1968.Google Scholar
Cole, M.. Many homotopy categories are homotopy categories. Topology Appl., 153(7):1084–1099, 2006.Google Scholar
Christensen, J. D. and Strickland, N. P.. Phantom maps and homology theories. Topology, 37(2):339–364, 1998.Google Scholar
Day, B.. On closed categories of functors. In Reports of the midwest category seminar, IV, Lecture Notes in Mathematics, Vol. 137, pages 1–38. Springer, Berlin, 1970.Google Scholar
Dold, A. and Puppe, D.. Duality, trace, and transfer. In Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), pages 81–102. PWN, Warsaw, 1980.Google Scholar
Dwyer, W. G. and Spaliński, J.. Homotopy theories and model categories. In Handbook of algebraic topology, pages 73–126. North-Holland, Amsterdam, 1995.Google Scholar
Dugger, D.. Replacing model categories with simplicial ones. Trans. Amer. Math. Soc., 353(12):5003–5027, 2001.Google Scholar
Dwyer, W. G.. Localizations. In Axiomatic, enriched and motivic homotopy theory, volume 131 of NATO Sci. Ser. II Math. Phys. Chem.,pages 3–28. Kluwer Acad. Publ., Dordrecht, 2004.Google Scholar
Elmendorf, A. D., Kriz, I., Mandell, M. A., and May, J. P.. Rings, modules, and algebras in stable homotopy theory, volume 47 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole.Google Scholar
Franke, J.. Uniqueness theorems for certain triangulated categories possessing an Adams spectral sequence. www.math.uiuc.edu/K-theory/0139/, 1996.Google Scholar
Garner, R., Kędziorek, M., and Riehl, E.. Lifting accessible model structures. arXiv: 1802.09889, 2018.Google Scholar
Gray, B.. Homotopy theory. Academic Press [Harcourt Brace Jovanovich, Publishers], New York and London, 1975. An introduction to algebraic topology, Pure and Applied Mathematics, Vol. 64.Google Scholar
Gutiérrez, J. J.. Homological localizations of Eilenberg–Mac Lane spectra. Forum Math., 22(2):349–356, 2010.Google Scholar
Harper, J. E.. Homotopy theory of modules over operads in symmetric spectra. Algebr. Geom. Topol., 9(3):1637–1680, 2009.CrossRefGoogle Scholar
Harper, J. E.. Corrigendum to “Homotopy theory of modules over operads in symmetric spectra” [ MR2539191]. Algebr. Geom. Topol., 15(2):1229–1237, 2015.Google Scholar
Hatcher, A.. Algebraic topology. Cambridge University Press, Cambridge, 2002.Google Scholar
Hirschhorn, P. S.. Model categories and their localizations, volume 99 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.Google Scholar
Hess, K., Kędziorek, M., Riehl, E., and Shipley, B.. A necessary and sufficient condition for induced model structures. J. Topol., 10(2):324–369, 2017.Google Scholar
Hopkins, M. J. and Mahowald, M.. From elliptic curves to homotopy theory. In Topological modular forms, volume 201 of Math. Surveys Monogr., pages 261–285. American Mathematical Society, Providence, RI, 2014.Google Scholar
Hovey, M.. Model categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.Google Scholar
Hovey, M.. Model category structures on chain complexes of sheaves. Trans. Amer. Math. Soc., 353(6):2441–2457 (electronic), 2001.Google Scholar
Hovey, M.. Spectra and symmetric spectra in general model categories. J. Pure Appl. Algebra, 165(1):63–127, 2001.CrossRefGoogle Scholar
Hovey, M., Palmieri, J. H., and Strickland, N. P.. Axiomatic stable homotopy theory. Mem. Amer. Math. Soc., 128(610):x+114, 1997.Google Scholar
Hopkins, M. J. and Smith, J. H.. Nilpotence and stable homotopy theory. II. Ann. Math. (2), 148(1):1–49, 1998.CrossRefGoogle Scholar
Hovey, M. and Strickland, N. P.. Morava K-theories and localisation. Mem. Amer. Math. Soc., 139(666):viii+100, 1999.Google Scholar
Hovey, M., Shipley, B., and Smith, J.. Symmetric spectra. J. Amer. Math. Soc., 13(1):149–208, 2000.Google Scholar
Husemoller, D.. Fibre bundles, volume 20 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 1994.Google Scholar
