Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T19:03:12.557Z Has data issue: false hasContentIssue false

13 - Causal dynamical triangulations and the quest for quantum gravity

Published online by Cambridge University Press:  05 August 2012

J. Ambjørn
Affiliation:
Copenhagen University
J. Jurkiewicz
Affiliation:
Jagiellonian University
R. Loll
Affiliation:
Utrecht University
Jeff Murugan
Affiliation:
University of Cape Town
Amanda Weltman
Affiliation:
University of Cape Town
George F. R. Ellis
Affiliation:
University of Cape Town
Get access

Summary

Quantum gravity by causal dynamical triangulation has over the last few years emerged as a serious contender for a nonperturbative description of the theory. It is a nonperturbative implementation of the sum-overhistories, which relies on few ingredients and initial assumptions, has few free parameters and – crucially – is amenable to numerical simulations. It is the only approach to have demonstrated that a classical universe can be generated dynamically from Planckian quantum fluctuations. At the same time, it allows for the explicit evaluation of expectation values of invariants characterizing the highly nonclassical, short-distance behaviour of spacetime. As an added bonus, we have learned important lessons on which aspects of spacetime need to be fixed a priori as part of the background structure and which can be expected to emerge dynamically.

Quantum gravity – taking a conservative stance

Many fundamental questions about the nature of space, time and gravitational interactions are not answered by the classical theory of general relativity, but lie in the realm of the still-searched-for theory of quantum gravity: What is the quantum theory underlying general relativity, and what does it say about the quantum origins of space, time and our universe? What is the microstructure of spacetime at the shortest scale usually considered, the Planck scale lPl = 10-35m, and what are the relevant degrees of freedom determining the dynamics there?

