Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-16T15:17:46.675Z Has data issue: false hasContentIssue false

Part II - Regional Studies

Published online by Cambridge University Press:  30 April 2023

Justin Wilkinson
Affiliation:
Texas State University, Jacobs JETS Contract, NASA Johnson Space Center
Yanni Gunnell
Affiliation:
Université Lumière Lyon 2
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Besler, H. (1984). The development of the Namib dune field according to sedimentological and geomorphological evidence. In Vogel, J. C., ed., Late Cainozoic Palaeoclimates of the Southern Hemisphere. Balkema, Rotterdam, 445454.Google Scholar
Bosworth, W. and Morley, C. K. (1994). Structural and stratigraphic evolution of the Anza rift, Kenya. Tectonophysics, 236, 93115.Google Scholar
Burke, K. (1976). The Chad basin: an active intra-continental basin. Tectonophysics, 36, 197206.CrossRefGoogle Scholar
Burke, K. (1996). The African plate. South African Journal of Geology, 99, 341409.Google Scholar
Burke, K. and Gunnell, Y. (2008). The African Erosion Surface: A Continental-scale Synthesis of Geomorphology, Tectonics, and Environmental Change over the Past 180 Million Years. Geological Society of America Memoir, 201, 66 pp.Google Scholar
Burke, K. and Dewey, J. F. (1974). Two plates in Africa during the Cretaceous? Nature, 249, 313316.Google Scholar
Burke, K. and Wilkinson, M. J. (2016). Landscape evolution in Africa during the Cenozoic and Quaternary–the legacy and limitations of Lester C. King. Canadian Journal of Earth Sciences, 53, 10891102.CrossRefGoogle Scholar
Burke, K. and Wilson, J. T. (1972). Is the African plate stationary? Nature, 239, 387390.Google Scholar
Cooke, R., Warren, A., and Goudie, A. (1993). Desert Geomorphology. University College London Press, London, 2nd edn, 526 pp.CrossRefGoogle Scholar
DMAAC (Defense Mapping Agency Aerospace Center), various dates. Operational Navigation Charts (ONC), 1:1 million scale, St. Louis, Missouri, USA.Google Scholar
DeMenocal, P. B. (1995). Plio-Pleistocene African climate. Science, 270, 5359.Google Scholar
Du Toit, A. (1933). Crustal movement as a factor in the geographical evolution of South Africa. South African Geographical Journal, 16, 320.Google Scholar
Earth Science and Remote Sensing Unit, NASA Johnson Space Center, http://eol.jsc.nasa.gov. <Accessed February 2022>>Google Scholar
England, P. and Houseman, G. (1984). On the geodynamic setting of kimberlite genesis. Earth and Planetary Science Letters, 167, 89104.Google Scholar
Foster, D. A. and Gleadow, A. J. W. (1996). Structural framework and denudation history of the flanks of the Kenya and Anza rifts, East Africa. Tectonics, 15, 258271.Google Scholar
Genik, G. J. (1992). Regional framework, structural and petroleum aspects of rift basins in Niger, Chad and the Central African Republic (C.A.R.). Tectonophysics, 213, 169185.CrossRefGoogle Scholar
Guiraud, R. and Bosworth, W. (1997). Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: synthesis and implications to plate-scale tectonics. Tectonophysics, 282, 3982.Google Scholar
Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Warwick, G. L. (2010). Large distributive fluvial systems: characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167183.Google Scholar
Hofmann, C., Courtillot, V., Féraud, G., et al. (1997). Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature, 389, 838841.Google Scholar
Kadima, E., Delvaux, D., Sebagenzi, S. N., Tack, L., and Kabeya, S. M. (2011). Structure and geological history of the Congo Basin: an integrated interpretation of gravity, magnetic and reflection seismic data. Basin Research, 23, 499527.Google Scholar
King, L. C. (1942). South African Scenery. Oliver and Boyd, London and Edinburgh, 340 pp.Google Scholar
King, L. C. (1967). The Morphology of the Earth. Oliver and Boyd, London and Edinburgh, 2nd edn, 726 pp.Google Scholar
Krenkel, E. (1922). Die Bruchzonen Ostafrikas: Tektonik, Vulkanismus. Erdheben und Schwereanomalien. Gebrüder Borntraeger Verlag, Berlin, 184 pp.Google Scholar
Kreslavsky, M. A. and Head, J. W. (1999). Kilometer-scale slopes on Mars and their correlations with geologic units: initial results from Mars Orbiter Laser Altimeter (MOLA) data. Journal of Geophysical Research, 104, 21,91121,924.Google Scholar
Kreslavsky, M. A. and Head, J. W. (2002). Kilometer-scale roughness of Mars’ surface: Results from MOLA data analysis. Journal of Geophysical Research, 105, 26,69526,712.Google Scholar
Leroux, M. (1996). La Dynamique du Temps et du Climat. Masson, Paris, 310 pp.Google Scholar
McCarthy, T. S. (2013). The Okavango delta and its place in the geomorphological evolution of Southern Africa. South African Journal of Geology, 116: 154. Thirtieth Alex L. du Toit Memorial Lecture. doi:10.2113/gssajg.116.1.1Google Scholar
McKenzie, D. and Weiss, N. (1975). Speculations on the thermal and tectonic history of the earth. Geophysical Journal of the Royal Astronomical Society, 42, 131174.Google Scholar
Miall, A. D. (1996). The Geology of Fluvial Deposits. Springer, New York, 582 pp.Google Scholar
Miall, A. D. (2014). Fluvial Depositional Systems. Springer, New York, 315 pp.Google Scholar
Paul, J. D., Roberts, G. G., and White, N. (2014). The African landscape through space and time. Tectonics, 33, 898935.Google Scholar
Petters, S. W. (1991). Regional Geology of Africa. Springer-Verlag, Berlin, 722 pp.CrossRefGoogle Scholar
Rohling, E. J., Foster, G. L., Grant, K. M., et al. (2014). Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature, 508, 477482.Google Scholar
Salama, R. B. (1997). Rift basins of the Sudan. In Selley, R. C., ed., African Basins, Sedimentary Basins of the World. Elsevier, Amsterdam, 105–149.Google Scholar
Summerfield, M. A. (1996). Tectonics, geology and long-term landscape development. In Adams, W. M., Goudie, A.S., and Orme, A.R., eds., The Physical Geography of Africa. Oxford University Press, Oxford, 117.Google Scholar
Weissmann, G. S., Hartley, A. J., Nichols, G. J., et al. (2011). Alluvial facies distributions in continental sedimentary basins – distributive fluvial systems. In Davidson, S. K., Leleu, S., and North, C. P., eds., From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent Interpretation. SEPM Special Publication, 97, 327355.Google Scholar
Weissmann, G. S., Hartley, A. J., Scuderi, L. A., et al. (2015). Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: a review. Geomorphology, 250, 187219.Google Scholar
Wilkinson, M. J., Marshall, L. G., and Lundberg, J. G. (2006). River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. Journal of South American Earth Sciences, 21, 151172.Google Scholar
Wilkinson, M. J., Kreslavsky, M. H., and Miller, R. McG. (2008). Megafans of the Northern Kalahari Basin. Third Southern Deserts Conference–Kalahari 2008 (University of Oxford, School of Geography), Molopo Lodge, Northern Cape, South Africa, 1619 Sept 2008.Google Scholar
Wilkinson, M. J., Marshall, L. G., Lundberg, J. G., and Kreslavsky, M. H. (2010). Megafan environments in northern South America and their impact on Amazon Neogene aquatic ecosystems. In Hoorn, C. and Wesselingh, F. P., eds., Amazonia, Landscape and Species Evolution: A Look into the Past. Blackwell, London, 162184.Google Scholar

References

Burke, K. and Gunnell, Y. (2008). The African Erosion Surface: A Continental-scale Synthesis of Geomorphology, Tectonics, and Environmental Change over the Past 180 Million Years. Geological Society of America Memoir, 201, 66 pp.Google Scholar
Burke, K. and Wilkinson, M. J. (2016). Landscape evolution in Africa during the Cenozoic and Quaternary--the legacy and limitations of Lester C. King. Canadian Journal of Earth Sciences, 53, 10891102.Google Scholar
Burrough, S. L., Thomas, D. S. G., and Bailey, R. M. (2009). Mega-Lake in the Kalahari: A Late Pleistocene record of the Palaeolake Makgadikgadi system. Quaternary Science Reviews, 28, 13921411.CrossRefGoogle Scholar
Cooke, H. J. (1980). Landform evolution in the context of climate change and neo-tectonism in the middle Kalahari of north-central Botswana. Transactions of the Institute of British Geographers, 5, 8099.Google Scholar
Cooke, R. U., Warren, A., and Goudie, A. S. (1993). Desert Geomorphology. University College London Press, London, 2nd edn, 526 pp.Google Scholar
Cotterill, F. P. D. and de Wit, M. J. (2011). Geoecodynamics and the Kalahari epeirogeny: linking its genomic record, tree of life and palimpsest into a unified narrative of landscape evolution. South African Journal of Geology, 114 , 489514.Google Scholar
Daly, M. C., Green, P., Watts, A. B., et al. (2020). Tectonics and landscape of the Central African Plateau and their implications for a propagating Southwestern Rift in Africa. Geochemistry, Geophysics, Geosystems, 21, e2019GC008746. https://doi.org/10.1029/2019GC008746Google Scholar
Debenham, F. (1952). The Kalahari today. Geographical Journal, 118, 1223.Google Scholar
Dill, H., Kaufhold, S., Lindenmaier, F., et al. (2012). Joint clay-heavy-light mineral analysis: a tool to investigate the hydrographic-hydraulic regime of Late Cenozoic deltaic inland fans under changing climatic conditions (Cuvelai-Etosha Basin, Namibia). International Journal of Earth Science, 102, 1–40.Google Scholar
DMAAC (Defense Mapping Agency Aerospace Center), various dates. Operational Navigation Charts (ONC), 1:1 million scale, St. Louis, Missouri, USA.Google Scholar
Du Toit, A. L. (1927). The Kalahari. South African Journal of Science, 24, 88101.Google Scholar
Earth Sciences and Remote Sensing Unithttp://eol.jsc.nasa.gov, accessed February 2022.Google Scholar
Grove, A. T. (1969). Landforms and climatic change in the Kalahari and Ngamiland. Geographical Journal, 135, 191212.Google Scholar
Haddon, I. G. and McCarthy, T. S. (2005). The Mesozoic–Cenozoic interior sag basins of Central Africa: the Late-Cretaceous–Cenozoic Kalahari and Okavango basins. Journal of African Earth Sciences, 43, 316333.Google Scholar
Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Warwick, G. L. (2010). Large distributive fluvial systems: characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167183.Google Scholar
Houben, G. J., Kaufhold, S., and Miller, R. McG., et al. (2020). Stacked megafans of the Kalahari Basin as archives of paleogeography, river capture and Cenozoic paleoclimate of southwestern Africa. Journal of Sedimentary Research, 90, 9801010.Google Scholar
Hutchins, D. G., Hutton, S. M., and Jones, C. R. (1976a). The geology of the Okavango Delta. Proceedings of the Symposium on the Okavango Delta and its future utilization. National Museum, Botswana, 1319.Google Scholar
Hutchins, D. G., Hutton, L. D., Hutton, S. M., Jones, C. R., and Leonhert, E. P. (1976b). A summary of the geology, seismicity, geomorphology and hydrogeology of the Okavango Delta. Geological Survey of Botswana, Bulletin 7.Google Scholar
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F. (2006). World map of Köppen–Geiger climate classification. Meteorologische Zeitschrift, 15, 259263.Google Scholar
Kreslavsky, M. A. and Head, J. W. (1999). Kilometer-scale slopes on Mars and their correlations with geologic units: initial results from Mars Orbiter Laser Altimeter (MOLA) data. Journal of Geophysical Research, 104, 21,91121,924.Google Scholar
Kreslavsky, M. A. and Head, J. W. (2002). Kilometer-scale roughness of Mars’ surface: results from MOLA data analysis. Journal of Geophysical Research, 105, 26,69526,712.Google Scholar
Mallick, D. I. J., Habgood, F., and Skinner, A. C. (1981). Geological interpretation of Landsat imagery and air photography of Botswana. Overseas Geology and Mineral Resources, Institute of Geological Sciences, National Environmental Research Council, London.Google Scholar
McCarthy, T. S., and Ellery, W. M. (1998). The Okavango Delta. Royal Society of South Africa, Transactions, 53, 115126.Google Scholar
McCarthy, T. S., Smith, N. D., Ellery, W. M., and Gumbricht, T. (2002). The Okavango Delta—semiarid alluvial-fan sedimentation related to incipient rifting. In M. W. Renaut and G. M. Ashley, eds., Sedimentation in Continental Rifts. SEPM Special Publication, 73, 179193.Google Scholar
McCarthy, T. S. (2013). The Okavango Delta and its place in the geomorphological evolution of southern Africa. South African Journal of Geology, 116, 154.CrossRefGoogle Scholar
McFarlane, M. J. and Eckardt, F. D. (2008). Lake Deception: a new Makgadikgadi palaeolake. Botswana Notes and Records, 38, 195201.Google Scholar
Mendelsohn, J. and El Obeid, S. (2004). The Okavango River. Struik Publishers, Cape Town.Google Scholar
Mendelsohn, J. M., van der Post, C., Ramberg, L., et al., 2010. Okavango Delta: Floods of Life. RAISON, Windhoek, Namibia, 144 pp.Google Scholar
Miller, R. McG. (1997). The Owambo Basin of northern Namibia. In Selley, R.C, ed., African Basins, Sedimentary Basins of the World. Elsevier, Amsterdam, 237268.Google Scholar
Miller, R. McG. (2008). The Geology of Namibia, Vol. 3: Palaeozoic to Cenozoic. Ministry of Mines and Energy, Geological Survey, Windhoek, Namibia.Google Scholar
Miller, R. McG. (2010). Lithology of Boreholes WW 201216 and WW 201217, Ohangwena region, Namibia. Dept. of Water Affairs and Forestry, Windhoek, Namibia.Google Scholar
Miller, R. McG., Pickford, M., and Senut, B. (2010). The geology, palaeontology and evolution of the Etosha Pan, Namibia: implications for terminal Kalahari deposition. South African Journal of Geology, 113, 307334.Google Scholar
Miller, R. McG. (2013). Groundwater for the North of Namibia: Technical Note no. 1—drill-log interpretation and evaluation of drillings KOH I and KOH II aquifers, Ohangwena Region, Cuvelai–Etosha Basin. BGR report 05-2345, DWAF, Windhoek, Namibia and BGR, Hanover, Germany.Google Scholar
Miller, R. McG., Lohe, C., Hasiotis, S. T., et al. (2016). The Kalahari Group in the 400-m deep core borehole WW 203302, northern Owambo Basin. Communications of the Geological Survey of Namibia, 17, 143238.Google Scholar
Moore, A. E. (1999). A reappraisal of epeirogenic flexure axes in Southern Africa. South African Journal of Geology, 102, 363376.Google Scholar
Moore, A. E. and Larkin, P. A. (2001). Drainage evolution in south-central Africa since the break-up of Gondwana. South African Journal of Geology, 104, 4768.Google Scholar
Moore, A. E., Cotterill, F. P. D., Main, M. P. L., and Williams, H. B. (2007). The Zambezi River. In Gupta, A., ed., Large Rivers: Geomorphology and Management. Wiley, Chichester, 311–332.Google Scholar
Moore, A. E., Cotterill, F. P. D., and Eckardt, F. D. (2012). The evolution and ages of Makgadikgadi palaeo-lakes: Consilient evidence from Kalahari drainage evolution. South African Journal of Geology , 115, 385413.CrossRefGoogle Scholar
Podgorski, J. E., Green, A. J., Kgotlhang, L., et al. (2013). Paleo-megalake and paleo-megafan in southern Africa. Geology, 41, 11551158.Google Scholar
Stengel, H. W. (1963). Wasserwirtschaft, Waterwese, Water Affairs in S. W. Africa. Verlag Der Kreis, Windhoek, Namibia.Google Scholar
Thomas, D. S. G. and Shaw, P. A. (1991). The Kalahari Environment. Cambridge University Press, Cambridge, 284 pp.Google Scholar
Ventra, D. and Clarke, L. E. (2018). Geology and geomorphology of alluvial and fluvial fans: current progress and research perspectives. In Ventra, D and Clarke, L. E., eds., Geology and Geomorphology of Alluvial and Fluvial Fans: Terrestrial and Planetary Perspectives. Geological Society of London, Special Publication, 440, 121.Google Scholar
Wehberg, J. and Weinzierl, T. (2013). The Okavango Basin – physical-geographical settings. Biodiversity & Ecology, 5, 1113.Google Scholar
Weissmann, G. S., Hartley, A. J., Nichols, G. J., et al. (2010). Fluvial form in modern continental sedimentary basins: distributive fluvial systems. Geology 38, 39–42.Google Scholar
Weissmann, G. S., Hartley, A. J., Nichols, G. J., et al. (2011). Alluvial facies distributions in continental sedimentary basins – distributive fluvial systems. In Davidson, S. K., Leleu, S., and North, C. P, eds., From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent Interpretation. SEPM Special Publication, 97, 327–355.Google Scholar
Wellington, J. H. (1938). The Kunene River and the Etosha Plain. South African Geographical Journal, 20, 2132.Google Scholar
Wellington, J. H. (1955). Southern Africa, A Geographical Study, Vol. 1: Physical Geography. Cambridge University Press, Cambridge, 528 pp.Google Scholar
Wells, N. A. and Dorr, J. A. (1987). Shifting of the Kosi River, northern India. Geology, 15, 204207.Google Scholar
Wilkinson, M. J., Marshall, L. G., and Lundberg, J. G. (2006). River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. Journal of South American Earth Sciences, 21, 151172.Google Scholar
Wilkinson, M. J., Kreslavsky, M. H., and Miller, R.McG. (2008). Megafans of the Northern Kalahari Basin. Third Southern Deserts Conference – Kalahari 2008. University of Oxford, School of Geography, Molopo Lodge, Northern Cape, South Africa, 1619 Sept 2008.Google Scholar
Wilkinson, M. J., Marshall, L. G., Lundberg, J. G., and Kreslavsky, M. H. (2010). Megafan environments in northern South America and their impact on Amazon Neogene ecosystems. In Hoorn, C. and Wesselingh, F. P, eds., Amazonia, Landscape and Species Evolution: A Look into the Past. Blackwell, London, 162184.Google Scholar