Isaksen, D. C. and Xu, Z.. Motivic stable homotopy and the stable 51 and 52 stems. Topology Appl., 190:31–34, 2015.Google Scholar
James, I. M., editor. History of topology. North-Holland, Amsterdam, 1999.Google Scholar
Joachim, M.. A symmetric ring spectrum representing KO-theory. Topology, 40(2):299–308, 2001.Google Scholar
Kelly, G. M.. Basic concepts of enriched category theory. Repr. Theory Appl. Categ., (10):vi+137 pp. (electronic), 2005. Reprint of the 1982 original [Cambridge University Press, Cambridge; MR0651714].Google Scholar
Krause, H.. Derived categories, resolutions, and Brown representability. In Interactions between homotopy theory and algebra, volume 436 of Contemporary Mathematics, pages 101–139. American Mathematical Society, Providence, RI, 2007. Google Scholar
Kro, T.. Model structure on operads in orthogonal spectra. Homol. Homotopy Appl., 9(2):397–412, 2007.Google Scholar
Lenhardt, F.. Stable frames in model categories. J. Pure Appl. Algebra, 216(5):1080–1091, 2012.Google Scholar
Lewis, L. G., Jr. Is there a convenient category of spectra? J. Pure Appl. Algebra, 73(3):233–246, 1991.Google Scholar
Lima, E. L.. The Spanier–Whitehead duality in new homotopy categories. Summa Brasil. Math., 4:91–148 (1959), 1959.Google Scholar
Lewis, L. G., Jr., May, J. P., Steinberger, M., and McClure, J. E.. Equivariant stable homotopy theory, volume 1213 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure.Google Scholar
Mac Lane, S.. Categories for the working mathematician. Springer-Verlag, New York, 1971. Graduate Texts in Mathematics, Vol. 5.Google Scholar
Mahowald, M.. The order of the image of the J-homomorphisms. Bull. Amer. Math. Soc., 76:1310–1313, 1970.Google Scholar
Margolis, H. R.. Spectra and the Steenrod algebra, volume 29 of North- Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, 1983. Modules over the Steenrod algebra and the stable homotopy category.Google Scholar
May, J. P.. A general algebraic approach to Steenrod operations. In The Steenrod algebra and its applications (Proceedings of a conference to celebrate N. E. Steenrod’s sixtieth birthday, Battelle Memorial Institute, Columbus, OH, 1970), Lecture Notes in Mathematics, Vol. 168, pages 153–231. Springer, Berlin, 1970.Google Scholar
May, J. P.. E ring spaces and E ring spectra. Lecture Notes in Mathematics, Vol. 577. Springer-Verlag, Berlin and New York, 1977. With contributions by Frank Quinn, Nigel Ray, and Jørgen Tornehave.Google Scholar
May, J. P.. Equivariant homotopy and cohomology theory, volume 91 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996. With contributions by Cole, M., Comezaña, G., Costenoble, S., Elmendorf, A. D., J. Greenlees, P. C., Lewis, L. G., Jr., Piacenza, R. J., Triantafillou, G., and Waner, S..Google Scholar
May, J. P.. A concise course in algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1999.Google Scholar
May, J. P.. Stable algebraic topology, 1945–1966. In History of topology, pages 665–723. North-Holland, Amsterdam, 1999.Google Scholar
May, J. P.. The additivity of traces in triangulated categories. Adv. Math., 163(1):34–73, 2001.Google Scholar
May, J. P.. What are E ring spaces good for? In New topological contexts for Galois theory and algebraic geometry (BIRS 2008), volume 16 of Geometry & Topology Monographs, pages 331–365. Geometry & Topology Publications, Coventry, 2009.Google Scholar
May, J. P.. What precisely are E ring spaces and E ring spectra? In New topological contexts for Galois theory and algebraic geometry (BIRS 2008), volume 16 of Geometry & Topology Monographs, pages 215–282. Geometry & Topology Publications, Coventry, 2009.Google Scholar
McCleary, J.. A user’s guide to spectral sequences, volume 58 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2001.Google Scholar
