Book contents
- Frontmatter
- Contents
- List of figures
- List of tables
- Preface
- Common acronyms
- 1 An introduction to forecasting
- 2 First principles
- 3 Evaluating forecast accuracy
- 4 Forecasting in univariate processes
- 5 Monte Carlo techniques
- 6 Forecasting in cointegrated systems
- 7 Forecasting with large-scale macroeconometric models
- 8 A theory of intercept corrections: beyond mechanistic forecasts
- 9 Forecasting using leading indicators
- 10 Combining forecasts
- 11 Multi-step estimation
- 12 Parsimony
- 13 Testing forecast accuracy
- 14 Postscript
- Glossary
- References
- Author index
- Subject index
11 - Multi-step estimation
Published online by Cambridge University Press: 02 November 2009
- Frontmatter
- Contents
- List of figures
- List of tables
- Preface
- Common acronyms
- 1 An introduction to forecasting
- 2 First principles
- 3 Evaluating forecast accuracy
- 4 Forecasting in univariate processes
- 5 Monte Carlo techniques
- 6 Forecasting in cointegrated systems
- 7 Forecasting with large-scale macroeconometric models
- 8 A theory of intercept corrections: beyond mechanistic forecasts
- 9 Forecasting using leading indicators
- 10 Combining forecasts
- 11 Multi-step estimation
- 12 Parsimony
- 13 Testing forecast accuracy
- 14 Postscript
- Glossary
- References
- Author index
- Subject index
Summary
In this chapter, we evaluate the impact of parameter-estimation uncertainty on forecast-error uncertainty, from the perspective of multi-step (or dynamic) estimation (DE). Advocates of DE argue that when a model is mis-specified, minimization of 1-step errors may not deliver reliable forecasts at longer lead times, so that estimation by minimizing the in-sample counterpart of the desired stepahead horizon may be advantageous. We delineate conditions which favour DE for multi-step forecasting. An analytical example shows how DE may accommodate incorrectly-specified models as the forecast lead alters, improving forecast performance for some mis-specifications. However, in well-specified models, reducing finite-sample biases does not justify DE. In a Monte Carlo forecasting study for integrated processes, estimating a unit root in the presence of a neglected negative moving-average error may favour DE, though other solutions exist to that scenario. A second Monte Carlo study obtains the estimator biases and explains these using asymptotic approximations.
- Type
- Chapter
- Information
- Forecasting Economic Time Series , pp. 243 - 279Publisher: Cambridge University PressPrint publication year: 1998