References

Amsler, M. L. and Prendes, H. H. (2000). Transporte de sedimentos y procesos fluviales asociados. El río Paraná en su tramo medio (pp. 233-306). Santa Fe, Argentina: Centro de Publicaciones, Universidad Nacional del Litoral.Google Scholar
Amsler, M. L. and Drago, E. C. (2009). A review of the suspended sediment budget at the confluence of the Paraná and Paraguay Rivers. Hydrological Processes: An International Journal, 23, 32303235.Google Scholar
Barnes, J. and Heins, W. (2009). Plio-Quaternary sediment budget between thrust belt erosion and foreland deposition in the central Andes, southern Bolivia. Basin Research, 21, 91109.Google Scholar
Bowman, D. (2019). Principles of Alluvial Fan Morphology. Springer, Berlin.Google Scholar
Bull, W. B. (1964). Geomorphology of Segmented Alluvial Fans in Western Fresno County, California. US Government Printing Office.Google Scholar
Bull, W. B. (1968). Fan, Alluvial, Cone, . In Fairbridge, R.W, ed., Geomorphology, Encyclopedia of Earth Sciences Series. Springer, Berlin, 710.Google Scholar
Carlini, A. A. and Tonni, E. P. (2000). Mamíferos fósiles del Paraguay. Departamento Científico Paleontología Vertebratos Museo de La Plata.Google Scholar
Cochonneau, G., Sondag, F., Guyot, J. L., et al. (2006). The environmental observation and research project, ORE HYBAM, and the rivers of the Amazon basin. Climate Variability and Change – Hydrological Impacts, 308, 4450.Google Scholar
Coltorti, M., Della Fazia, J., Rios, F. P., and Tito, G. (2012). Nuagapua (Chaco, Bolivia): evidence for the latest occurrence of megafauna in association with human remains in South America. Journal of South American Earth Sciences, 33, 5667.Google Scholar
Contreras, S. A. and Zucol, A. F. (2019). Late Quaternary vegetation history based on phytolith records in the eastern Chaco (Argentina). Quaternary International, 505, 2133.Google Scholar
Cordini, I. R. (1947). Los ríos Pilcomayo en la región del Patiño. Anales I, Dirección de Minas y Geología (Buenos Aires), 82 pp.Google Scholar
Fabbian, T., Ferreyro, V., De Felippi, R., Bernal, W., and Sanches, M. (1979). Estudio Geomorfológico en la zona del Bañado de Copo. Area: Rio Salado, Provincia de Santiago del Estero. In, Consejo Federal de Inversiones-CFI.Google Scholar
Garreaud, R. (2000). Cold air incursions over subtropical South America: mean structure and dynamics. Monthly Weather Review, 128, 25442559.Google Scholar
Garreaud, R., Vuille, M., and Clement, A. C. (2003). The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 522.Google Scholar
Giles, P. T. (2010). Investigating the use of alluvial fan volume to represent fan size in morphometric studies. Geomorphology, 121, 317328.Google Scholar
Ginzburg, R., Adámoli, J., Herrera, P., and Torrella, S. (2005). Los Humedales del Chaco: clasificación, inventario y mapeo a escala regional. Miscelánea, 14, 121138.Google Scholar
Guyot, J. L., Bourges, J., and Cortez, J. (1994). Sediment transport in the Rio Grande, an Andean river of the Bolivian Amazon drainage basin. IAHS Publications-Series of Proceedings and Reports–International Association of Hydrological Sciences, 224, 223232.Google Scholar
Guyot, J. L., Filizola, N., Quintanilla, J., and Cortez, J. (1996). Dissolved solids and suspended sediment yields in the Rio Madeira basin, from the Bolivian Andes to the Amazon. Erosion and Sediment Yield: Global and Regional Perspectives, 5563.Google Scholar
Guzmán, S. V. (2014). El esplorador J. Crevaux i el rio Pilcomayo. Conferencia de la Sociedad Geográfica Argentina, 83.Google Scholar
Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Warwick, G. L. (2010). Large distributive fluvial systems: characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167183Google Scholar
Hoffstetter, R. (1968). Ñuapua, un gisement de vertébrés pléistocènes dans le Chaco Bolivien. Bulletin du Museum National d’Histoire Naturelle (2 Série), 40, 823836.Google Scholar
Hoffstetter, R. (1978). Une faune de Mammifères pléistocènes au Paraguay. Comptes Rendus Sommaires des Sciences de la Societé Géologique de France, 1, 3233.Google Scholar
Horton, B. and DeCelles, P. G. (2001). Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: Implications for drainage network evolution in fold‐thrust belts. Basin Research, 13, 4363.Google Scholar
Iriondo, M. (1974). Los ríos desajustados de Formosa. Una hipótesis alternativa. Revista de la Asociación Geológica Argentina, 29, 136137.Google Scholar
Iriondo, M. (1990). Map of the South American plains-Its present state. Quaternary of South America and Antarctic Peninsula, 6, 297308.Google Scholar
Iriondo, M. (1993). Geomorphology and late quaternary of the Chaco (South America). Geomorphology, 7, 289303.Google Scholar
Iriondo, M. H. (1986). Dinámica fluvial y transporte de sedimentos en el arroyo Los Amores (Chaco-Santa Fe). Actas, Primera Reunión, Asociación Argentina de Sedimentología. La Plata : Asociación Argentina de Sedimentología, 1921.Google Scholar
Iriondo, M. H. and Orfeo, O. (2014). Esquema hidrosedimentario de la cuenca del río Pilcomayo. In, 14 Reunion, Asociación Argentina de Sedimentología. Puerto Madryn, Argentina: Asociación Argentina de Sedimentología, 140-141.Google Scholar
Kandus, P., Minotti, P., Fabricante, I., and Ramonell, C. (2017). Identificación y Delimitación de Regiones de Humedales de Argentina. In Benzaquen, L., Blanco, R. D. E., Bo, P., et al. eds., Regiones de Humedales de la Argentina. Universidad Nacional de San Martín y Universidad de Buenos Aires: Ministerio de Ambiente y Desarrollo Sustentable, Fundación Humedales/Wetlands International, 3148.Google Scholar
Latrubesse, E. M. and Ramonell, C. G. (1994). A climatic model for southwestern Amazonia in last glacial times. Quaternary International, 21, 163169.Google Scholar
Latrubesse, E. M., Stevaux, J. C., and Sinha, R. (2005). Tropical rivers. Geomorphology, 70, 187206.Google Scholar
Latrubesse, E. M. and Brea, D. (2009). Floods in Argentina. Developments in Earth Surface Processes, 13, 333349.Google Scholar
Latrubesse, E. M., Stevaux, J. C., Cremon, E. H., et al. (2012). Late Quaternary megafans, fans and fluvio-aeolian interactions in the Bolivian Chaco, Tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 356, 7588.Google Scholar
Latrubesse, E. M. and Restrepo, J. D. (2014). Sediment yield along the Andes: continental budget, regional variations, and comparisons with other basins from orogenic mountain belts. Geomorphology, 216, 225233.Google Scholar
Latrubesse, E. M. (2015). Large rivers, megafans and other Quaternary avulsive fluvial systems: A potential “who’s who” in the geological record. Earth-Science Reviews, 146, 130.Google Scholar
Lehner, B., Verdin, K., and Jarvis, A. (2006). HydroSHEDS technical documentation, version 1.0. World Wildlife Fund US, Washington, DC, 127.Google Scholar
Marchetti, Z. (2017). Region Humedales del Chaco. In Benzaquen, L., Blanco, R. D. E., Bo, P., et al., eds., Regiones de Humedales de la Argentina. Universidad Nacional de San Martín y Universidad de Buenos Aires: Ministerio de Ambiente y Desarrollo Sustentable, Fundación Humedales/Wetlands International, 5972.Google Scholar
Martín-Vide, J. P., Amarilla, M., and Zárate, F. J. (2014). Collapse of the Pilcomayo River. Geomorphology, 205, 155163.Google Scholar
May, J.-H., Argollo, J., and Veit, H. (2008a). Holocene landscape evolution along the Andean piedmont, Bolivian Chaco. Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 505520.Google Scholar
May, J.-H., Zech, R., and Veit, H. (2008b). Late Quaternary paleosol–sediment-sequences and landscape evolution along the Andean piedmont, Bolivian Chaco. Geomorphology, 98, 3454.Google Scholar
May, J.-H. and Veit, H. (2009). Late Quaternary paleosols and their paleoenvironmental significance along the Andean piedmont, Eastern Bolivia. Catena, 78, 100116.Google Scholar
Milana, J. P. and Ruzycki, L. (1999). Alluvial-fan slope as a function of sediment transport efficiency. Journal of Sedimentary Research, 69, 553562.Google Scholar
Minotti, P. (2017). Subregion Riachos y Esteros del Chaco Húmedo. In Benzaquen, L, Blanco, R.D.E., Bo, P., et al., eds., Regiones de Humedales de la Argentina. Universidad Nacional de San Martín y Universidad de Buenos Aires: Ministerio de Ambiente y Desarrollo Sustentable, Fundación Humedales/Wetlands International, 149162.Google Scholar
Navarro, G., Molina, J. A., and de Molas, L. P. (2006). Classification of the forests of the northern Paraguayan Chaco. Phytocoenologia, 36, 473508.Google Scholar
Neiff, J. J. (1999). El régimen de pulsos en ríos y grandes humedales de Sudamérica. Tópicos Sobre Humedales Subtropicales y Templados de Sudamérica, 229, 99103.Google Scholar
Nogués-Paegle, J., Mechoso, C. R., Fu, R., et al. (2002). Progress in Pan American CLIVAR research: understanding the South American monsoon. Meteorologica, 27, 130.Google Scholar
Orfeo, O. (1986). Estudio sedimentológico de ambientes fluviales del Chaco Oriental. Rev. Ambiente Subtropical, 1, 6072.Google Scholar
Park, E. and Latrubesse, E. M. (2017). The hydro-geomorphologic complexity of the lower Amazon River floodplain and hydrological connectivity assessed by remote sensing and field control. Remote Sensing of Environment, 198, 321332.Google Scholar
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418422.Google Scholar
Peri, V. G., Rossello, E. A. (2010). Anomalías morfoestructurales del drenaje del río Salado sobre las Lomadas de Otumpa (Santiago del Estero y Chaco) detectadas por procesamiento digital. Revista de la Asociación Geológica Argentina, 66, 636648.Google Scholar
Placci, G. and Holz, S. (2004). Patrón de paisaje de bosques del Chaco Oriental. Ecología y Manejo de los Bosques de Argentina. Editorial de la Universidad Nacional de La Plata.Google Scholar
Schumm, S. A. (2007). River Variability and Complexity. Cambridge University Press, Cambridge, UK.Google Scholar
SSRH, S.d.R.H. (2004). Estadística Hidrológica de la República Argentina. Presidencia de la Nación, Rep. Argentina.Google Scholar
Tonni, E., and Scillato-Yané, G. (1997). Una nueva localidad con mamíferos pleistocenos en el Norte de la Argentina. Aspectos paleozoogeográficos. In VI Congresso da Associação Brasileira de Estudos do Quaternário e Reunião sobre o Quaternário da América do Sul, Curitiba, Brasil, Anais, 345348.Google Scholar
Vizy, E. K. and Cook, K. H. (2007). Relationship between Amazon and high Andes rainfall. Journal of Geophysical Research: Atmospheres, 112. doi.org/10.1029/2006JD007980Google Scholar
Vuille, M., Hardy, D. R., Braun, C., Keimig, F., and Bradley, R. S. (1998). Atmospheric circulation anomalies associated with 1996/1997 summer precipitation events on Sajama Ice Cap, Bolivia. Journal of Geophysical Research: Atmospheres, 103, 1119111204.Google Scholar
Wilkinson, M. J., Marshall, L. G., and Lundberg, J. G. (2006). River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. Journal of South American Earth Sciences, 21, 151172.Google Scholar
Zhou, J. and Lau, K. (1998). Does a monsoon climate exist over South America? Journal of Climate, 11, 10201040.2.0.CO;2>CrossRefGoogle Scholar
Zurita, A. E., Miño-Boilini, Á. R., Carlini, A. A., Iriondo, M., and Alcaraz, M. A. (2009). Paleontología del Chaco Oriental: Una nueva localidad con mamíferos fósiles pleistocenos en el río Bermejo (Formosa, Argentina). Revista Mexicana de Ciencias Geológicas, 26, 277288.Google Scholar
Zurita, A. E., Miño-Boilini, A., Francia, A., et al. (2014). Paleontología y cronología del Cuaternario de las provincias de Corrientes y Formosa, Argentina. Acta Geológica Lilloana, 26, 7586.Google Scholar