Type
Chapter
Information
Foundations of Space and Time
Reflections on Quantum Gravity
, pp. 321 - 337
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] J., Ambjørn and R., Loll: Non-perturbative Lorentzian quantum gravity, causality and topology change, Nucl. Phys.B 536 (1998) 407–34 [hep-th/9805108].Google Scholar
[2] J., Ambjørn and Yu. M., Makeenko: Properties of loop equations for the Hermitean matrix model and for two-dimensional quantum gravity, Mod. Phys. Lett.A 5 (1990) 1753–64;Google Scholar
J., Ambjørn, J., Jurkiewicz and Y. M., Makeenko: Multiloop correlators for two-dimensional quantum gravity, Phys. Lett.B 251 (1990) 517–24.Google Scholar
[3] J., Ambjørn, K. N., Anagnostopoulos and R., Loll: A new perspective on matter coupling in 2d quantum gravity, Phys. Rev.D 60 (1999) 104035 [hep-th/9904012];Google Scholar
Crossing the c = 1 barrier in 2d Lorentzian quantum gravity, Phys. Rev.D 61 (2000) 044010 [hep-lat/9909129].
[4] J., Ambjørn, J., Jurkiewicz and R., Loll: A nonperturbative Lorentzian path integral for gravity, Phys. Rev. Lett. 85 (2000) 924–7 [hep-th/0002050];Google Scholar
Dynamically triangulating Lorentzian quantum gravity, Nucl. Phys.B 610 (2001) 347–82 [hep-th/0105267].
[5] J., Ambjørn, J., Jurkiewicz and R., Loll: Lorentzian and Euclidean quantum gravity: Analytical and numerical results, in: Proceedings of M-Theory and Quantum Geometry, 1999 NATO Advanced Study Institute, Akureyri Island, eds. L., Thorlacius et al. (Kluwer, 2000) 382–449 [hep-th/0001124].
[6] J., Ambjørn, J., Jurkiewicz and R., Loll: Nonperturbative 3-d Lorentzian quantum gravity, Phys. Rev.D 64 (2001) 044011 [hep-th/0011276].Google Scholar
[7] J., Ambjørn, J., Jurkiewicz and R., Loll: Emergence of a 4D world from causal quantum gravity, Phys. Rev. Lett. 93 (2004) 131301 [hep-th/0404156].Google Scholar
[8] J., Ambjørn, J., Jurkiewicz and R., Loll: Spectral dimension of the universe, Phys. Rev. Lett. 95 (2005) 171301 [hep-th/0505113].Google Scholar
[9] J., Ambjørn, J., Jurkiewicz and R., Loll: Reconstructing the universe, Phys. Rev.D 72 (2005) 064014 [hep-th/0505154].Google Scholar
[10] J., Ambjørn, A., Görlich, J., Jurkiewicz and R., Loll: Planckian birth of the quantum de Sitter universe, Phys. Rev. Lett. 100 (2008) 091304 [arXiv:0712.2485, hep-th].Google Scholar
[11] J., Ambjørn, R., Loll, Y., Watabiki, W., Westra and S., Zohren: A string field theory based on Causal Dynamical Triangulations, JHEP 0805 (2008) 032 [arXiv:0802.0719, hep-th].Google Scholar
[12] J., Ambjørn, K. N., Anagnostopoulos, R., Loll and I., Pushkina: Shaken, but not stirred – Potts model coupled to quantum gravity, Nucl. Phys.B 807 (2009) 251 [arXiv:0806.3506, hep-lat].Google Scholar
[13] J., Ambjørn, A., Görlich, J., Jurkiewicz and R., Loll: The nonperturbative quantum de Sitter universe, Phys. Rev.D 78 (2008) 063544 [arXiv:0807.4481, hep-th].Google Scholar
[14] J., Ambjørn, J., Jurkiewicz and R., Loll: The self-organizing quantum universe, Sci. Am. 299N1 (2008) 42–9;Google Scholar
The self-organized de Sitter universe, Int. J. Mod. Phys.D 17 (2009) 2515–20 [arXiv:0806.0397, gr-qc].
[15] J., Ambjørn, J., Jurkiewicz and R., Loll: Quantum gravity as sum over spacetimes [arXiv:0906.3947, gr-qc];
Quantum gravity, or the art of building spacetime, in: Approaches to Quantum Gravity, ed. D., Oriti, Cambridge University Press (2009) 341–59 [hep-th/0604212];
R., Loll: The emergence of spacetime, or, Quantum gravity on your desktop, Class. Quant. Grav. 25 (2008) 114006 [arXiv:0711.0273, gr-qc];Google Scholar
J., Ambjørn, A., Görlich, J., Jurkiewicz and R., Loll: The quantum universe, Acta Phys. Polon.B 39 (2008) 3309–41.Google Scholar
[16] J., Ambjørn, R., Loll, W., Westra and S., Zohren; Summing over all topologies in CDT string field theory, Phys. Lett.B 678 (2009) 227 [arXiv:0905.2108, hep-th].Google Scholar
[17] J., Ambjørn, R., Loll, Y., Watabiki, W., Westra and S., Zohren: Proper time is stochastic time in 2d quantum gravity [arXiv:0911.4211, hep-th].
