Published online by Cambridge University Press: 05 August 2012
The minisuperspace quantization of D =11 supergravity is equivalent to the quantization of an E10/K(E10) coset space sigma model, when the latter is restricted to the E10 Cartan subalgebra. As a consequence, the wavefunctions solving the relevant minisuperspace Wheeler-DeWitt equation involve automorphic (Maass wave) forms under the modular group W+(E10)≅ PSL2(0). Using Dirichlet boundary conditions on the billiard domain a general inequality for the Laplace eigenvalues of these automorphic forms is derived, entailing a wave function of the universe that is generically complex and always tends to zero when approaching the initial singularity. The significance of these properties for the nature of singularities in quantum cosmology in comparison with other approaches is discussed. The present approach also offers interesting new perspectives on some longstanding issues in canonical quantum gravity.
Introduction
The present chapter is based on [1], and elaborates on several issues and arguments that were not fully spelled out there. In that work, a first step was taken towards quantization of the one-dimensional “geodesic” E10/K(E10) coset model which had been proposed in [2] as a model of M-theory. Here, E10 denotes the hyperbolic Kac-Moody group E10 which is an infinite-dimensional extension of the exceptional Lie group E8, and plays a similarly distinguished role among the infinite-dimensional Lie algebras as E8 does among the finite-dimensional ones. The proposal of [2] had its roots both in the appearance of so-called “hidden symmetries” of exceptional type in the dimensional reduction of maximal supergravity to lower dimensions [3], as well as in the celebrated analysis of Belinskii, Khalatnikov and Lifshitz (BKL) [4] of the gravitational field equations in the vicinity of a generic space-like (cosmological) singularity.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.