References

Ab’Sáber, A. N. (1988). O Pantanal Mato-Grossense e a teoria dos refúgios. Revista Brasileira de Geografia, 50, 957.Google Scholar
Alho, C. J. R. (2005). The Pantanal. In L. H. Fraser, and P. A. Keddy, , eds., The World’s Largest Wetlands – Ecology and Conservation. Cambridge University Press, Cambridge, 203271.Google Scholar
Almeida, F. F. M. (1959). Traços gerais da geomorfologia do Centro-Oeste brasileiro. In Almeida, F. F. M. and Lima, M. A., eds., Planalto Centro-Ocidental e Pantanal Matogrossense. Guia de Excursão nº 1 do XVIII Congresso Internacional de Geografia. Conselho Nacional de Geografia, Rio de Janeiro, 765.Google Scholar
ANA – Agência Nacional de Águas (2004). Implementação de Práticas de Gerenciamento Integrado de Bacia Hidrográfica para o Pantanal e Bacia do Alto Paraguai ANA/GEF/PNUMA/OEA. Programa de Ações Estratégicas para o Gerenciamento Integrado do Pantanal e Bacia do Alto Paraguai: Síntese Executiva. Brasília, 64 pp.Google Scholar
Assine, M. L. (2003). Sedimentação na Bacia do Pantanal Mato-Grossense, Centro-Oeste do Brasil. Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista – Unesp, Rio Claro, Brazil, Tese de Livre-Docência, 106 pp.Google Scholar
Assine, M. L. and Soares, P. C. (2004). Quaternary of the Pantanal, west-central Brazil. Quaternary International, 114, 2334.Google Scholar
Assine, M. L. (2005). River avulsions on the Taquari megafan, Pantanal wetland, Brazil. Geomorphology, 70, 357371.Google Scholar
Assine, M. L. and Silva, A. (2009). Contrasting fluvial styles of the Paraguay River in the northwestern border of the Pantanal wetland, Brazil. Geomorphology, 113, 189199.Google Scholar
Assine, M. L., Corradini, F. A., Pupim, F. N., and McGlue, M. M. (2014). Channel arrangements and depositional styles in the São Lourenço fluvial megafan, Brazilian Pantanal wetland. Sedimentary Geology, 301, 172184.Google Scholar
Assine, M. L. (2015). Brazilian Pantanal: A large pristine tropical wetland. In Vieira, B. C., , A. A. R, and Salgado, L. J. C. Santos, , eds., Landscapes and Landforms of Brazil. Springer, Dordrecht, 135146.Google Scholar
Assine, M. L., Merino, E. R., Pupim, F. N., et al. (2015a). Geology and geomorphology of the Pantanal Basin. In Bergier, I. and Assine, M. L, eds., Dynamics of the Pantanal Wetland in South America, Springer Nature, Cham, Switzerland, 25–50.Google Scholar
Assine, M. L., Macedo, H., Stevaux, J., et al. (2015b). Avulsive rivers in the hydrology of the Pantanal wetland. In Bergier, I. and Assine, M. L., eds., Dynamics of the Pantanal Wetland in South America. Springer Nature, Cham, Switzerland, 83–110.Google Scholar
Assine, M. L., Merino, E. R., Pupim, F. N., Macedo, H. A., and Santos, M. G. M. (2015c). The Quaternary alluvial systems tract of the Pantanal Basin, Brazil. Brazilian Journal of Geology, 45, 475489.Google Scholar
Assumpção, M. and Sacek, V. (2013). Intra-plate seismicity and flexural stresses in central Brazil. Geophysical Research Letters, 40, 487491.Google Scholar
Barbiéro, L., Queiróz-Neto, J. P., Ciornei, G., et al. (2002). Geochemistry of water and groundwater in the Nhecolândia, Pantanal of Mato Grosso, Brazil: variability and associated process. Wetlands, 22, 528540.Google Scholar
Braun, E. W. G. (1977). Cone aluvial do Taquari, unidade geomórfica marcante da planície quaternária do Pantanal. Revista Brasileira Geografia, 39, 164180.Google Scholar
Buehler, H. A., Weissmann, G. S., Scuderi, L. A., and Hartley, A. J. (2011). Spatial and temporal evolution of an avulsion on the Taquari river distributive fluvial system from satellite image analysis. Journal of Sedimentary Research, 81, 630640.Google Scholar
Clapperton, C. (1993). Quaternary Geology and Geomorphology of South America. Elsevier, Amsterdam, 779 p.Google Scholar
Corradini, F. A. and Assine, M. L. (2012). Compartimentação geomorfológica e processos deposicionais no megaleque fluvial do rio São Lourenço, Pantanal mato-grossense. Revista Brasileira de Geociências, 42, 2033.Google Scholar
Davidson, S. K. and Hartley, A. J. (2014). A quantitative approach to linking drainage area and distributive-fluvial-system area in modern and ancient endorheic basins. Journal of Sedimentary Research, 84, 10051020.Google Scholar
Facincani, E. M. and Assine, M. L. (2010). Geomorfologia fluvial do rio Aquidauana, borda sudeste do Pantanal Mato-Grossense. In Martins Junior, C and Oliveira Neto, A. F, eds., Revelando Aquidauana (Campo Grande, Editora da UFMS, Brazil), (Serie Fronteiras nº 3), 267284.Google Scholar
Gregório, E. C., Facincani, E. M., and Amorin, G. M. (2016). Mudanças ambientais quaternárias no Megaleque Fluvial do Aquidauana, borda sudeste do Pantanal Matogrossense. Revista da ANPEGE, 12, 363389.Google Scholar
Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Warwick, G. L. (2010). Large distributive fluvial systems: characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167183.Google Scholar
Horton, B. K. and DeCelles, P. G. (1997). The modern foreland basin system adjacent to the Central Andes. Geology, 25, 895898.Google Scholar
Horton, B. K. and DeCelles, P. G. (2001). Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: implications for drainage network evolution in foldthrust belts. Basin Research, 13, 4363.Google Scholar
Jongman, R. H. G. (2006). Pantanal-Taquari; Tools for Decision Making in Integrated Water Management. Alterra-rapport 1295. Wageningen, The Netherlands: Alterra.Google Scholar
Klammer, C. (1982). Die Paläowüste des Pantanal von Mato Grosso und Die Pleistozäne Klimageschichte der Brasilianischen Randtropen. Zeitschrift für Geomorphologie, 26, 393416.Google Scholar
Kuerten, S. and Assine, M. L. (2011). O rio Paraguai no megaleque do Nabileque, sudoeste do Pantanal Mato-Grossense, MS. Revista Brasileira de Geociências, 41, 642653.Google Scholar
Kuerten, S., Parolin, M., Assine, M. L., and McGlue, M. M. (2013). Sponge spicules indicate Holocene environmental changes on the Nabileque River floodplain, southern Pantanal, Brazil. Journal of Paleolimnology, 49, 171183.Google Scholar
Latrubesse, E. M., Stevaux, J. C., Cremon, E. H., et al. (2012). Late Quaternary megafans, fans and fluvio-aeolian interactions in the Bolivian Chaco, tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 356, 7588.Google Scholar
Latrubesse, E. M. (2015). Large rivers, megafans and other Quaternary avulsive fluvial systems: A potential “who’s who” in the geological record. Earth-Science Reviews, 146, 130.Google Scholar
Macedo, H. A., Assine, M. L., Pupim, F. N., et al. (2014). Mudanças paleo-hidrológicas na planície do rio Paraguai, Quaternario do Pantanal. Revista Brasileira de Geomorfologia, 15, 7585.Google Scholar
May, J.-H., Argollo, J., and Veit, H. (2008a). Holocene landscape evolution along the Andean piedmont, Bolivian Chaco. Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 505520.Google Scholar
May, J.-H., Zech, R., and Veit, H. (2008b). Late Quaternary paleosol–sediment-sequences and landscape evolution along the Andean piedmont, Bolivian Chaco. Geomorphology, 98, 3454.Google Scholar
McGlue, M. M., Silva, A., Zani, H., et al. (2012). Lacustrine records of Holocene flood pulse dynamics in the Upper Paraguay River watershed (Pantanal wetlands, Brazil). Quaternary Research, 78, 285294.Google Scholar
Meira, F. C., Stevaux, J. C., Torrado, P. V., and Assine, M. L. (2019). Compartimentação e evolução geomorfológica da planície do rio Cuiabá, Pantanal Mato-Grossense. Revista Brasileira de Geomorfologia, 20, 159183.Google Scholar
Merino, E. R. (2017). Evolução geomorfológica e mudanças paleo-geográficas na porção sul do Pantanal: a planície de interleques do Rio Negro e leques fluviais coalescentes. PhD thesis. Universidade Estadual Paulista, Rio Claro, Brazil.Google Scholar
Nanson, G. C. and Huang, H. Q. (2008). Least action principle, equilibrium states, iterative adjustment and the stability of alluvial channels. Earth Surface Processes and Landforms, 33, 923942.Google Scholar
Padovani, C. R. (2010). Dinâmica das Inundações do Pantanal. Universidade de São Paulo/ESALQ, Piracicaba – SP, 174 p.Google Scholar
PCBAP, Plano de Conservacão da Bacia do Alto Paraguai – Pantanal (1997). Ministério do meio ambiente, dos recursos hídricos e da amazônia legal. Programa Nacional do Meio Ambiente (PNMA), Brasília.Google Scholar
Pupim, F. N. (2014). Geomorfologia e paleo-hidrologia dos megaleques dos rios Cuiabá e São Lourenço, Quaternário da Bacia do Pantanal. Instituto de Geociências e Ciências Exatas – IGCE, Universidade Estadual Paulista – Unesp, Rio Claro – SP, Brazil, 109 pp.Google Scholar
Pupim, F. N., Assine, M. L., Merino, E. R., Macedo, H. A., and Silva, A. (2014). A planície interleques do rio Piquiri, bacia do Pantanal. In 5º Simposio de Geotecnologias no Pantanal, Campo Grande, MS, Brazil, 848857.Google Scholar
Shiraiwa, S. (1994). Flexura da litosfera continental sob os Andes Centrais e a origem da Bacia do Pantanal. PhD thesis, Universidade de São Paulo, IAG, São Paulo, Brazil.Google Scholar
Silva, A. (2010). Geomorfologia do megaleque do rio Paraguai, Quaternário do Pantanal Mato-Grossense, Centro-Oeste do Brasil. PhD thesis, Universidade Estadual Paulista, Rio Claro.Google Scholar
Sinha, R. and Friend, P. F. (1994). River systems and their sediment flux, Indo-Gangetic plains, Northern Bihar, India. Sedimentology, 41, 825845.Google Scholar
Souza, O. C., Araujo, M. R., and Mertes, L. A. K. (2002). Form and process along the Taquari River alluvial fan, Pantanal, Brazil. Zeitschrift für Geomorphologie, 129, 73107.Google Scholar
Stevaux, J. C., Macedo, H. A., Assine, M. L., and Silva, A., (2020). Changing fluvial styles and backwater flooding along the Upper Paraguay River plains in the Brazilian Pantanal wetland. Geomorphology, 350, 106906.Google Scholar
Tricart, J. (1982). El Pantanal: un ejemplo del impacto geomorfológico sobre el ambiente. Informaciones Geograficas, 29, 8197.Google Scholar
Ussami, N., Shiraiwa, S., and Dominguez, J. M. L. (1999). Basement reactivation in a sub-Andean foreland flexural bulge: The Pantanal wetland, SW Brazil. Tectonics, 18, 2539.CrossRefGoogle Scholar
Weissmann, G. S., Hartley, A. J., Nichols, G. J., et al. (2010). Fluvial form in modern continental sedimentary basins: distributive fluvial systems. Geology, 38, 3942.Google Scholar
Whitney, B. S., Mayle, F. E., Punyasena, S. W., et al. (2011). A 45 kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 307, 177192.Google Scholar
Wilkinson, M. J., Marshall, L. G., and Lundberg, J. G. (2006). River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. Journal of South American Earth Sciences, 21, 151172.Google Scholar
Zani, H. and Assine, M. L. (2011). Paleocanais no megaleque do rio Taquari: mapeamento e significado geomorfológico. Revista Brasileira de Geociências, 41, 3745.Google Scholar
Zani, H., Assine, M. L., and McGlue, M. M. (2012). Remote sensing analysis of depositional landforms in alluvial settings: method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology, 161–162, 8292.Google Scholar