Milnor, J. W.. The Steenrod algebra and its dual. Ann. Math. (2), 67:150–171, 1958.Google Scholar
Miller, H. R.. On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space. J. Pure Appl. Algebra, 20(3):287–312, 1981.Google Scholar
Miller, H. R.. Finite localizations. Bol. Soc. Mat. Mexicana (2), 37(1-2):383–389, 1992. Papers in honor of José Adem (Spanish).Google Scholar
Milnor, J. W. and Moore, J. C.. On the structure of Hopf algebras. Ann. Math. (2), 81:211–264, 1965.Google Scholar
Mandell, M. A. and May, J. P.. Equivariant orthogonal spectra and S -modules. Mem. Amer. Math. Soc., 159(755):x+108, 2002.Google Scholar
Mandell, M. A., May, J. P., Schwede, S., and Shipley, B.. Model categories of diagram spectra. Proc. London Math. Soc. (3), 82(2):441–512, 2001.Google Scholar
Moore, J. C.. Semi-simplicial complexes and Postnikov systems. In Symposium internacional de topología algebraica International symposium on algebraic topology, pages 232–247. Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958.Google Scholar
May, J. P. and Ponto, K.. More concise algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2012. Localization, completion, and model categories.Google Scholar
Muro, F., Schwede, S., and Strickland, N.. Triangulated categories without models. Invent. Math., 170(2):231–241, 2007.Google Scholar
Morel, F. and Voevodsky, V.. A1-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math., 90:45–143 (2001), 1999.Google Scholar
Quillen, D. G.. Homotopical algebra. Lecture Notes in Mathematics, No. 43. Springer-Verlag, Berlin, 1967.Google Scholar
Ravenel, D. C.. A novice’s guide to the Adams-Novikov spectral sequence. In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977),II, volume 658 of Lecture Notes in Math., pages 404–475. Springer, Berlin, 1978.Google Scholar
Ravenel, D. C.. Localization with respect to certain periodic homology theories. Amer. J. Math., 106(2):351–414, 1984.Google Scholar
Ravenel, D. C.. Complex cobordism and stable homotopy groups of spheres, volume 121 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1986.Google Scholar
Ravenel, D. C.. Nilpotence and periodicity in stable homotopy theory,volume 128 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith.Google Scholar
Ravenel, D. C.. Progress report on the Telescope Conjecture. In Adams memorial symposium on algebraic topology, 2 (Manchester, 1990), volume 176 of London Mathematical Society Lecture Note Series, pages 1– 21. Cambridge University Press, Cambridge, 1992.Google Scholar
Rezk, C.. Notes on the Hopkins–Miller theorem. In Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997), volume 220 of Contemporary Mathematics, pages 313–366. American Mathematical Society, Providence, RI, 1998.Google Scholar
Robinson, A.. The extraordinary derived category. Math. Z., 196(2):231–238, 1987.Google Scholar
Rognes, J.. The Adams spectral sequence. Available via the author’s website, https://folk.uio.no/rognes/home.html, 2012.Google Scholar
Roitzheim, C.. Rigidity and exotic models for the K-local stable homotopy category. Geom. Topol., 11:1855–1886, 2007.Google Scholar
Rotman, J. J.. An introduction to algebraic topology, volume 119 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1988.Google Scholar
Richter, B. and Shipley, B.. An algebraic model for commutative Hℤ- algebras. Algebr. Geom. Topol., 17(4):2013–2038, 2017.Google Scholar
Schwede, S.. Spectra in model categories and applications to the algebraic cotangent complex. J. Pure Appl. Algebra, 120(1):77–104, 1997.Google Scholar
Schwede, S.. Stable homotopical algebra and Γ-spaces. Math. Proc. Cambridge Philos. Soc., 126(2):329–356, 1999.Google Scholar
Schwede, S.. S -modules and symmetric spectra. Math. Ann., 319(3):517–532, 2001.Google Scholar