[18] B. V., de Bakker: Further evidence that the transition of 4D dynamical triangulation is 1st order, Phys. Lett.B 389 (1996) 238 [hep-lat/9603024].Google Scholar
[19] D., ben-Avraham and S., Havlin: Diffusion and Reactions in Fractals and Disordered Systems, Cambridge University Press (2000).
[20] D., Benedetti and J., Henson: Spectral geometry as a probe of quantum spacetime, Phys. Rev.D 80 (2009) 124036 [arXiv:0911.0401, hep-th].Google Scholar
[21] P., Bialas, Z., Burda, A., Krzywicki and B., Petersson: Focusing on the fixed point of 4d simplicial gravity, Nucl. Phys.B 472 (1996) 293 [hep-lat/9601024].Google Scholar
[22] P., Bialas, Z., Burda, B., Petersson and J., Tabaczek: Appearance of mother universe and singular vertices in random geometries, Nucl. Phys.B 495 (1997) 463 [hep-lat/9608030].Google Scholar
[23] G. F. R., Ellis: Issues in the philosophy of cosmology [astro-ph/0602280].
[24] G. W., Gibbons and S. W., Hawking (eds): Euclidean Quantum Gravity, World Scientific, Singapore (1993).
[25] S. B., Giddings: Nonlocality vs. complementarity: a conservative approach to the information problem [arXiv:0911.3395, hep-th].
[26] J. J., Halliwell and J., Louko: Steepest descent contours in the path integral approach to quantum cosmology. 3. A general method with applications to anisotropic minisuperspace models, Phys. Rev.D 42 (1990) 3997–4031.Google Scholar
[27] J., Henson: The causal set approach to quantum gravity, in: Approaches to Quantum Gravity, ed. D., Oriti, Cambridge University Press (2009) 393–413 [gr-qc/0601121].
[28] G., 't Hooft: Emergent quantum mechanics and emergent symmetries, AIP Conf. Proc. 957 (2007) 154 [arXiv:0707.4568, hep-th].Google Scholar
[29] P., Hořava: Spectral dimension of the universe in quantum gravity at a Lifshitz point, Phys. Rev. Lett. 102 (2009) 161301 [arXiv:0902.3657, hep-th].Google Scholar
[30] I., Khavkine, R., Loll and P., Reska: Coupling point-like masses to quantum gravity with causal dynamical triangulations, preprint Utrecht U., Class Quant. Grav. 27 (2010) 185025 [arXiv:1002.4618, gr-qc].Google Scholar
[31] C., Kiefer: Quantum Gravity, 2nd edn, Oxford University Press (2007).
[32] O., Lauscher and M., Reuter: Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev.D 65 (2002) 025013 [hep-th/0108040].Google Scholar
[33] O., Lauscher and M., Reuter: Fractal spacetime structure in asymptotically safe gravity, JHEP 0510 (2005) 050 [hep-th/0508202].Google Scholar
[34] R., Loll: The volume operator in discretized quantum gravity, Phys. Rev. Lett. 75 (1995) 3048 [gr-qc/9506014].Google Scholar
[35] R., Loll and W., Westra: Sum over topologies and double-scaling limit in 2D Lorentzian quantum gravity, Class. Quant. Grav. 23 (2006) 465 [hep-th/0306183].Google Scholar
[36] R., Loll, W., Westra and S., Zohren: Taming the cosmological constant in 2D causal quantum gravity with topology change, Nucl. Phys.B 751 (2006) 419 [hep-th/0507012].Google Scholar
[37] R. L., Maitra: Can causal dynamical triangulations probe factor-ordering issues?, Acta Phys. Polon. B Proc. Suppl. 2 (2009) 563 [arXiv:0910.2117, gr-qc].Google Scholar
[38] M. E. J., Newman and G. T., Barkema: Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford (1999).
[39] M., Niedermaier: The asymptotic safety scenario in quantum gravity: An introduction, Class. Quant. Grav. 24 (2007) R171 [gr-qc/0610018].Google Scholar
[40] M., Niedermaier and M., Reuter: The asymptotic safety scenario in quantum gravity, Living Rev. Rel. 9 (2006) 5.Google Scholar
[41] M., Reed and B., Simon: Methods of Modern Mathematical Physics, vol. 2, Academic Press (1975).
[42] T., Regge: General relativity without coordinates, Nuovo Cim.A 19 (1961) 558–71.Google Scholar
[43] C., Rovelli and L., Smolin: Discreteness of area and volume in quantum gravity, Nucl. Phys.B 442 (1995) 593;Google Scholar
Erratum-Discreteness of area and volume in quantum gravity, Nucl. Phys.B 456 (1995) 753 [gr-qc/9411005].
[44] T., Thiemann: Loop quantum gravity: An inside view, Lect. Notes Phys. 721 (2007) 185 [hep-th/0608210].Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×