References

Aalto, R., Maurice-Bourgoin, L., Dunne, T., et al. (2003). Episodic sediment accumulation on Amazonian flood plains influenced by El Niño/Southern Oscillation. Nature, 425, 493497.Google Scholar
Agrar- und Hydrotechnik GmbH (1973). Proyecto de desarrollo agroindustrial Abapo-Izozog – Perforación de Pozos. Essen: AHT GROUP AG.Google Scholar
Agrar- und Hydrotechnik GmbH (1974a). Proyecto de desarrollo agroindustrial Abapo-Izozog – Hidrología. Essen: AHT GROUP AG.Google Scholar
Agrar- und Hydrotechnik GmbH (1974b). Proyecto de desarrollo agroindustrial Abapo-Izozog – Pedología. Tomo I - Sector Oeste. Essen: AHT GROUP AG.Google Scholar
Ashworth, P. J., Best, J. L. and Jones, M. A. (2007). The relationship between channel avulsion, flow occupancy and aggradation in braided rivers: insights from an experimental model. Sedimentology, 54, 497513.Google Scholar
Assine, M. L. (2005). River avulsions on the Taquari megafan, Pantanal wetland, Brazil. Geomorphology, 70, 357371.Google Scholar
Assine, M. L., Macedo, H. A., Stevaux, J. C., et al. (2016). Avulsive rivers in the hydrology of the Pantanal wetland. In Bergier, I. and Assine, L. M., eds., Dynamics of the Pantanal Wetland in South America. Springer International Publishing, Cham, 83110.Google Scholar
Baby, P., Herail, G., Salinas, R. and Sempere, T. (1992). Geometric and kinematic evolution of passive roof duplexes deduced from cross section balancing: example from the foreland thrust system of the southern Bolivian subandean zon. Tectonics, 11, 523536.Google Scholar
Barboza, F., Geyh, M. A., Hoffmann, R., et al. (2000). Soil formation and Quaternary geology of the Paraguayan Chaco - Thematic mapping. Zeitschrift für angewandte Geologie, Sonderheft 1, 4953.Google Scholar
Barnes, J. B. and Heins, W. A. (2009). Plio-Quaternary sediment budget between thrust belt erosion and foreland deposition in the central Andes, southern Bolivia. Basin Research, 21, 91109.Google Scholar
Bernal, C., Christophoul, F., Darrozes, J., et al. (2013). Crevassing and capture by floodplain drains as a cause of partial avulsion and anastomosis (lower Rio Pastaza, Peru). Journal of South American Earth Sciences, 44, 6374.Google Scholar
Bernal, C., Christophoul, F., Darrozes, J., et al. (2010). Late Glacial and Holocene avulsions of the Rio Pastaza Megafan (Ecuador–Peru): frequency and controlling factors. International Journal of Earth Sciences, 100, 17591782.Google Scholar
Berri, G. J. and Inzunza, J. B. (1993). The effect of the low-level jet on the poleward water vapour transport in the central region of South America. Atmospheric Environment, 27 A, 335341.Google Scholar
Bridge, J. (2006). Fluvial facies models: recent developments. In Posamentier, H. W. and Walker, R. G., eds., Facies Models Revisited. SEPM Society for Sedimentary Geology, Tulsa, 85170.Google Scholar
Bridge, J. S. (2003). Rivers and Floodplains: Forms, Processes, and Sedimentary Record, Blackwell Publishing, Hoboken (NJ).Google Scholar
Brierley, G. J. (1997). What is a fluvial levee? Sedimentary Geology, 114, 19.Google Scholar
Bristow, C. S. (1999). Gradual avulsion, river metamorphosis and reworking by underfit streams: a modern example from the Brahmaputra River in Bangladesh and a possible ancient example in the Spanish Pyrenees. In Smith, N. D and Rogers, J, eds., Fluvial Sedimentology IV. Blackwell, Oxford, 221230.Google Scholar
Buehler, H. A., Weissmann, G. S., Scuderi, L. A., and Hartley, A. J. (2011). Spatial and temporal evolution of an avulsion on the Taquari River distributive fluvial system from satellite image analysis. Journal of Sedimentary Research, 81, 630640.Google Scholar
Caglar, B., Becek, K., Mekik, C., and Ozendi, M. (2018). On the vertical accuracy of the ALOS World 3D-30 m digital elevation model. Remote sensing letters, 9, 607615.Google Scholar
CaryGlobal SRL (2008). Estudio Hidrologico-Hidraulico de la Cuenca Baja del Río Grande. CaryGlobal SRL, Santa Cruz.Google Scholar
Chakraborty, T. and Ghosh, P. (2010). The geomorphology and sedimentology of the Tista megafan, Darjeeling Himalaya: implications for megafan building processes. Geomorphology, 115, 252266.Google Scholar
Chakraborty, T., Kar, R., Ghosh, P., and Basu, S. (2010). Kosi megafan: historical records, geomorphology and the recent avulsion of the Kosi River. Quaternary International, 227, 143160.Google Scholar
Church, M. and Mark, D. M. (1980). On size and scale in geomorphology. Progress in Physical Geography, 4, 342390.Google Scholar
Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C., and Eli, D. (2014). Sediment supply as a driver of river evolution in the Amazon Basin. Nature Geoscience, 7, 899903.Google Scholar
Corz, C. (2015). La Unesco declara Reserva de la Biosfera al Río Grande. La Razón, 10. 07. 2015.Google Scholar
Davidson, S. K., Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Scuderi, L. A. (2013). Geomorphic elements on modern distributive fluvial systems. Geomorphology, 180–181, 8295.Google Scholar
Decelles, P. G. and Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105123.Google Scholar
Diaz, J. (2010). Caracterización de la Cuenca Alta del Río Grande y Sequía en el Chaco Cruceño. Santa Cruz: Acción Contra el Hambre and Centro Andino Para La Gestión y Uso Del Agua.Google Scholar
Farr, T. G., Rosen, P. A., Caro, E., et al. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45, RG2004.Google Scholar
Forsberg, B. R., Melack, J. M., Dunne, T., et al. (2017). The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE, 12, e0182254.Google Scholar
Gerold, G. (1985). Untersuchungen zur Badlandentwicklung in den wechselfeuchten Waldgebieten Südboliviens. Geoökodynamik, 6, 3570.Google Scholar
Gerold, G. (1988). Die Bedeutung von Ariditätswandel und Vegetationsdegradation für die fluviale Morphodynamik in den Äusseren Tropen Boliviens. In Hagedorn, J. and Mensching, H. G, eds., Aktuelle Morphodynamik und Morphogenese in den semiariden Randtropen und Subtropen. Vandenhoeck and Ruprecht, Göttingen, 277306.Google Scholar
Görsdorf, J. (2002). Radiocarbon datings from excavations near Pailón, Bolivia. Beiträge zur Allgemeinen und Vergleichenden Archäologie, 22, 227229.Google Scholar
Gerold, G. (2004). Soil: The foundation of biodiversity. In Ibisch, P. L and Mérida, G., eds., Biodiversity: The Richness of Bolivia. Santa Cruz: Editorial FAN, 1731.Google Scholar
Guyot, J. L., Bourges, J., and Cortez, J. (1994). Sediment transport in the Río Grande, an Andean river of the Bolivian Amazon drainage basin. Variability in Stream Erosion and Sediment Transport. IAHS Publications, 223231.Google Scholar
Hanagarth, W. (1993). Acerca de la geoecología de las sabanas del Beni en el noreste de Bolivia, Instituto de Ecología, La Paz.Google Scholar
Hansen, M., Defries, R., Townshend, J. R., and Sohlberg, R. (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21, 13311364.Google Scholar
Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Warwick, G. L. (2010). Large distributive fluvial systems: Characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167183.Google Scholar
Heyvaert, V. M. A. and Walstra, J. (2016). The role of long-term human impact on avulsion and fan development. Earth Surface Processes and Landforms, 41, 21372152.Google Scholar
Horton, B. K. and DeCelles, P. G. (1997). The modern foreland basin system adjacent to the Central Andes. Geology, 25, 895898.2.3.CO;2>CrossRefGoogle Scholar
Horton, B. K. and DeCelles, P. G. (2001). Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: implications for drainage network evolution in fold-thrust belts. Basin Research, 13, 4363.Google Scholar
Ibisch, P. L., Beck, S. G., Gerkmann, B., and Carretero, A. (2004). Ecoregions and ecosystems. In Ibisch, P. L and Mérida, G., eds., Biodiversity: The Richness of Bolivia. Editorial FAN, Santa Cruz, 4788.Google Scholar
Insel, N., Ehlers, T. A., Schaller, M., et al. (2010). Spatial and temporal variability in denudation across the Bolivian Andes from multiple geochronometers. Geomorphology, 122, 6577.Google Scholar
Iriondo, M. (1993). Geomorphology and late Quaternary of the Chaco (South America). Geomorphology, 7, 289303.Google Scholar
Isacks, B. L. (1988). Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. Journal of Geophysical Research, 93, 32113231.Google Scholar
Jones, L. S. and Schumm, S. A. (1999). Causes of avulsion: an overview. In N. D. Smith and J. Rogers, eds., Fluvial Sedimentology IV. Blackwell, Oxford, 171178.Google Scholar
Killeen, T. J., Guerra, A., Calzada, M., et al. (2008). Total historical land-use change in Eastern Bolivia: Who, where, when, and how much? Ecology and Society, 13, 36.Google Scholar
Kober, F., Zeilinger, G., Hippe, K., et al. (2015). Tectonic and lithological controls on denudation rates in the central Bolivian Andes. Tectonophysics, 657, 230244.Google Scholar
Köster, G. (1978). Santa Cruz de la Sierra (Bolivien): Entwicklung, Struktur und Funktion einer tropischen Tieflandstadt. RWTH, Aachen University, Dept. of Geography.Google Scholar
Kruck, W., Helms, F., Geyh, M. A., et al. (2011). Late Pleistocene-Holocene history of Chaco-Pampa sediments in Argentina and Paraguay. Eiszeitalter und Gegenwart / Quaternary Science Journal, 60, 188202.Google Scholar
Krüger, J.-P. (2006). Waldkonversion und Bodendegradation im tropischen Tiefland von Ostbolivien. GIS-gestützte Analyse zur Regionalisierung der Bodendegradation im Department Santa Cruz. Georg-August-Universität zu Göttingen.Google Scholar
Latrubesse, E. M. (2015). Large rivers, megafans and other Quaternary avulsive fluvial systems: a potential “who’s who” in the geological record. Earth-Science Reviews, 146, 130.Google Scholar
Latrubesse, E. M. and Restrepo, J. D. (2014). Sediment yield along the Andes: continental budget, regional variations, and comparisons with other basins from orogenic mountain belts. Geomorphology, 216, 225233.Google Scholar
Latrubesse, E. M., Stevaux, J. C., Cremon, E. H., et al. (2012). Late Quaternary megafans, fans and fluvio-aeolian interactions in the Bolivian Chaco, Tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 7588.Google Scholar
Leeder, M. R. and Mack, G. H. (2001). Lateral erosion (‘toe-cutting’) of alluvial fans by axial rivers: Implications for basin analysis and architecture. Journal of the Geological Society, London, 158, 885893.Google Scholar
Lombardo, U., May, J.-H., and Veit, H. (2012). Mid- to late-Holocene fluvial activity behind pre-Columbian social complexity in the southwestern Amazon basin. The Holocene, 22, 10351045.Google Scholar
Lombardo, U., Denier, S., May, J.-H., Rodrigues, L., and Veit, H. (2013a). Human–environment interactions in pre-Columbian Amazonia: The case of the Llanos de Moxos, Bolivia. Quaternary International, 312, 109119.Google Scholar
Lombardo, U., Szabo, K., Capriles, J. M., et al. (2013b). Early and middle holocene hunter-gatherer occupations in western Amazonia: the hidden shell middens. PLoS ONE, 8, e72746e72746.Google Scholar
Lombardo, U. (2016). Alluvial plain dynamics in the southern Amazonian foreland basin. Earth System Dynamics Discussions, 7, 453467.Google Scholar
Lombardo, U. (2017). River logjams cause frequent large-scale forest die-off events in Southwestern Amazonia. Earth System Dynamics Discussions, 2017, 124.Google Scholar
Martín-Vide, J. P., Amarilla, M., and Zárate, F. J. (2014). Collapse of the Pilcomayo River. Geomorphology, 205, 155163.Google Scholar
May, J.-H. (2006). Geomorphological indicators of large-scale climatic changes in the Eastern Bolivian lowlands. Geographica Helvetica, 61, 120134.Google Scholar
May, J.-H., Zech, R., and Veit, H. (2008). Late Quaternary paleosol-sediment-sequences and landscape evolution along the Andean piedmont, Bolivian Chaco. Geomorphology, 98, 3454.Google Scholar
May, J.-H. (2011). The Río Parapetí – Holocene megafan dynamics and wetland formation in the southernmost Amazon basin. Geographica Helvetica, 66, 193201.Google Scholar
May, J.-H. (2013). Dunes and dunefields in the Bolivian Chaco as potential records of environmental change. Aeolian Research, 10, 89102.Google Scholar
May, J.-H., Plotzki, A., Rodrigues, L., Preusser, F., and Veit, H. (2015). Holocene floodplain soils along the Río Mamoré, northern Bolivia, and their implications for understanding inundation and depositional patterns in seasonal wetland settings. Sedimentary Geology, 330, 7489.Google Scholar
Miall, A. D. (1996). The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer, Heidelberg, 582 pp.Google Scholar
Minchin, J. B. (1881). Eastern Bolivia and the Gran Chaco. Proceedings of the Royal Geographical Society and Monthly Record of Geography, New Monthly Series, 3, 401420.Google Scholar
Morozova, G. and Smith, N. D. (2000). Holocene avulsion styles and sedimentation patterns of the Saskatchewan River, Cumberland Marshes, Canada. Sedimentary Geology, 130, 81105.Google Scholar
Müller, R., Müller, D., Schierhorn, F., and Gerold, G. (2011). Spatiotemporal modeling of the expansion of mechanized agriculture in the Bolivian lowland forests. Applied Geography, 31, 631640.Google Scholar
Navarro, G. and Maldonado, M. (2002). Geografía Ecológica de Bolivia: Vegetación y Ambientes Acuaticos, Santa Cruz: Centro de Ecología Simón I. Patiño.Google Scholar
Perez-Arlucea, M. and Smith, N. D. (1999). Depositional patterns following the 1870s avulsion of the Saskatchewan River (Cumberland Marshes, Saskatchewan, Canada). Journal of Sedimentary Research, 69, 6273.Google Scholar
Plotzki, A., May, J.-H., Preusser, F., and Veit, H. (2013). Geomorphological and sedimentary evidence for late Pleistocene to Holocene hydrological change along the Río Mamoré, Bolivian Amazon. Journal of South American Earth Sciences, 47, 230242.Google Scholar
Plotzki, A., May, J. H., Preusser, F., et al. (2015). Geomorphology and evolution of the late Pleistocene to Holocene fluvial system in the south-eastern Llanos de Moxos, Bolivian Amazon. Catena, 127, 102–115.Google Scholar
Purinton, B. and Bookhagen, B. (2018). Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X (∼2015) in the south-central Andes. Earth Surface Dynamics, 6, 971.Google Scholar
Rafiqpoor, D., Nowicki, C., Villarpardo, R., et al. (2004). Climate: the abiotic factor that most influences the distribution of biodiversity. In Ibisch, P. L and Mérida, G., eds., Biodiversity: The Richness of Bolivia. Santa Cruz: Editorial FAN, 3146.Google Scholar
Richards, K., Chandra, S., and Friend, P. (1993). Avulsive channel systems: characteristics and examples. In J. L. Best and C. W. Bristow, eds., Braided Rivers. Geological Society of London, Special Publication, 75, 195203.Google Scholar
Riveros, F. (2004). The Gran Chaco [Online]. FAO; Agricultural Department, Crop and Grassland Service. Available: www.fao.org/ag/AGP/AGPC/doc/Bulletin/GranChaco.htm [Accessed 15 January 2007].Google Scholar
Roca, O. (2016). Cuatro Ojos - El Histórico Puerto de Ingreso a la Amazonia. Available from: https://ovidioroca.wordpress.com/ [Accessed 21 February 2018].Google Scholar
Roca Salazar, R., Fernádez Ríos, D., and Gutiérrez Guillén, R. (2003). Sistema de Alerta Temprana contra las crecidas del Río Grande (SALTEM-RG). Gestión del Riesgo Prevención, Mitigación, Preparación. Bolivia. Federación de Asociaciones Municipales (FAM); Bolivia. Asociación de Municipios de Santa Cruz (AMDECRUZ); Alemania. Cooperación Técnica Alemana (GTZ). Proyecto Gestión Interinstitucional de Riesgos.Google Scholar
Röhringer, I. (2006). Holozäne Flussdynamik und Auensedimentation des Río Grande (Ostbolivien). Unpubl. Diploma Thesis, TU Dresden.Google Scholar
Santillan, J. and Makinano-Santillan, M. (2016). Vertical Accuracy Assessment of 30-M Resolution Alos, Aster, and SRTM Global DEMs Over Northeastern Mindanao, Philippines. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41, 149156.Google Scholar
Schneider, U., Becker, A., Finger, P., et al.. (2016). GPCC Full Data Reanalysis Version 7.0: Monthly Land-Surface Precipitation from Rain Gauges built on GTS based and Historic Data. In Research Data Archive at the National Center for Atmospheric Research - Computational and Information Systems Laboratory.Google Scholar
Servant, M., Fontes, J.-C., Rieu, M., and Saliège, J.-F. (1981). Phases climatiques arides holocènes dans le sud-ouest de l’Amazonie (Bolivie). Comptes Rendus de l’Académie des Sciences, Paris, Série II, 292, 12951297.Google Scholar
Shukla, U. K., Singh, I. B., Sharma, M., and Sharma, S. (2001). A model of alluvial megafan sedimentation: Ganga Megafan. Sedimentary Geology, 144, 243262.Google Scholar
Sinha, R., Ahmad, J., Gaurav, K., and Morin, G. (2014). Shallow subsurface stratigraphy and alluvial architecture of the Kosi and Gandak megafans in the Himalayan foreland basin, India. Sedimentary Geology, 301, 133149.Google Scholar
Slingerland, R. L. and Smith, N. D. (2004). River avulsions and their deposits. Annual Review of Earth and Planetary Sciences, 32, 257285.Google Scholar
Smith, N. D., Cross, T. A., Dufficiy, J. P., and Clough, S. R. (1989). Anatomy of an avulsion. Sedimentology, 36, 123.Google Scholar
Steininger, M. K., Tucker, C. J., Townshend, J. R. G., et al. (2001). Tropical deforestation in the Bolivian Amazon. Environmental Conservation, 28, 127134.Google Scholar
Stouthamer, E. (2001). Sedimentary products of avulsions in the Holocene Rhine–Meuse Delta, The Netherlands. Sedimentary Geology, 145, 7392.Google Scholar
Stouthamer, E. and Berendsen, H. J. A. (2001). Avulsion frequency, avulsion duration, and interavulsion period of Holocene channel belts in the Rhine-Meuse Delta, The Netherlands. Journal of Sedimentary Research, 71, 589598.Google Scholar
Stouthamer, E. and Berendsen, H. J. A. (2007). Avulsion: the relative roles of autogenic and allogenic processes. Sedimentary Geology, 198, 309325.Google Scholar
Syvitski, J. P. M., Overeem, I., Brakenridge, G. R., and Hannon, M. (2012). Floods, floodplains, delta plains—a satellite imaging approach. Sedimentary Geology, 267–268, 114.Google Scholar
Tadono, T., Ishida, H., Oda, F., et al. (2014). Precise global DEM generation by ALOS PRISM. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, 7176.Google Scholar
Uba, C. E., Strecker, M. R., and Schmitt, A. K. (2007). Increased sediment accumulation rates and climatic forcing in the central Andes during the late Miocene. Geology, 35, 979982.Google Scholar
Uba, E. C., Heubeck, C., and Hulka, C. (2006). Evolution of the late Cenozoic Chaco foreland basin, Southern Bolivia. Basin Research, 18, 145170.Google Scholar
Vera, C., Higgins, W., Amador, J., et al. (2006). Toward a unified view of the American monsoon systems. Journal of Climate, 19, 49775000.Google Scholar
Vicente-Serrano, S. M., El Kenawy, A., Azorin-Molina, C., et al. (2016). Average monthly and annual climate maps for Bolivia. Journal of Maps, 12, 295310.Google Scholar
Wachholtz, R. and Herold-Mergl, A. (2003). Amenaza y vulnerabilidad por cambio de cauce e inundación en la cuenca baja del Río Grande. GTZ, C. T. A., Santa Cruz, La Paz.Google Scholar
Weissmann, G., Hartley, A., Scuderi, L., et al. (2013). Prograding distributive fluvial systems: geomorphic models and ancient examples. In S. G. Driese and L. C. Nordt, eds., New Frontiers in Paleopedology and Terrestrial Paleoclimatology. SEPM Special Publication, 104, 131147.Google Scholar
Weissmann, G. S., Hartley, A. J., Nichols, G. J., et al. (2010). Fluvial form in modern continental sedimentary basins: distributive fluvial systems. Geology, 38, 3942.Google Scholar
Wells, N. A. and Dorr, J. A. J. (1987). Shifting of the Kosi River, northern India. Geology, 15, 204207.Google Scholar
Werding, L. (1977a). Geomorphologie und rezente Sedimentation im Chaco Boreal, Bolivien. Giessener Geologische Schriften, 12, 429446.Google Scholar
Werding, L. (1977b). The Rio Grande ground-water basin, Chaco Boreal, Bolivia. Geologisches Jahrbuch, C 17, 1936.Google Scholar
Wilkinson, M. J., Marshall, L. G., and Lundberg, J. G. (2006). River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. Journal of South American Earth Sciences, 21, 151172.Google Scholar
Zani, H., Assine, M. L., and McGlue, M. M. (2012). Remote sensing analysis of depositional landforms in alluvial settings: Method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology, 161–162, 8292.Google Scholar
Zhou, J. and Lau, K.-M. (1998). Does a monsoon climate exist over South America? Journal of Climate, 11, 10201040.Google Scholar