Schwede, S.. The stable homotopy category has a unique model at the prime 2. Adv. Math., 164(1):24–40, 2001.Google Scholar
Schwede, S.. The stable homotopy category is rigid. Ann. Math. (2), 166(3):837–863, 2007.CrossRefGoogle Scholar
Schwede, S.. An untitled book project about symmetric spectra. www.math.uni-bonn.de/people/schwede/SymSpec.pdf, 2007.Google Scholar
Schwede, S.. On the homotopy groups of symmetric spectra. Geom. Topol., 12(3):1313–1344, 2008.Google Scholar
Schwede, S.. Global homotopy theory, volume 34. Cambridge University Press, Cambridge, 2018.Google Scholar
Segal, G.. Categories and cohomology theories. Topology, 13:293–312, 1974.Google Scholar
J.-Serre, P.. Groupes d’homotopie et classes de groupes abéliens. Ann. Math. (2), 58:258–294, 1953.CrossRefGoogle Scholar
Shipley, B.. Monoidal uniqueness of stable homotopy theory. Adv. Math., 160(2):217–240, 2001.Google Scholar
Shipley, B.. A convenient model category for commutative ring spectra. In Homotopy theory: Relations with algebraic geometry, group cohomology, and algebraic K-theory, volume 346 of Contemporary Mathematics, pages 473–483. American Mathematical Society, Providence, RI, 2004.Google Scholar
Shipley, B.. Hℤ-algebra spectra are differential graded algebras. Amer. J. Math., 129(2):351–379, 2007.Google Scholar
Spanier, E. H.. Algebraic topology. Springer-Verlag, New York and Berlin, 1981. Corrected reprint.Google Scholar
Schwede, S. and Shipley, B.. Algebras and modules in monoidal model categories. Proc. Lond. Math. Soc. (3), 80(2):491–511, 2000.Google Scholar
Schwede, S. and Shipley, B.. A uniqueness theorem for stable homotopy theory. Math. Z., 239(4):803–828, 2002.Google Scholar
Schwede, S. and Shipley, B.. Equivalences of monoidal model categories. Algebr. Geom. Topol., 3:287–334, 2003.Google Scholar
Schwede, S. and Shipley, B.. Stable model categories are categories of modules. Topology, 42(1):103–153, 2003.Google Scholar
Steenrod, N. E.. Cohomology operations. Lectures by Steenrod, N. E. written and revised by Epstein, D. B. A.. Annals of Mathematics Studies, No. 50. Princeton University Press, Princeton, NJ, 1962.Google Scholar
Steenrod, N. E.. A convenient category of topological spaces. Michigan Math. J., 14:133–152, 1967.Google Scholar
Strom, J.. Modern classical homotopy theory, volume 127 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.Google Scholar
Spanier, E. H. and Whitehead, J. H. C.. Duality in homotopy theory. Mathematika, 2:56–80, 1955.Google Scholar
Toda, H.. Composition methods in homotopy groups of spheres. Annals of Mathematics Studies, No. 49. Princeton University Press, Princeton, NJ, 1962.Google Scholar
Vogt, R.. Boardman’s stable homotopy category. Lecture Notes Series, No. 21. Matematisk Institut, Aarhus Universitet, Aarhus, 1970.Google Scholar
Weibel, C. A.. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.Google Scholar
Whitehead, G. W.. Generalized homology theories. Trans. Amer. Math. Soc., 102:227–283, 1962.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David Barnes, Queen's University Belfast, Constanze Roitzheim, University of Kent, Canterbury
  • Book: Foundations of Stable Homotopy Theory
  • Online publication: 09 March 2020
  • Chapter DOI: https://doi.org/10.1017/9781108636575.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David Barnes, Queen's University Belfast, Constanze Roitzheim, University of Kent, Canterbury
  • Book: Foundations of Stable Homotopy Theory
  • Online publication: 09 March 2020
  • Chapter DOI: https://doi.org/10.1017/9781108636575.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David Barnes, Queen's University Belfast, Constanze Roitzheim, University of Kent, Canterbury
  • Book: Foundations of Stable Homotopy Theory
  • Online publication: 09 March 2020
  • Chapter DOI: https://doi.org/10.1017/9781108636575.010
Available formats
×