References

Agassiz, L. (1840). Etudes sur les glaciers. Jent et Gassmann, Soleure.Google Scholar
Amorosi, A., Fontana, A., Antonioli, F., Primon, S., and Bondesan, A. (2008). Post-LGM sedimentation and Holocene shoreline evolution in the NW Adriatic coastal area. GeoActa, 7, 4167.Google Scholar
Bada, G. and Horváth, F. (2001). On the structure and tectonic evolution of the Pannonian basin and surrounding orogens. Acta Geologica Hungarica, 44, 301327.Google Scholar
Bačani, A., Šparica, M. and Velić, J. (1999). Quaternary deposits as hydrogeological system of Eastern Slavonia. Geologia Croatica, 52, 141152.Google Scholar
Baio, M., Bersezio, R. and Bini, A. (2004). Assetto geologico nel sottosuolo tra Melegnano e Piacenza. Il Quaternario – Italian Journal of Quaternary Sciences, 17, 355359.Google Scholar
Bersezio, R., Pavia, F., Baio, M., et al. (2004). Aquifer architecture of the quaternary alluvial succession of the southern Lambro basin (Lombardy, Italy). Il Quaternario – Italian Journal of Quaternary Sciences, 17, 361378.Google Scholar
Bersezio, R., Giudici, M., and Mele, M. (2007). Combining sedimentological and geophysical data for high-resolution 3-D mapping of fluvial architectural elements in the Quaternary Po plain (Italy). Sedimentary Geology, 202, 230248.Google Scholar
Borsy, Z. (1990). Evolution of the alluvial fans of the Alföld. In Rachocki, A. H. and Church, M., eds., Alluvial Fans: A Field Approach. Wiley, Chichester, 229247.Google Scholar
Bondesan, M. (2001). Hydrography. In Castiglioni, G. B. and Pellegrini, G. B., eds., Illustrative Notes of the Geomorphological Map of Po Plain (Italy), Suppl. 4. Geografia Fisica Dinamica Quaternaria, 3344.Google Scholar
Carton, A., Bondesan, A., Fontana, A., et al. (2009). Geomorphological evolution and sediment transfer in the Piave River watershed (north-eastern Italy) since the LGM. Géomorphologie: relief, processus, environnement, 3, 3758.Google Scholar
Castiglioni, B. (1940). L’Italia nell’età quaternaria. In Dainelli, G., ed., Atlante fisico economico d’Italia, Milano, Consociazione Turistica Italiana, tav. 3.Google Scholar
Castiglioni, G. B. (1997). Geomorphological Map of Po Plain. Firenze, MURST–S.El.Ca, 3 sheets, scale 1:250,000.Google Scholar
Clark, P., Dyke, A., Shakun, J., et al. (2009). The Last Glacial Maximum. Science, 325, 710714.Google Scholar
Cuffaro, M., Riguzzi, F., Scrocca, D., et al. (2010). On the geodynamics of the northern Adriatic plate. Rendiconti Lincei, 21 (Suppl. 1), 253279.Google Scholar
Carling, P., Jansen, J., and Meshkova, L. (2014). Multichannel rivers: their definition and classification. Earth Surface Processes and Landforms, 39, 2637.Google Scholar
de Charpentier, J. (1841). Essai sur les glaciers et sur le terrain erratique du bassin du Rhône. Lausanne, Ducloux.Google Scholar
Ehlers, J. and Gibbard, P., eds. (2004). Quaternary Glaciations Extent and Chronology, Part 1: Europe. Elsevier, Amsterdam.Google Scholar
Feruglio, E. (1925). La zona delle risorgive del basso Friuli tra Tagliamento e Torre. Annali Stazione Chimica Agraria Sperimentale serie III 1, Udine.Google Scholar
Feurdean, A., Perşoiu, A., Tanţău, I., et al. (2014). Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. Quaternary Science Reviews, 106, 206224.Google Scholar
Finckh, P., Kelts, K., and Lambert, A. (1984). Seismic stratigraphy and bedrock forms in perialpine lakes. Geological Society of America Bulletin, 95, 11181128.Google Scholar
Fontana, A. (2006). Evoluzione geomorfologica della bassa pianura friulana e sue relazioni con le dinamiche insediative antiche. Monografie Museo Friulano Storia Naturale, 47, Udine. Enclosed Geomorphological Map of the Low Friulian Plain scale 1:50,000.Google Scholar
Fontana, A., Mozzi, P., and Bondesan, A. (2008). Alluvial megafans in the Venetian–Friulian Plain (north-eastern Italy): evidence of sedimentary and erosive phases during Late Pleistocene and Holocene. Quaternary International, 189, 7190.Google Scholar
Fontana, A., Mozzi, P., and Bondesan, A. (2010). Late Pleistocene evolution of the Venetian-Friulian Plain. Rendiconti Lincei, 21 (Suppl. 1), 181196.Google Scholar
Fontana, A., Mozzi, P., and Marchetti, M. (2014). Alluvial fans and megafans along thesouthern side of the Alps. Sedimentary Geology, 301, 150171.Google Scholar
Gábris, G. (1994). Pleistocene evolution of the Danube in the Carpathian Basin. Terra Nova, 6, 495501.Google Scholar
Gábris, G. and Nagy, B. (2005). Climate and tectonically controlled river style changes on the Sajó-Hernád alluvial fan (Hungary). In Harvey, A. M., Mather, A. E., and Stokes, M., eds., Alluvial Fans: Geomorphology, Sedimentology, Dynamics. Geological Society of London, Special Publication, 251, 6167.Google Scholar
Gábris, G. and Nádor, A. (2007). Long-term fluvial archives in Hungary: response of the Danube and Tisza rivers to tectonic movements and climatic changes during the Quaternary: a review and new synthesis. Quaternary Science Reviews, 26, 27582782.Google Scholar
Gábris, G., Horváth, E., Novothny, Á., and Ruszkiczay-Rüdiger, Z. (2012). Fluvial and aeolian landscape evolution in Hungary. The results of the last 20 years research. Netherlands Journal of Geosciences, 91, 111128.Google Scholar
Garzanti, E., Vezzoli, G., and Andò, S. (2011). Paleogeographic and paleodrainage changes during Pleistocene glaciations (Po Plain, Northern Italy). Earth-Science Reviews, 105, 2548.Google Scholar
Ghielmi, M., Minervini, M., Nini, C., et al. (2010). Sedimentary and tectonic evolution in the eastern Po–Plain and northern Adriatic Sea area from Messinian to Middle Pleistocene (Italy). Rendiconti Lincei, 21 (Suppl. 1), 131166.Google Scholar
Gohain, K. and Parkash, B. (1990). Morphology of Kosi megafan. In Rachocki, A. H. and Church, E. M., eds., Alluvial Fans: A Field Approach, Wiley, Chichester, 151178.Google Scholar
Guzzetti, F., Marchetti, M., and Reichenbach, P. (1997). Large alluvial fans in the north–central Po Plain (Northern Italy). Geomorphology, 18, 119136.Google Scholar
Hippe, K., Fontana, A., Hajdas, I., and Ivy-Ochs, S. (2018). A high-resolution 14C chronology tracks pulses of aggradation of glaciofluvial sediment on the Cormor megafan between 45 and 20 ka BP. Radiocarbon, 60, 857874.Google Scholar
Horton, B. K. and DeCelles, P. G. (2001). Modern and ancient fluvial megafans in the central Andean foreland basin system, southern Bolivia. Basin Research, 13, 4363.Google Scholar
Howard, A. J., Macklin, M. G. Bailey, D. W., and Andreescu, A. (2004). Late-glacial and Holocene river development in the Teleorman Valley on the southern Romanian Plain. Journal of Quaternary Science, 19, 271280.Google Scholar
Kasse, C., Bohncke, S., Vandenberghe, J., and Gábris, G. (2010). Fluvial style changes during the last glacial-interglacial transition in the middle Tisza valley (Hungary). Proceedings of the Geologists’ Association, 121, 180194.Google Scholar
Kindler, P., Guillevic, M., Baumgartner, M., et al. (2014). Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Climate of the Past, 10, 887902.Google Scholar
Kiss, T., Sümeghy, B., and Sipos, G. (2014). Late Quaternary paleodrainage reconstruction of the Maros River alluvial fan. Geomorphology, 204, 4960.Google Scholar
Kiss, T., Hernesz, P., Sümeghy, B., Györgyövics, K., and Sipos, G. (2015). The evolution of the Great Hungarian Plain fluvial system – fluvial processes in a subsiding area from the beginning of the Weichselian. Quaternary International, 388, 142155.Google Scholar
Kühlemann, J., Rohling, E. J., Krumrei, I., et al. (2008). Regional synthesis of Mediterranean atmospheric circulation during the last glacial maximum. Science, 321, 13381340.Google Scholar
Lambeck, K., Roubya, H., Purcell, A., Sun, Y., and Malcolm, S. (2014). Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences, 111, 15,296–15,303.Google Scholar
Leckie, D. A. (1994). Canterbury Plains, New Zealand – implications for sequence stratigraphic models. American Association of Petroleum Geologists Bulletin, 78, 12401256.Google Scholar
Leckie, D. A. (2003). Modern environments of the Canterbury Plains and adjacent offshore areas, New Zealand – an analog for ancient conglomeratic depositional systems in nonmarine and coastal zone settings. Bulletin of Canadian Petroleum Geology, 51, 389425.Google Scholar
Lóczy, D., ed. (2015). Landscapes and Landforms of Hungary. Springer, Berlin.Google Scholar
Lowick, S. E., Preusser, F., Pini, R., and Ravazzi, C. (2010). Underestimation of fine grain quartz OSL dating towards the Eemian: comparison with palynostratigraphy from Azzano Decimo, northeastern Italy. Quaternary Geochronology, 5, 583590.Google Scholar
Magyar, I., Geary, D. H., and Müller, P. (1999). Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 147, 151167.Google Scholar
Makaske, B., Lavoii, E., De Haas, T., Kleinhans, M. G., and Smith, D. G. (2017). Upstream control of river anastomosis by sediment overloading, upper Columbia River, British Columbia, Canada. Sedimentology, 64, 14881510.Google Scholar
Marchetti, M. (1996). Variazioni idrodinamiche dei corsi d’acqua della Pianura Padana centrale connesse con la deglaciazione. Il Quaternario – Italian Journal of Quaternary Sciences, 9, 465472.Google Scholar
Marchetti, M. (2001). Fluvial, fluvioglacial and lacustrine forms and deposits. In Castiglioni, G. B. and Pellegrini, G. B., eds., Illustrative Notes of the Geomorphological Map of the Po Plain, Geografia Fisica Dinamica Quaternaria (Suppl. 4), 73104.Google Scholar
Mațenco, L. (2017). Tectonics and exhumation of Romanian Carpathians: inferences from kinematic and thermochronological studies. In Rădoane, M. and Vespremeanu-Stroe, A., eds., Landform Dynamics and Evolution in Romania, Springer, Berlin, 1556.Google Scholar
Mezősi, G. (2016). Physical geography of the Great Hungarian Plain. In Mezősi, G., ed., The Physical Geography of Hungary, Geography of the Physical Environment. Springer, Berlin, 195229.Google Scholar
Miola, A., Bondesan, A., Corain, L., et al. (2006). Wetlands in the Venetian Po Plain (north–eastern Italy) during the Last Glacial Maximum: vegetation, hydrology, sedimentary environments. Review of Palaeobotany and Palynology, 141, 5381.Google Scholar
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., and Piccin, A. (2017). The Alpine LGM in the boreal ice-sheets game. Scientific Reports, 7, 18.Google Scholar
Mouchené, M., van der Beek, P., Mouthereau, F., and Carcaillet, J. (2017). Controls on Quaternary incision of the Northern Pyrenean foreland: chronological and geomorphological constraints from the Lannemezan megafan, SW France. Geomorphology, 281, 7893.Google Scholar
Mozzi, P., Bini, C., Zilocchi, L., Becattini, R., and Mariotti Lippi, M. (2003). Stratigraphy, palaeopedology and palynology of Late Pleistocene and Holocene deposits in the landward sector of the Lagoon of Venice (Italy), in relation to the ‘caranto’ level. Il Quaternario – Italian Journal Quaternary Science, 16, 193210.Google Scholar
Mozzi, P. (2005). Alluvial plain formation during the Late Quaternary between the southern Alpine margin and the Lagoon of Venice (northern Italy). Geografia Fisica e Dinamica Quaternaria, Suppl. 7, 219230.Google Scholar
Mozzi, P., Ferrarese, F., and Fontana, A. (2013). Integrating digital elevation models and stratigraphic data for the reconstruction of the post-LGM unconformity in the Brenta alluvial megafan (North-Eastern Italy). Alpine and Mediterranean Quaternary, 26, 4154.Google Scholar
Muttoni, G., Carcano, C., Garzanti, E., et al. (2003). Onset of major Pleistocene glaciations in the Alps. Geology, 31, 989992.Google Scholar
Nádor, A., Thamó-Bozsó, E., Magyari, Á., and Babinszki, E. (2007). Fluvial responses to tectonics and climate change during the Late Weichselian in the eastern part of the Pannonian Basin (Hungary). Sedimentary Geology, 202, 174192.Google Scholar
Nádor, A., Sinha, R., Magyari, Á., et al. (2011). Late Quaternary (Weichselian) alluvial history and neotectonic control on fluvial landscape development in the southern Körös plain, Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 114.Google Scholar
Nagymarosy, A. and Hámor, G. (2012). Genesis and evolution of the Pannonian Basin. In Haas, J., ed., Geology of Hungary, Springer, Berlin, 149198.Google Scholar
NGRIP (North Greenland Ice Core Project) Members (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147151.Google Scholar
Onaca, A., Urdea, P., Ardelean, A. C., Șerban, R., and Ardelean, F. (2017). Present-day periglacial processes in the Alpine zone. In Rădoane, M. and Vespremeanu-Stroe, A., eds., Landform Dynamics and Evolution in Romania. Springer, Berlin, 147176.Google Scholar
Ori, G. G. (1982). Braided to meandering channel patterns in humid-region alluvial fan deposits, River Reno, Po Plain (northern Italy). Sedimentary Geology, 31, 231248.Google Scholar
Papp-Váry, A., ed. (1999). Magyarország Atlas. Cartographia, Budapest.Google Scholar
Pécsi, M. (1996). Geomorphological Regions of Hungary. Geographical Research Institute, Hungarian Academy of Sciences, Budapest, 121 pp.Google Scholar
Perşoiu, I. and Rădoane, M. (2017a). River behavior during Pleniglacial-Late Glacial. In Rădoane, M. and Vespremeanu-Stroe, A., eds., Landform Dynamics and Evolution in Romania. Springer, Berlin, 443468.Google Scholar
Perşoiu, I. and Rădoane, M. (2017b). Fluvial activity during the Holocene. Landform dynamics and evolution in Romania. In Rădoane, M. and Vespremeanu-Stroe, A., eds., Landform Dynamics and Evolution in Romania. Springer, Berlin, 469488.Google Scholar
Pini, R., Ravazzi, C., and Donegana, M. (2009). Pollen stratigraphy, vegetation and climate history of the last 215 ka in the Azzano Decimo core (plain of Friuli, north-eastern Italy). Quaternary Science Reviews, 28, 12681290.Google Scholar
Pinna, M. (1982). Climatologia. UTET, Torino, 442 pp.Google Scholar
Piovan, S., Mozzi, P., and Zecchin, M. (2012). The interplay between adjacent Adige and Po alluvial systems and deltas in the late Holocene (Northern Italy). Géomorphologie, 4, 427440.Google Scholar
Posea, G. (1997). Câmpia de vest a României (The Western Romanian plain). Editura Fundaţiei România de Mâine, Bucharest, 430 pp.Google Scholar
Rabus, B., Eineder, M., Roth, A., and Bamler, R. (2003). The shuttle radar topography mission – a new class of digital elevation models acquired by spaceborne radar. Photogrammetry and Remote Sensing, 57, 241262.Google Scholar
Rajčević, D. (1982). Osnovna geološka karta SFRJ 1:100,000. Tumač za list Šabac L34–112. Geol. Inst. Beograd. Savezni geološki zavod, Beograd, 56 pp.Google Scholar
Ravazzi, C., Deaddis, M., De Amicis, M., et al. (2012). The last 40 ka evolution of the Central Po Plain between the Adda and Serio rivers. Géomorphologie: Relief, Processus, Environnement, 2, 131154.Google Scholar
Paiero, G. and Monegato, G. (2003). The Pleistocene evolution of Arzino alluvial fan and western part of Tagliamento morainic amphitheatre (Friuli, NE Italy). Il Quaternario – Italian Journal of Quaternary Sciences, 16, 185193.Google Scholar
Rossato, S., Fontana, A. and Mozzi, P. (2015). Meta-analysis of a Holocene 14C database for the detection of palaeohydrological crisis in the Venetian-Friulian Plain (NE Italy). Catena, 130, 3445.Google Scholar
Rossato, S. and Mozzi, P. (2016). Inferring LGM sedimentary and climatic changes in the southern eastern Alps foreland through the analysis of a 14C ages database (Brenta megafan, Italy). Quaternary Science Reviews, 148, 115127.Google Scholar
Sávai, S., Molnár, D., and Sümegi, P. (2015). Late glacial river-bed changes on the Little Hungarian Plain, based on preliminary chronological, geological and paleontological data. Open Geoscience, 7, 572579.Google Scholar
Sebe, K., Csillag, G., Ruszkiczay-Rüdiger, Z., et al. (2011). Wind erosion under cold climate: a Pleistocene periglacial mega-yardang system in Central Europe (Western Pannonian Basin, Hungary). Geomorphology, 134, 470482.Google Scholar
Stella, A. (1895). Sui terreni quaternari della valle del Po in rapporto alla carta geologica italiana. Bollettino Regio Comitato Geologico Italiano, 51108.Google Scholar
Sümeghy, B. and Kiss, T. (2011). Discharge calculation of paleochannels on the alluvial fan of the Maros River, Hungary. Journal of Environmental Geography, 4, 1117.Google Scholar
Tarquini, S., Isola, I., Favalli, M., et al. (2007). TINITALY/01: a new Triangular Irregular Network of Italy. Annals of Geophysics, 50, 407425.Google Scholar
Timár, G., Sümegi, P., and Horváth, F. (2005). Late Quaternary dynamics of the Tisza River: evidence of climatic and tectonic controls. Tectonophysics, 410, 97110.Google Scholar
Toscani, G., Marchesini, A., Barbieri, C., et al. (2016). The Friulian-Venetian Basin I: architecture and sediment flux into a shared foreland basin. Italian Journal of Geosciences, 135, 444459.Google Scholar
van Husen, D. (1997). LGM and Late-glacial fluctuations in the Eastern Alps. Quaternary International, 38–39, 109118.Google Scholar
Vrhovčić, J., Mojićević, M., Andelković, J., et al. (1984). Osnovna geološka karta SFRJ 1:100,000. Tumač za list Bjeljina L34–111. Geological Institute of Belgrade, Belgrade, 56 pp.Google Scholar
Weissmann, G. S., Mount, J. F., and Fogg, G. E. (2002). Glacially driven cycles in accumulation space and sequence stratigraphy of a stream-dominated alluvial fan, San Joaquin Valley, California, U.S.A. Journal of Sedimentary Research, 72, 270281.Google Scholar
Weissmann, G. S., Bennett, G. L., and Lansdale, A. L. (2005). Factors controlling sequence development on Quaternary fluvial fans, San Joaquin Basin, California, USA. In Harvey, A. M., Mather, A. E., and Stokes, M., eds., Alluvial Fans: Geomorphology, Sedimentology, Dynamics. Geological Society of London, Special Publication, 251, 169–186.Google Scholar

References

Bessin, P., Guillocheau, F., Robin, C., Schroëtter, J. M., and Bauer, H. (2015). Planation surfaces of the Armorican Massif (western France): denudation chronology of a Mesozoic land surface twice exhumed in response to relative crustal movements between Iberia and Eurasia. Geomorphology, 233, 7591.Google Scholar
Bessin, P., Guillocheau, F., Robin, C., et al. (2017). Quantification of vertical movement of low elevation topography combining a new compilation of sea-level charts and scattered marine deposits (Armorican Massif, Western France). Earth and Planetary Science Letters, 470, 2536.Google Scholar
Bourgeois, O., Ford, M., Diraison, M., et al. (2007). Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland. International Journal of Earth Sciences, 96, 10031031.Google Scholar
Brunet-Moret, Y., Chaperon, P., Lamagat, J. P., and Molinier, M. (1986). Monographie hydrologique du fleuve Niger. Vol. II, Cuvette lacustre et Niger moyen. Monographies hydrologiques de l’IRD (ORSTOM), 8, 521 pp.Google Scholar
Burke, K. and Gunnell, Y. (2008). The African Erosion Surface: A Continental-scale Synthesis of Geomorphology, Tectonics, and Environmental Change over the Past 180 Million Years. Geological Society of America Memoir, 201, 66 pp.Google Scholar
Cruz Mermy, D., Giot, D., Maget, P., et al. (2007). Notice explicative, carte géologique de la France (1:50,000 scale), feuille Bracieux. Bureau des Recherches Géologiques et Minières, Orléans, 171 pp.Google Scholar
Debrand-Passard, S., Gros, Y., Lablanche, G., et al. (1992). Âge, genèse et évolution du fossé de la Loire : nouvelle approche stratigraphique, morphologique et structurale. Bulletin d’Information des Géologues du Bassin de Paris, 29, 6374.Google Scholar
Debrand-Passard, S. (1995). Histoire géologique résumée du sud du Bassin parisien. Bulletin d’Information Géologique du Bassin de Paris, 32, 1525.Google Scholar
Debrand-Passard, S., Macaire, J.-J., Clozier, L., and Fleury, R. (1998). Particularités de l’évolution du système fluviatile solognot dans le bassin de la Loire. Corrélations possibles. Géologie de la France, 2, 5568.Google Scholar
Debrand-Passard, S., Giot, D., Cruz Mermy, D., et al. (2010). Notice explicative, carte géologique de la France (1:50,000 scale), feuille Lamotte-Beuvron. Bureau des Recherches Géologiques et Minières, Orléans, 143 pp.Google Scholar
Denizet, H. (1900). La Sologne. Herluison et Michau, Orléans, 224 pp.Google Scholar
Denizot, G. (1927). Les formations continentales de la région orléanaise. Imprimerie Launay et fils, Vendôme, 582 pp.Google Scholar
Dugué, O., Bourdillon, C., Quesnel, F., and Lautridou, J.-P. (2012). The Neogene and Lower Pleistocene crags of Upper Normandy: biostratigraphic revision and paleogeographic implications. Compte Rendus Geoscience, 344, 415422.Google Scholar
Etienne, R. (1984). Mouvements tectoniques différentiels et soulèvement d’ensemble du Massif Central à partir de la limite mio-pliocène. Bulletin du Laboratoire Rhodanien de Géomorphologie, 15–16, 314.Google Scholar
Etienne, R. and Larue, J.-P. (2011). Contribution à l’étude des liaisons Loire–Seine : mise en évidence par l’étude des minéraux lourds de l’antécédence de la Loire en Sologne (Bassin Parisien, France). Physio-Géo, 5, 269291.Google Scholar
Féraud, G., Lo Bello, P., Hall, C., et al. (1990). Direct dating of Plio-Quaternary pumices by 40Ar/39Ar step-heating and single-grain laser fusion methods: the example of the Mont-Dore massif (Massif Central, France). Journal of Volcanology and Geothermal Research, 40, 3953.Google Scholar
Fielding, C. R., Ashworth, P. J., Best, J. L., Prokocki, E. W., and Sambrook Smith, G. H. (2012). Tributary, distributary and other fluvial patterns: what really represents the norm in the continental rock record? Sedimentary Geology, 261–262, 1532.Google Scholar
Fleury, R. (1990). Notice explicative, carte géologique de la France (1:50,000 scale), feuille Aubigny-sur-Nère. Bureau des Recherches Géologiques et Minières, Orléans, 44 p.Google Scholar
Fleury, R., Debrand-Passard, S., Gros, Y., et al. (1991). Notice explicative, carte géologique de la France (1:50,000 scale), feuille Argent-sur-Sauldre. Bureau des Recherches Géologiques et Minières, Orléans, 62 pp.Google Scholar
Fleury, R., Charnet, F., Debrand-Passard, S., et al.. (1992). Notice explicative, carte géologique de la France (1:50,000 scale), feuille Salbris. Bureau des Recherches Géologiques et Minières, Orléans, 50 pp.Google Scholar
Fleury, R., Charnet, F., Corpel, J., et al. (1997). Notice explicative, carte géologique de la France (1:50,000 scale), feuille Romorantin. Bureau des Recherches Géologiques et Minières, Orléans, 93 p.Google Scholar
Freytet, P. (1965). Sédimentation microcyclothématique avec croûte zonaire à algues dans le Calcaire de Beauce de Chauffour-Etrechy (Seine et Oise). Bulletin de la Société Géologique de France, 7, 309313.Google Scholar
Freytet, P. and Plaziat, J. C. (1982). Continental carbonate sedimentation and pedogenesis in Late Cretaceous and early Tertiary in Southern France. In Purser, B.H., ed., Contribution to Sedimentology, vol. 12, E. Schweitzerbart, Stuttgart, 213 pp.Google Scholar
Freytet, P., Dewolf, Y., Joly, F., and Plet, A. (1989). L’évolution de la section Loire-Loing-Seine à la fin du Tertiaire. Réinterprétation géomorphologique des relations entre les Sables de Sologne et ceux de Lozère. Signification du complexe alluvial de la Montagne de Trin. Bulletin d’Information des Géologues du Bassin de Paris, 26, 4957.Google Scholar
Gigout, M. and Desprez, N. (1977). Notice explicative, carte géologique de la France (1:50 000 scale), feuille Gien. Bureau des Recherches Géologiques et Minières, Orléans, 26 pp.Google Scholar
Goër de Herve, A. de and Etienne, R. (1991). Le contact Margeride–Cézalier–Cantal, les incidences de la tectonique et du volcanisme sur la sédimentation et l’hydrographie. Bulletin du Laboratoire Rhodanien de Géomorphologie, 27–28, 321.Google Scholar
Guillocheau, F., Robin, C., Allemand, P., et al. (2000). Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints. Geodinamica Acta, 13, 189245.Google Scholar
Lacquement, F., Prognon, F., Prognon, C., et al. (2010). État des lieux de la connaissance cartographique du régolithe de la France métropolitaine à 1/1 000 000, Rapport final. BRGM/RP-57932-FR, Bureau des Recherches Géologiques et Minières, Orléans, 55 pp.Google Scholar
Lacquement, F., Prognon, F., Tourlière, B., et al. (2015). Méthodologie de cartographie du régolithe à partir de données radiométriques aéroportées en région Centre—établissement de cartes lithologiques, Rapport final. BRGM/RP-64932-FR, Bureau des Recherches Géologiques et Minières, Orléans, 133 pp.Google Scholar
Larue, J.-P. and Etienne, R. (1998). Les formations détritiques miocènes, pliocènes et quaternaires entre le Massif Central et la Sologne. Nouveaux éléments d’interprétation. Géologie de la France, 1, 3956.Google Scholar
Larue, J.-P. (1999). Le fleuve à augite dans le Bassin parisien: nouveaux éléments d’interprétation. Géologie de la France, 3, 116.Google Scholar
Larue, J.-P. and Etienne, R. (2000). Les Sables de Lozère dans le Bassin parisien: nouvelles interprétations. Géologie de la France, 2, 8194.Google Scholar
Larue, J.-P. and Etienne, R. (2002). Les Sables de Lozère et les Sables de Sologne: nouvelles interprétations de deux décharges détritiques du Miocène inférieur, issues de la paléo-Loire (Bassin parisien, France). Bulletin de la Société Géologique de France, 173, 185192.Google Scholar
Larue, J.-P. (2003a). L’encaissement inégal de la Seine et de la Loire dans le Bassin parisien (France). Géographie Physique et Quaternaire, 57, 2136.Google Scholar
Larue, J.-P. (2003b). L’encaissement de l’Allier et de la Loire supérieure et moyenne (France) au Pliocène et au Pléistocène. Géomorphologie: Relief, Processus, Environnement, 9, 135149.Google Scholar
Larue, J.-P. and Bélizal, E. de (2016). Les formations superficielles entre la Loire et le Loir (sud-ouest du Bassin parisien): les enseignements de l’analyse sédimentologique. Norois, 240, 4357.Google Scholar
Latrubesse, E. (2008). Patterns of anabranching channels: the ultimate end-member adjustments of mega-rivers. Geomorphology, 101, 130145.Google Scholar
Latrubesse, E. M. (2015). Large rivers, megafans and other Quaternary avulsive fluvial systems: a potential “who’s who” in the geological record. Earth-Science Reviews, 146, 130.Google Scholar
Liard, M., Tissoux, H., and Deschamps, S. (2017). Les alluvions anciennes de la Loire en Orléanais (France, Loiret), une relecture à l’aune de travaux d’archéologie préventive et d’un programme de datation ESR. Quaternaire, 28, 105128.Google Scholar
Macaire, J.-J. (1981). Contribution à l’étude géologique et paléopédologique du Quaternaire dans le SW du Bassin de Paris (Touraine et abords). Thèse d’Etat, Tours, 450 pp.Google Scholar
Mouchené, M., van der Beek, P., Carretier, S., and Mouthereau, F. (2017). Autogenic versus allogenic controls on the evolution of a coupled fluvial megafan–mountainous catchment system: numerical modelling and comparison with the Lannemezan megafan system (northern Pyrenees, France). Earth Surface Dynamics, 5, 125143.Google Scholar
Olivetti, V., Balestrieri, M. L., Godard, V., et al. (2020). Cretaceous and late Cenozoic uplift of a Variscan Massif: the case of the French Massif Central studied through low-temperature thermochronometry. Lithosphere, 12, 133149.Google Scholar
Olmalius d’Halloy, J. B. J. (1828). Mémoires pour servir à la description géologique des pays bas de la France et de quelques contrées voisines. Imprimerie D. Gerard, Namur, 307 pp.Google Scholar
Pasquiou, X. (1995). Étude des flux détritiques sableux tertiaires et quaternaires dans la région de Gien. Bulletin du Laboratoire Rhodanien de Géomorphologie, 33–34, 3549.Google Scholar
Pastre, J.-F. (1986). Altération et paléo-altération des minéraux lourds des alluvions pliocènes et pléistocènes du bassin de l’Allier (France). Bulletin de l’Association française pour l’Étude du Quaternaire, 3–4, 257269.Google Scholar
Pastre, J.-F. (1992). Les pyroclastites du Mont-Dore (Massif Central français): place dans l’évolution du massif et dispersion périphérique. In Lageat, Y. and Thouret, J.-C., eds., Rythmes morphogéniques en domaine volcanisé. Actes du Colloque de l’Association des Géographes Français, 5 December 1992, CERAMAC, Université Blaise-Pascal, Clermont-Ferrand, 115136.Google Scholar
Peiry, J.-L. and Bravard, J.-P. (1999). The CM pattern as a tool for the classification of alluvial floodplains along the river continuum. In Marriott, S. B. and Alexander, J., eds., Floodplains: Interdisciplinary Approaches. Geological Society of London, Special Publication, 163, 259268.Google Scholar
Pomerol, C. (1951). Origine et mode de dépôt des sables granitiques miocènes entre Paris et la Manche. Bulletin de la Société Géologique de France, 6, 251263.Google Scholar
Rasplus, L. (1978). Contribution à l’étude géologique des formations continentales détritiques tertiaires de la Touraine, de la Brenne et de la Sologne. Thèse d’État (3 vols.), Univ. of Orléans, 454 pp.Google Scholar
Rasplus, L. (1982). Contribution à l’étude des formations continentales détritiques tertiaires du Sud-Ouest du bassin de Paris. Sciences géologiques, Mémoire 66, Université Louis Pasteur, Strasbourg, 227 pp.Google Scholar
Ruxton, B. P. and Berry, L. (1978). Clay plains and geomorphic history of the central Sudan: a review. Catena, 5, 251283.Google Scholar
Sinha, R. and Friend, P. F. (1994). River systems and their sediment flux, Indo-Gangetic plains, Northern Bihar, India. Sedimentology, 41, 825845.Google Scholar
Sissingh, W. (2001). Tectonostratigraphy of the West Alpine foreland: correlation of Tertiary sedimentary sequences, changes in eustatic sea-level and stress regime. Tectonophysics, 233, 361400.Google Scholar
Sissingh, W. (2006). Syn-kinematic palaeogeographic evolution of the West European Platform: correlation with Alpine plate collision and foreland deformation. Netherlands Journal of Geoscience, 85, 131180.Google Scholar
Sobolev, S. V., Zeyen, H., Granet, M., et al. (1997). Upper mantle temperatures and lithosphere–asthenosphere system beneath the French Massif Central constrained by seismic, gravity, petrologic and thermal observations. Tectonophysics, 275, 143164.Google Scholar
Stanistreet, I. G. and McCarthy, T. S. (1993). The Okavango fan and the classification of subaerial fan systems. Sedimentary Geology, 85, 115133.Google Scholar
Sutton, K. (1971). The reduction of wasteland in the Sologne: nineteenth-century French regional improvement. Transactions of the Institute of British Geographers, 52, 129144.Google Scholar
Thauvin, M., Colin, S., and Saint Martin, S. (2011). Carte des ressources en matériaux de la Région Centre, élaborée dans le cadre de la révision des Schémas Départementaux des Carrières, Rapport final. BRGM/RP-59248-FR, Bureau des Recherches Géologiques et Minières, Orléans, 134 pp.Google Scholar
Tissoux, H., Prognon, , F., Voinchet, P., et al. (2013). Apport des datations ESR à la connaissance des dépôts sableux plio-pléistocènes de Sologne, premiers résultats. Quaternaire, 24, 141153.Google Scholar
Tissoux, H., Prognon, , F., Martelet, G., et al. (2017). Interprétation d’un levé de spectrométrie gamma pour la connaissance des dépôts silico-clastiques fluviatiles en centre France (Loire et Sologne). Quaternaire, 28, 87103.Google Scholar
Tourenq, J., Decaillot, P., and Pomerol, C. (1971). Origine armoricaine des minéraux lourds de la mer des faluns. Mise en doute doute de la capture de la pré-Loire à l’Helvétien inférieur. Compte Rendus Sommaires de la Société Géologique de France, 6567.Google Scholar
Tourenq, J. (1989). Les sables et argiles du Bourbonnais: une formation fluvio-lacustre d’âge pliocène supérieur, étude minéralogique, sédimentologique et stratigraphique. Documents du BRGM, 174, 333 pp.Google Scholar
Tourenq, J. and Pomerol, C. (1995). Mise en évidence, par la présence d’augite du Massif central, de l’existence d’une pré-Loire–pré-Seine coulant vers la Manche au Pléistocène. Comptes Rendus de l’Académie des Sciences, Série 2, Sciences de la Terre et des Planètes, 320, 11631169.Google Scholar
Turland, M., Hottin, A. M., Cojean, R., et al. (1990). Notice explicative, carte géologique de la France (1:50,000 scale), feuille Hérisson. Bureau des Recherches Géologiques et Minières, Orléans, 118 pp.Google Scholar
Voinchet, P., Despriée, J., Gageonnet, R., et al. (2007). Datation par ESR de quartz fluviatiles dans le bassin de la Loire moyenne en région Centre: mise en évidence de la tectonique quaternaire et de son influence sur la géométrie des systèmes de terrasses. Quaternaire, 18, 335347.Google Scholar
Weissmann, G. S., Hartley, A. J., Scuderi, L. A., et al. (2015). Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: a review. Geomorphology, 250, 187219.Google Scholar
Wilson, M. and Patterson, R. (2001). Intraplate magmatism related to short wavelength convective instabilities in the upper mantle: evidence from the Tertiary–Quaternary volcanic province of western and central Europe. In Ernst, R. E. and Buchan, K. L., eds., Mantle Plumes: Their Identification Through Time. Geological Society of America Special Paper, 352, 3758.Google Scholar
Ziegler, P. A. and Dèzes, P. (2007). Cenozoic uplift of Variscan massifs in the Alpine foreland: timing and controlling mechanisms. Global and Planetary Change, 58, 237269.Google Scholar

References

Abrahami, R., Huyghe, P., van der Beek, P., et al. (2018) Late Pleistocene – Holocene development of the Tista megafan (West Bengal, India): 10Be cosmogenic and IRSL age constraints. Quaternary Science Reviews, 185, 6990.Google Scholar
Argialas, D. P. and Tzotsos, A. (2004). Automatic Extraction of Alluvial Fans from ASTER L1 Satellite Data and a Digital Elevation Model using Object-oriented Image Analysis. XXth ISPRS Congress, Commission 7, Istanbul, Turkey.Google Scholar
Blum, M. D. (2007). Large river systems and climate change. In Gupta, A., ed., Large Rivers: Geomorphology and Management. Wiley, Chichester, 627–659.Google Scholar
Bryant, M., Falk, P., and Paola, C. (1995). Experimental study of avulsion frequency and rate of deposition. Geology, 23, 365368.Google Scholar
Chakraborty, T. and Ghosh, P. (2010). The geomorphology and sedimentology of the Tista megafan, Darjeeling Himalaya: implications for megafan building processes. Geomorphology, 115, 252266.Google Scholar
Chakraborty, T., Kar, R., Ghosh, P., and Basu, S. (2010). Kosi megafan: historical records, geomorphology and the recent avulsion of the Kosi River. Quaternary International, 227, 143160.Google Scholar
Densmore, A. L., Sinha, R., Sinha, S., Tandon, S. K., and Jain, V. (2016). Sediment storage and release from Himalayan piggyback basins and implications for downstream river morphology and evolution. Basin Research, 28, 446461.Google Scholar
Dingle, E. H., Sinclair, H. D., Attal, M, Mildodowski, D.T., and Singh, V. (2016). Subsidence control on river morphology and grain size in the Ganga plain. American Journal of Science, 316, 778812.Google Scholar
Geddes, A. (1960). The alluvial morphology of the Indo-Gangetic Plain: its mapping and geographical significance. Institute of British Geographers, Transactions and Papers, 28, 253276.Google Scholar
Gibling, M. R., Tandon, S. K., Sinha, R., and Jain, M. (2005). Discontinuity-bounded alluvial sequences of the southern Gangetic plains, India: aggradation and degradation in response to monsoonal strength. Journal of Sedimentary Research, 75, 373389.Google Scholar
Gohain, K. and Parkash, B. (1990). Morphology of the Kosi Megafan. In Rachocki, A. H. and Church, M., eds., Alluvial Fans: A Field Approach. Wiley, Chichester, 151178.Google Scholar
Gole, C. V. and Chitale, S. V. (1966). Inland delta building activity of Kosi River. Journal of Hydraulic Division Proceedings ASCE, 92, 111126.Google Scholar
Goodbred, S. L. (2003). Response of the Ganges dispersal system to climate change: a source-to sink view since the last interstade. Sedimentary Geology, 162, 83104.Google Scholar
Goswami, P., Pant, C. C., and Shefali, , P. (2009). Tectonic controls on the geomorphic evolution of alluvial fans in the Piedmont Zone of Ganga Plain, Uttarakhand, India. Journal of Earth System Science, 118, 245259.Google Scholar
Goswami, P. and Yhokha, Y. (2010). Geomorphic evolution of the Piedmont Zone of the Ganga Plain, India: a study based on remote sensing, GIS and field investigation. International Journal of Remote Sensing, 21, 53495364.Google Scholar
Gupta, S. (1997). Himalayan drainage patterns and the origin of fluvial megafans in the Ganga foreland basin. Geology, 25, 1114.Google Scholar
Jain, V. and Sinha, R. (2003). River systems in the Gangetic plains and their comparison with the Siwaliks: A review. Current Science, 84, 10251033.Google Scholar
Kale, V. S. and Rajaguru, S. N. (1987). Late Quaternary alluvial history of northwest Deccan Upland region. Nature, 325, 612614.Google Scholar
Kaushal, R. K. Sarkar, A., Mishra, K., et al. (2020). Spatio-temporal variability in stream power distribution in the Upper Kosi River basin, Central Himalaya: controls and geomorphic implications. Geomorphology, https://doi.org/10.1016/j.geomorph.2019.106888.Google Scholar
Lave, J. and Avouac, J.-P. (2000). Active folding of fluvial terraces across the Siwalik Hills, Himalayas of central Nepal. Journal of Geophysical Research, 105, 57355770.Google Scholar
Meetei, L. I., Pattanayak, S. K., Bhaskar, A., Pandit, M. K., and Tandon, S. K. (2007). Climatic imprints in Quaternary valley fill deposits of the middle Teesta valley, Sikkim Himalaya. Quaternary International, 159, 3246.Google Scholar
Miliaresis, G. and Argialas, D. P. (2000). Extraction and delineation of alluvial fans from digital elevation models and Landsat Thematic Mapper images. Photogrammetric Engineering and Remote Sensing, 66, 10931101.Google Scholar
Miliaresis, G. (2001). Extraction of bajadas from digital elevation models and satellite imagery. Computers & Geosciences, 27, 11571167.Google Scholar
Mohindra, P. S. and Parkash, B. (1994). Geomorphology and neotectonic activity of the Gandak megafan and adjoining areas, middle Gangetic plains. Journal of the Geological Society of India, 43, 149157.Google Scholar
Mohindra, R., Parkash, B., and Prasad, J. (1992). Historical geomorphology and pedology of the Gandak megafan, Middle Gangetic plains, India. Earth Surface Processes and Landforms, 17, 643662.Google Scholar
Mohrig, D., Heller, P. L., Paola, C., and Lyons, W. J. (2000). Interpreting avulsion process from ancient alluvial sequences: Guadalope–Matarranya system (northern Spain) and Wasatch Formation (western Colorado). Geological Society of America Bulletin, 112, 17871803.Google Scholar
Norini, G., Zuluaga, M. C., Ortiz, I. J., Aquino, D. T., and Lagmay, A. M. F. (2016). Delineation of alluvial fans from Digital Elevation Models with a GIS algorithm for the geomorphological mapping of the Earth and Mars, Geomorphology, 273, 134149.Google Scholar
Roy, N. G., Sinha, R., and Gibling, M. R. (2012). Aggradation, incision and interfluve flooding in the Ganga Valley over the past 100,000 years: Testing the influence of monsoonal precipitation. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 3853.Google Scholar
Roy, N. G. and Sinha, R. (2017). Linking hydrology and sediment dynamics of large alluvial rivers to landscape diversity in the Ganga dispersal system, India. Earth Surface Processes and Landforms, 42, 10781091.Google Scholar
Roy, N. G. and Sinha, R. (2018). Integrating channel form and processes in the Ganga River: implications for geomorphic diversity. Geomorphology, 302, 4661.Google Scholar
Sahu, S., Raju, N. J., and Saha, D. (2010). Active tectonics and geomorphology in the Sone-Ganga alluvial tract in mid-Ganga Basin, India. Quaternary International, 227, 116126.Google Scholar
Sahu, S, Saha, D., and Dayal, S. (2015). Sone megafan: A non-Himalayan megafan of craton origin on the southern margin of the middle Ganga Basin, India. Geomorphology, 250, 349369.Google Scholar
Sahu, S., Saha, D., and Shukla, R. R. (2018). Sone megafan: a non-Himalayan megafan of craton origin, forming a potential groundwater reservoir in marginal parts of Ganga Basin, India. Hydrogeology Journal, 26, 28912917.Google Scholar
Shukla, U. K., Singh, I. B., Sharma, M., and Sharma, S. (2001). A model of alluvial megafan sedimentation: Ganga Megafan. Sedimentary Geology, 144, 243262.Google Scholar
Singh, I. B., Bajpai, V. N., Kumar, V. N., and Singh, M. (1990). Changes in the channel characteristics of Ganga River during Late-Pleistocene-Holocene. Journal of Geological Society of India, 36, 6773.Google Scholar
Singh, I. B. (1996). Geological evolution of Ganga plain – an overview. Journal of the Paleontological Society of India, 41, 99137.Google Scholar
Singh, I .B. (2004). Late Quaternary history of the Ganga Plain. Journal of the Geological Society of India, 64, 431454.Google Scholar
Singh, H., Parkash, B., and Gohain, K. (1993). Facies analysis of the Kosi megafan deposits. Sedimentary Geology, 85, 87113.Google Scholar
Sinha, R. (2009). The great avulsion of Kosi on 18 August 2008. Current Science, 97, 429433.Google Scholar
Sinha, R., Priyanka, S., Jain, V., and Mukul, M. ( 2014a). Avulsion threshold and planform dynamics of the Kosi river in north Bihar (India) and Nepal: a GIS framework. Geomorphology, 216, 157170.Google Scholar
Sinha, R., Ahmad, J., Gaurav, K., and Morin, G. (2014b). Shallow subsurface stratigraphy and alluvial architecture of the Kosi and Gandak megafans in the Himalayan foreland basin, India. Sedimentary Geology, 301, 133149.Google Scholar
Sinha, R. and Friend, P. F. (1994). River systems and their sediment flux, Indo-Gangetic plains, Northern Bihar, India. Sedimentology, 41, 825845.Google Scholar
Sinha, R. and Jain, V. (1998). Flood hazards of north Bihar rivers, Indo-Gangetic Plains. In Kale, V. S., ed., Flood Studies in India. Geological Society of India Memoir, 41, 2752.Google Scholar
Sinha, R., Jain, V., Prasad Babu, G., and Ghosh, S. (2005). Geomorphic characterisation and diversity of the fluvial systems of the Gangetic plains. Gemorphology, 70, 207225.Google Scholar
Sinha, R., Bhattacharjee, P., Sangode, S. J., et al. (2007). Valley and interfluve sediments in the southern Ganga plains, India: exploring facies and magnetic signatures. Sedimentary Geology, 201, 386411.Google Scholar
Sinha, R., Bapalu, G. V. Singh, L. K., and Rath, B. (2008). Flood risk analysis in the Kosi river basin, north Bihar using multi-parametric approach of Analytical Hierarchy Process (AHP). Journal of Indian Society of Remote Sensing, 36, 293307.Google Scholar
Sinha, R., Kettanah, Y., Gibling, M. R., et al. (2009). Craton-derived alluvium as a major sediment source in the Himalayan Foreland Basin of India. Geological Society of America Bulletin, 121, 15961610.Google Scholar
Sinha, R., Gupta, A., Kanchan, M., et al. (2019). Basin scale hydrology and sediment dynamics of the Koshi River in the Himalayan foreland. Journal of Hydrology, 570, 156166.Google Scholar
Srivastava, P., Singh, I. B., Sharma, M., and Singhvi, A. K. (2003). Luminescence chronometry and Late Quaternary geomorphic history of the Ganga Plain, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 197, 1541.Google Scholar
Srivastava, P., Sinha, R. V., Deep, S. A. K., and Upreti, , N. (2018). Micromorphology and sequence stratigraphy of the interfluve paleosols from Ganga plains of alluvial cyclicity and paleoclimate during the Late Quaternary. Journal of Sedimentary Research, 88, 105128Google Scholar
Swrankar, S., Sinha, R., and Tripathi, S. (2020). Morphometric diversity of supply-limited and transport-limited systems in the Himalaya foreland. Geomorphology, 348. https://doi.org/10.1016/j.geomorph.2019.106882Google Scholar
Tandon, S. K., Gibling, M. R., Sinha, R., et al. (2006). Alluvial valleys of the Gangetic Plains, India: causes and timing of incision. In R. W. Dalrymple, D. A. Leckie, and R. W. Tillman, eds., Incised Valleys in Time and Space. SEPM Special Publication, 85, 15–35.Google Scholar
Tandon, S. K. and Sinha, R. (2007). Geology of large river systems. In Gupta, A., ed., Large Rivers: Geomorphology and Management. Wiley, Chichester, 728.Google Scholar
Tandon, S. K., Sinha, R., Gibling, M. R., Dasgupta, A. S., and Ghazanfari, P. (2008). Late Quaternary evolution of the Ganga Plains: myths and misconceptions, recent developments and future directions. Journal of the Geological Society of India Memoir, 66, 259299.Google Scholar
Van Dijk, W. M., Densmore, A. L., Singh, A., et al. (2016). Linking the morphology of fluvial fan systems to aquifer stratigraphy in the Sutlej-Yamuna plain of northwest India. Journal of Geophysical Research: Earth Surface, 121, 201222.Google Scholar
Wells, N. A. and DorrJr., J. A. (1987). Shifting of the Kosi River, northern India. Geology, 15, 204207.Google Scholar
Wesnousky, S. G., Kumar, S., Mohindra, R., and Thakur, V. C. (1999). Uplift and convergence along the Himalayan Frontal Thrust of India. Tectonics, 18, 967976.Google Scholar
Williams, M. A. J., and Clarke, M. F. (1984). Late Quaternary environments in North-Central India. Nature, 308, 633635.Google Scholar
Williams, M. A. J., Pal, J.N., Jaiswal, M., and Singhvi, A. K. (2006). River response to Quaternary climatic fluctuations: evidence from the Son and Belan valleys, north-central India. Quaternary Science Reviews, 25, 26192631.Google Scholar

References

Assine, M. L. (2005). River avulsions on the Taquari megafan, Pantanal wetland, Brazil. Geomorphology, 70, 357371.Google Scholar
Bajracharya, B., Shrestha, A. B., and Rajbhandari, L. (2007). Glacial lake outburst floods in the Sagarmatha region: hazard assessment using GIS and hydrodynamic modeling. Mountain Research and Development, 27, 336344.Google Scholar
Behrensmeyer, A. K. and Tauxe, L. (1982). Isochronous fluvial systems in Miocene deposits of Northern Pakistan. Sedimentology, 29, 331335.Google Scholar
Chakraborty, T., Kar, R., Ghosh, P., and Basu, S. (2010). Kosi megafan: historical records, geomorphology and the recent avulsion of the Kosi River. Quaternary International, 227, 143160.Google Scholar
Delorme, P., Voller, V., Paola, C. et al. (2017). Self-similar growth of a bimodal laboratory fan. Earth Surface Dynamics, 5, 239252.Google Scholar
Desai, C. (1982). The Kosi River: Its Morphology and Mechanics in Retrospect and Prospect. Central Water Commission, Ministry of Irrigation, Government of India, New Delhi.Google Scholar
Dingle, E. H., Sinclair, H. D., Attal, M., Milodowski, D. T., and Singh, V. (2016). Subsidence control on river morphology and grain size in the Ganga plain. American Journal of Science, 316, 778812.Google Scholar
Friend, P. F. (1983). Towards the field classification of alluvial architecture or sequence. In Collinson, J. D. and Lewin, J., eds., Modern and Ancient Fluvial Systems. International Association of Sedimentologists, Special Publication, 6, 345354.Google Scholar
Friend, P. F., Slater, M. J., and Williams, R. C. (1979). Vertical and lateral building of river sandstone bodies, Ebro Basin, Spain. Journal of the Geological Society, London, 136, 3946.Google Scholar
Gansser, A. (1964). Geology of the Himalaya. Wiley-Interscience, New York.Google Scholar
Gaurav, K., Métivier, F., Devauchelle, O., et al. (2015). Morphology of the Kosi megafan channels. Earth Surface Dynamics, 3, 321331.Google Scholar
Geddes, A. (1960). The alluvial morphology of the Indo-Gangetic Plain: its mapping and geographical significance. Institute of British Geographers, Transactions and Papers, 28, 253276.Google Scholar
Gibling, M. R. (2006). Width and thickness of fluvial channel bodies and valley fills in the geological record: a literature compilation and classification. Journal of Sedimentary Research, 76, 731770.CrossRefGoogle Scholar
Gohain, K. and Parkash, B. (1990). Morphology of the Kosi Megafan. In Rachocki, A. H. and Church, M., eds., Alluvial Fans: A Field Approach. Wiley, Chichester, 151178.Google Scholar
Gole, C. B. and Chitale, S. V. (1966). Inland delta building activity of Kosi River. Journal of the Hydraulics Division, American Society of Civil Engineers, HY2, 111126.Google Scholar
Gupta, S. (1997). Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin. Geology, 25, 1114.Google Scholar
Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Warwick, G. L. (2010). Large distributive fluvial systems: characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167183.Google Scholar
Hirst, J. P. P. (1991). Variations in alluvial architecture across the Oligo-Miocene Huesca fluvial system, Ebro Basin, Spain. In Miall, A. D. and Tyler, N., eds., The Three-Dimensional Facies Architecture of Terrigenous Clastic Sediments and Its Implications for Hydrocarbon Discovery and Recovery. SEPM Concepts in Sedimentology and Paleontology, vol. 3, Tulsa, Oklahoma, 111121.Google Scholar
Jain, V. and Tandon, S. K. (2010). Conceptual assessment of (dis)connectivity and its application to the Ganga River dispersal system. Geomorphology, 118, 349358.CrossRefGoogle Scholar
Jones, L. S. and Schumm, S. A. (2009). Causes of avulsion: an overview. In Smith, N. D. and Rogers, J., eds., Fluvial Sedimentology VI. Blackwell, Oxford, 171178.Google Scholar
Khan, I. A., Bridge, J. S., Kappelman, J., and Wilson, R. (1997). Evolution of Miocene fluvial environments, eastern Potwar plateau, northern Pakistan. Sedimentology, 44, 221251.Google Scholar
Kumar, R., (1993). Coalescence mega fan: multistorey sandstone complex of late orogenic (Mio-Pliocene) Sub-Himalayan belt, Dehra Dun, India. Sedimentary Geology, 85, 327337.Google Scholar
Kumar, R., Jain, V., Prasad Babu, G., and Sinha, R. (2014). Connectivity structure of the Kosi Megafan and role of rail-road transport network. Geomorphology, 227, 7386.Google Scholar
Kumar, R. and Nanda, A. C. (1989). Sedimentology of the Middle Siwalik sub-Group of Mohand area, Dehra Dun valley, India. Journal of the Geological Society of India, 34, 597616.Google Scholar
Mackey, S. D. and Bridge, J. S. (1995). Three-dimensional model of alluvial stratigraphy: theory and application. Journal of Sedimentary Research, 65, 731.Google Scholar
Majumdar, D. and Ghosh, P. (2017). Characteristics of the drainage network of the Kosi megafan, India and its interaction with the August 2008 flood flow. In Ventra, D. and Clarke, L. E., eds., Geology and Geomorphology of Alluvial and Fluvial Fans: Terrestrial and Planetary Perspectives. Geological Society of London, Special Publication, 440, 307326.Google Scholar
Marzo, M., Nijman, W., and Puigdefábregas, C. (1988). Architecture of the Castissent fluvial sheet sandstones, Eocene, South Pyrenees, Spain. Sedimentology, 35, 719738.Google Scholar
Mishra, D. K. (2008). The Kosi and the embankment story. Economic and Political Weekly, 43, 4752.Google Scholar
Morgan, R. P. C. (1995). Soil Erosion and Conservation, 2nd edn, Longman, London.Google Scholar
Nakayama, K. and Ulak, P. D. (1999). Evolution of fluvial style in the Siwalik Group in the foothills of the Nepal Himalaya. Sedimentary Geology, 125, 205224.CrossRefGoogle Scholar
Oberlander, T. M. (1985). Origin of drainage transverse to structures in orogens. In Morisawa, M. and Hack, J. T., eds., Tectonic Geomorphology. Allen and Unwin, Boston, 155182.Google Scholar
Parker, G. (1999). Progress in the modeling of alluvial fans. Journal of Hydraulic Research, 37, 805825.Google Scholar
Parker, G., Paola, C., Whipple, K. X., and Mohrig, D. (1998). Alluvial fans formed by channelized fluvial and sheet flow. I: Theory. Journal of Hydraulic Engineering, 124, 985995.CrossRefGoogle Scholar
Reitz, M. D. and Jerolmack, D. J. (2012). Experimental alluvial fan evolution: channel dynamics, slope controls, and shoreline growth. Journal of Geophysical Research: Earth Surface, 117, F02021, doi:10.1029/2011JF002261Google Scholar
Roy, N. G. and Sinha, R. (2017). Linking hydrology and sediment dynamics of large alluvial rivers to landscape diversity in the Ganga dispersal system, India. Earth Surface Processes and Landforms, 42, 10781091.Google Scholar
Singh, H., Parkash, B., and Gohain, K. (1993). Facies analysis of the Kosi megafan deposits. Sedimentary Geology, 85, 87113.Google Scholar
Sinha, R. (2009). The great avulsion of Kosi on 18 August 2008. Current Science, 97, 429433.Google Scholar
Sinha, R. and Friend, P. F. (1994). River systems and their sediment flux, Indo-Gangetic plains, Northern Bihar, India. Sedimentology, 41, 825845.Google Scholar
Sinha, R., Gaurav, K., Chandra, S., and Tandon, S. (2013). Exploring the channel connectivity structure of the August 2008 avulsion belt of the Kosi River, India: Application to food risk assessment. Geology, 41, 10991102.Google Scholar
Sinha, R., Sripriyanka, K., Jain, V., and Mukul, M. (2014a). Avulsion threshold and planform dynamics of the Kosi River in north Bihar (India) and Nepal: A GIS framework. Geomorphology, 216, 157170.Google Scholar
Sinha, R., Ahmad, J., Gaurav, K., and Morin, G. (2014b). Shallow subsurface stratigraphy and alluvial architecture of the Kosi and Gandak megafans in the Himalayan foreland basin, India. Sedimentary Geology, 301, 133149.Google Scholar
Sinha, R., Gupta, A., Mishra, K., et al. (2019). Basin scale hydrology and sediment dynamics of the Koshi River in the Himalayan foreland. Journal of Hydrology, 570, 156166.Google Scholar
Slingerland, R. and Smith, N. D. (2004). River avulsions and their deposits. Annual Review of Earth and Planetary Sciences, 32, 257285.Google Scholar
Van Dijk, W. M., Densmore, A. L., Singh, et al. (2016). Linking the morphology of fluvial fan systems to aquifer stratigraphy in the Sutlej–Yamuna plain of northwest India. Journal of Geophysical Research: Earth Surface, 121, 201222.Google Scholar
Wells, N. A. and Dorr, J. A. (1987). Shifting of the Kosi River, Northern India. Geology, 15, 204207.Google Scholar
Wagner, L. R. (1937). The Arun River drainage pattern and the rise of the Himalaya. Geographical Journal, 89, 239250.Google Scholar
Willis, B. J. (1993a). Ancient river systems in the Himalayan foredeep, Chinji Village area, northern Pakistan. Sedimentary Geology, 88, 176.Google Scholar
Willis, B. J. (1993b). Evolution of Miocene fluvial systems in the Himalayan foredeep through a two-kilometer-thick succession in northern Pakistan. Sedimentary Geology, 88, 77121.Google Scholar
Zaleha, M. J. (1997). Fluvial and lacustrine palaeoenvironments of the Miocene Siwalik Group, Khaur area, northern Pakistan. Sedimentology, 44, 349368.Google Scholar

References

Ainsworth, R. B., Vakarelov, B. K., and Nanson, R. A. (2011). Dynamic spatial and temporal prediction of changes in depositional processes on clastic shorelines: Toward improved subsurface uncertainty reduction and management. American Association of Petroleum Geologists Bulletin, 95, 267297.Google Scholar
BOM. (2018). Australian Bureau of Meteorology. Tropical cyclones in the Northern Territory. [online] Australian Government. Available at: www.bom.gov.au/cyclone/about/northern.shtml. [Accessed 05 February 2019]Google Scholar
Brooks, A. P., Spencer, J., Shellberg, J. G., and Knight, J. (2008). Using remote sensing to quantify sediment budget components in a large tropical river – Mitchell River, Gulf of Carpentaria. In Schmidt, J., Cochrane, T., Phillips, C., et al., eds., Sediment Dynamics in Changing Environments. International Association of Hydrological Sciences Press, Wallingford, 225236.Google Scholar
Brooks, A. P., Shellberg, J. G., Knight, J., and Spencer, J. (2009). Alluvial gully erosion: an example from the Mitchell fluvial megafan, Queensland, Australia. Earth Surface Processes and Landforms, 34, 19511969.CrossRefGoogle Scholar
Callen, R. A. and Bradford, J. (1992). Cooper Creek fan and Strzelecki Creek – hypsometric data, Holocene sedimentation, and implications for human activity. Mines and Energy Reviews, 158, 5257.Google Scholar
Chappell, J. (1983). Evidence for smoothly falling sea level relative to north Queensland, Australia, during the past 6,000 yr. Nature, 302, 406408.Google Scholar
Chatanantavet, P., Lamb, M. P., and Nittrouer, J. A. (2012). Backwater controls of avulsion location on deltas. Geophysical Research Letters, 39, DOI: 10.1029/2011GL050197.Google Scholar
Cohen, T. J., Nanson, G. C., Larsen, J. R., et al. (2010). Late Quaternary aeolian and fluvial interactions on the Cooper Creek Fan and the association between linear and source-bordering dunes, Strzelecki Desert, Australia. Quaternary Science Reviews, 29, 455471.Google Scholar
CSIRO, Commonwealth Scientific and Industrial Research Organisation, Australia. (2019). Sea-level Rise – Improving projections for the future. [online] CSIRO Available at: https://www.cmar.csiro.au/sealevel/sl_hist_last_decades.html. [Accessed 02 December 2019]Google Scholar
Croke, J. C., Magee, J. M., and Price, D. M. (1998). Stratigraphy and sedimentology of the lower Neales River, West Lake Eyre, Central Australia: from Palaeocene to Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, 331350.CrossRefGoogle Scholar
Doutch, H. F. (1976). The Karamba Basin, northeastern Australia and southern New Guinea. Bureau of Mineral Resources (BMR) Journal of Geology & Geophysics, 1, 131140.Google Scholar
Doutch, H. F., Ingram, J. A. Smart, J., and Grimes, K. G. (1970). Progress Report on the Geology of the Central Carpentaria Basin, Bureau of Mineral Resources (BMR) Australia Record 1972/64.Google Scholar
Doutch, H. F. and Nicholas, E. (1978). The Phanerozoic sedimentary basins of Australia and their tectonic implications. Tectonophysics, 48, 365388.Google Scholar
Forbes, M., Jankowski, N., Cohen, T., et al. (2020). Palaeochannels of Australia’s Riverine Plain – Reconstructing past vegetation environments across the Late Pleistocene and Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 545, 109533.Google Scholar
Galloway, R. W., Gunn, R. H., and Story, R. (1970). The lands of the Mitchell–Normanby area, Queensland. CSIRO Land Research Series, 26.Google Scholar
Ganti, V., Chu, Z., Lamb, M. P., Nittrouer, J. A., and Parker, G. (2014). Testing morphodynamic controls on the location and frequency of river avulsions on fans versus deltas: Huanghe (Yellow River), China. Geophysical Research Letters, 41, 78827890.Google Scholar
Geoscience Australia and CSIRO Land & Water (2011). 1 Second SRTM derived Digital Elevation Models User Guide. Version 1.0.4, Canberra, Geoscience Australia.Google Scholar
Gibling, M. R. (2006). Width and thickness of fluvial channel bodies and valley fills in the geological record: a literature compilation and classification. Journal of Sedimentary Research, 76, 731770.Google Scholar
Grant, K. (1968). Terrain classification for engineering purposes of the Rolling Downs Province, Queensland. CSIRO Division of Soil Mechanics Technical Paper 3.Google Scholar
Grimes, K. G. (1974). Mesozoic and Cainozoic geology of the Lawn Hill, Westmoreland, Mornington and Cape Van Diemen: Queensland, Bureau of Mineral Resources (BMR) Australia, 1:250,000 sheet areas, Record 1974/106.Google Scholar
Grimes, K. G. and Doutch, H. F. (1978). The late Cainozoic evolution of the Carpentaria Plains, North Queensland. Bureau of Mineral Resources (BMR). Journal of Geology & Geophysics, 3, 101112.Google Scholar
Hesse, P. P., Williams, R., Ralph, T. J., et al. (2018) Palaeohydrology of lowland rivers in the Murray-Darling Basin, Australia. Quaternary Science Reviews, 200, 85105.Google Scholar
Hooke, R. (1967). Processes on arid-region alluvial fans. The Journal of Geology, 75, 438460.Google Scholar
Isbell, R. F., Webb, A. A., and Murtha, G. G. (1968). Atlas of Australian Soils, Sheet 7, North Queensland, with Explanatory Data, Melbourne, CSIRO and Melbourne University Press.Google Scholar
Jerolmack, D. J. (2009). Conceptual framework for assessing the response of delta channel networks to Holocene sea-level rise. Quaternary Science Reviews, 28, 17861800.Google Scholar
Johnson, P. J. (1982). Sedimentary facies of an arid zone delta: Gascoyne Delta, Western Australia. Journal of Sedimentary Research, 52, 547563.Google Scholar
Jones, B. G., Martin, G. R., and Senapati, N. (1993). Riverine–tidal interactions in the monsoonal Gilbert River fandelta, northern Australia. Sedimentary Geology, 83, 319337.Google Scholar
Jones, B. G., Woodroffe, C. D., and Martin, G. R. (2003). Deltas in the Gulf of Carpentaria, Australia: forms, processes and products. In Sidi, F. H., Nummedal, D., Imbert, P., Darman, H., and Posamentier, H. W., eds., Tropical Deltas of Southeast Asia: Sedimentology, Stratigraphy, and Petroleum Geology, SEPM Special Publication, 76, 2143.Google Scholar
Kemp, J. and Rhodes, E. J. (2010). Episodic fluvial activity of inland rivers in southeastern Australia: palaeochannel systems and terraces of the Lachlan River. Quaternary Science Reviews, 29, 732752.Google Scholar
Kemp, J., Pietsch, T., Gontz, A., and Olley, J. (2017). Lacustrine-fluvial interaction in Australia’s Riverine Plains. Quaternary Science Reviews, 166, 352362.Google Scholar
Lamb, M. P., Nittrouer, J. A., Mohrig, D., and Shaw, J. (2012). Backwater and river plume controls on scour upstream of river mouths: implications for fluvio-deltaic morphodynamics. Journal of Geophysical Research: Earth Surface, 117, DOI:10.1029/2011JF002079.Google Scholar
Lane, T. I. (2016). Evolution and architecture of the Holocene Mitchell River Megafan and Delta, Gulf of Carpentaria, Australia. PhD thesis, University of Adelaide, Australia.Google Scholar
Lane, T. I., Nanson, R. A. Vakarelov, Ainsworth, B. K., R. B., and Dashtgard, S. E. (2017). Evolution and architectural styles of a forced-regressive Holocene Delta and Megafan, Mitchell River, Gulf of Carpentaria, Australia. In Hampson, G. J., Reynolds, A. D., Kostic, B., and Wells, M. R., eds., Sedimentology of Paralic Reservoirs: Recent Advances. Geological Society of London, Special Publication, 444, 305–334.Google Scholar
Lang, S. C., Payenberg, T. H. D., Reilly, M. R. W., et al. (2004). Modern and analogues for dryland sandy fluvial-lacustrine deltas and terminal splay reservoirs. APPEA Journal, 44, 329356.Google Scholar
Leonhard, L., Burton, K., and Milligan, N. (2013). Gascoyne River, Western Australia; alluvial aquifer, groundwater management and tools. In Wetzelhuetter, C., ed., Groundwater in the Coastal Zones of the Asia-Pacific. Springer, Berlin, 359378.Google Scholar
Massey, T. A., Fernie, A. J., Ainsworth, R. B. Nanson, R. A., and Vakarelov, B. K. (2014). Detailed mapping, three-dimensional modelling and upscaling of a mixed-influence delta system, Mitchell River delta, Gulf of Carpentaria, Australia. In Martinius, A. W., Howell, J. A., and Good, T., eds., Sediment Body Geometry and Heterogeneity: Analogue Studies for Modelling the Subsurface. Geological Society of London, Special Publication, 387, 131151.Google Scholar
Murray-Wallace, C. V. and Woodroffe, C. D. (2014). Quaternary Sea-level Changes: A Global Perspective. Cambridge, Cambridge University Press.Google Scholar
Nanson, G. C. and Huang, H. Q. (2008). Least action principle, equilibrium states, iterative adjustment and the stability of alluvial channels. Earth Surface Processes and Landforms, 33, 923942.Google Scholar
Nanson, G. C., Price, D. M., Short, S. A., and Young, R. W. (1991). Comparative uranium–thorium and thermoluminescence dating of weathered Quaternary alluvium in the tropics of northern Australia. Quaternary Research, 35, 347366.Google Scholar
Nanson, G. C., Jones, B. G., Price, D. M., and Pietsch, T. J. (2005). Rivers turned to rock: Late Quaternary alluvial induration influencing the behaviour and morphology of an anabranching river in the Australian monsoon tropics. Geomorphology, 70, 398420.Google Scholar
Nanson, R., Ainsworth, B., Vakarelov, B., Fernie, A., and Massey, T. (2012). Geometric attributes of reservoir elements in a modern, low accommodation, tide-dominated delta. APPEA Journal, 52, 483492.Google Scholar
Nanson, R. A., Lane, T. L, Ainsworth, R. B., and Vakarelov, B. K. (2013a). Evolution and Architecture of a Low Accommodation, Mixed Influence Marginal Marine System: Holocene Mitchell River Delta, Queensland, Australia. A Field Workshop, 1–6 September 2013: WAVE consortium.Google Scholar
Nanson, R. A., Vakarelov, B. K., Ainsworth, R. B., Williams, F. M., and Price, D. M. (2013b). Evolution of a Holocene, mixed-process, forced regressive shoreline: The Mitchell river delta, Queensland, Australia. Marine Geology, 339, 2243.Google Scholar
Nijhuis, A. G., Edmonds, D. A., Caldwell, R. R., et al. (2015). Fluvio-deltaic avulsions during relative sea-level rise. Geology, 43, 719722.Google Scholar
Page, K. J. and Nanson, G. C. (1996). Stratigraphic architecture resulting from Late Quaternary evolution of the Riverine Plain, south-eastern Australia. Sedimentology, 43, 927945.Google Scholar
Page, K., Nanson, G., and Price, D. (1996). Chronology of Murrumbidgee river palaeochannels on the Riverine Plain, southeastern Australia. Journal of Quaternary Science, 11, 311326.Google Scholar
Page, K. J., Dare-Edwards, A. J., Owens, J. W., et al. (2001). TL and stratigraphy of riverine source bordering sand dunes near Wagga Wagga, New South Wales, Australia. Quaternary International, 83–85, 187193.Google Scholar
Page, K. J, Kemp, J., and Nanson, G. C. (2009). 1002 Late Quaternary evolution of Riverine Plain palaeochannels, southeastern Australia. Australian Journal of Earth Sciences, 56, 1933.Google Scholar
Perry, R. A., Sleeman, J. R., Twidale, C. R., et al. (1964). General report on the lands of the Leichhardt-Gilbert area, Queensland, 1953–54. CSIRO, Land Research Series 11.Google Scholar
Pietsch, T. J., Nanson, G. C., and Olley, J. M. (2013). Late Quaternary changes in flow-regime on the Gwydir distributive fluvial system, southeastern Australia. Quaternary Science Reviews, 69, 168180.Google Scholar
Porritt, E. L., Jones, B. G., Price, D. M., and Carvalho, R. C. (2020). Holocene delta progradation into an epeiric sea in northeastern Australia. Marine Geology, 422, 106114.Google Scholar
Prosser, I. P., Rustomji, P., Young, W. J., Moran, C. J., and Hughes, A. O. (2001). Constructing river basin sediment budgets for the National Land and Water Resources Audit, CSIRO, Land and Water, Technical Report 15/01.Google Scholar
Reeves, J. M., Chivas, A. R., García, A., and De Deckker, P. (2007). Palaeoenvironmental change in the Gulf of Carpentaria (Australia) since the last interglacial based on Ostracoda. Palaeogeography, Palaeoclimatology, Palaeoecology, 246, 163187.Google Scholar
Reeves, J. M., Chivas, A. R., García, A., et al. (2008). The sedimentary record of palaeoenvironments and sea-level change in the Gulf of Carpentaria, Australia, through the last glacial cycle. Quaternary International, 183, 322.Google Scholar
Rhodes, E. G. (1980). Modes of Holocene Coastal Progradation, Gulf of Carpentaria, PhD thesis, Australian National University, Canberra.Google Scholar
Rhodes, E. G. (1982). Depositional model for a chenier plain, Gulf of Carpentaria, Australia. Sedimentology, 29, 201221.Google Scholar
Rhodes, E. G., Polach, H. A, Thom, B. G., and Wilson, S. R. (1980). Age structure of Holocene coastal sediments: Gulf of Carpentaria, Australia. Radiocarbon, 22, 718727.Google Scholar
Rustomji, P. (2010). A statistical analysis of flood hydrology and bankfull discharge for the Mitchell River catchment, Queensland, Australia, CSIRO: Water for a Healthy Country National Research Flagship [01/2010].Google Scholar
Rustomji, P., Shellberg, J. G., Brooks, A. P., Spencer, J., and Caitcheon, G. (2010). A catchment sediment and nutrient budget for the Mitchell River, Queensland. A report to the Tropical Rivers and Coastal Knowledge (TRaCK) Research Program. In Department of Sustainability, Water, Population and Communities, ed., CSIRO Water for a Healthy Country National Research Flagship, 119 p.Google Scholar
Schumm, S. A., Mosley, M. P., and Weaver, W. E. (1987). Experimental Fluvial Geomorphology. Wiley, New York, 413 p.Google Scholar
Shellberg, J. G. (2011). Alluvial Gully Erosion Rates and Processes Across the Mitchell River Fluvial Megafan in Northern Queensland, Australia. PhD thesis, Griffith University, Australian Rivers Institute.Google Scholar
Shellberg, J. G., Brooks, A. P. Spencer, J., and Ward, D. (2012). The hydrogeomorphic influences on alluvial gully erosion along the Mitchell River fluvial megafan, northern Australia. Hydrological Processes, 27, 10861104.Google Scholar
Shellberg, J. G., Brooks, A. P., and Rose, C. W. (2013). Sediment production and yield from an alluvial gully in northern Queensland, Australia. Earth Surface Processes and Landforms, 38, 17651778.Google Scholar
Shellberg, J. G., Spencer, J. Brooks, A. P., and Pietsch, T. J. (2016). Degradation of the Mitchell River fluvial megafan by alluvial gully erosion increased by post-European land use change, Queensland, Australia. Geomorphology, 266, 105120.Google Scholar
Shulmeister, J. (1999). Australasian evidence for mid-Holocene climate change implies precessional control of Walker Circulation in the Pacific. Quaternary International, 57/58, 8191.Google Scholar
Simpson, C. J. and Doutch, H. F. (1977). The 1974 wet-season flooding of the southern Carpentaria Plains, northwest Queensland. BMR Journal of Australian Geology and Geophysics, 2, 4351.Google Scholar
Slingerland, R. L. and Smith, N. D. (2004). River avulsions and their deposits. Annual Review of Earth and Planetary Sciences, 32, 257285.Google Scholar
Sloss, C. R., Nothdurft, L., Hua, Q., et al. (2018). Holocene sea-level change and coastal landscape evolution in the southern Gulf of Carpentaria, Australia. The Holocene, 28, 14111430.Google Scholar
Smart, J. and Grimes, K. G. (1971). Shallow stratigraphic drilling, eastern Carpentaria Basin. Bureau of Mineral Resources, Geology and Geophysics, BMR Record 1971/143.Google Scholar
Smart, J., Morrissey, J. A., and Hassan, S. E. (1975). Index to drill-hole data – Carpentaria, Laura, and Karumba Basins, Bureau of Mineral Resources, Geology and Geophysics, BMR Record 1975/167.Google Scholar
Smart, J., Grimes, K. G., Doutch, H. F., and Pinchin, J. (1980). The Carpentaria and Karumba Basins, North Queensland, Australia. Bureau of Mineral Resources (BMR), Geology and Geophysics Bulletin, 202, 73 pp.Google Scholar
Stouthamer, E. and Berendsen, H. J. A. (2007). Avulsion: the relative roles of autogenic and allogenic processes. Sedimentary Geology, 198, 309325.Google Scholar
Suppiah, R. (1992). The Australian summer monsoon: A review. Progress in Physical Geography, 16, 283218.Google Scholar
The State of Queensland Department of Natural Resources and Mines (2014). Groundwater database bore report: Mitchell River area, 141 pp.Google Scholar
Twidale, C. R. (1966). Chronology of denudation in north-west Queensland. Geological Society of America Bulletin, 67, 323.Google Scholar
Vakarelov, B. K. and Ainsworth, R. B. (2013). A hierarchical approach to architectural classification in marginal marine systems: bridging the gap between sedimentology and sequence stratigraphy. American Association of Petroleum Geologists Bulletin, 97, 11211161.Google Scholar
Wakelin-King, G. and Amos, K. (2016). A time-slice of the Lake Eyre Basin: sand/mud depositional geometries in a diverse lowstand endorheic drylands setting. Eastern Australian Basins Symposium: Publication of Proceedings, 97–133.Google Scholar
Weissmann, G. S., Hartley, A. J. Nichols, G. J., et al. (2010). Fluvial form in modern continental sedimentary basins: Distributive fluvial systems. Geology, 38, 3942.Google Scholar
Weissmann, G. S., Hartley, A. J. Nichols, G. J., et al. (2011). Alluvial facies distributions in continental sedimentary basins: distributive fluvial systems. In Davidson, S. K., Leleu, S., and North, C.., eds., From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent Interpretation. SEPM Special Publication, 97, 327355.Google Scholar
Weissmann, G. S., Hartley, A. J., Scuderi, L. A., et al. (2013). Prograding distributive fluvial systems: geomorphic models and ancient examples. In Driese, S. G. and Nordt, L. C., eds., New Frontiers in Paleopedology and Terrestrial Paleoclimatology, Paleosols and Soil Surface Analog Systems. SEPM Special Publication, 104, 131147.Google Scholar
Whitehouse, F. W. (1941). The surface of western Queensland. Proceedings of the Royal Society of Queensland, 53, 122.Google Scholar
Whitney, B. B. and Hengesh, J. V. (2015). Geomorphological evidence of neotectonics deformation in the Carnarvon Basin, Western Australia. Geomorphology, 228, 579596.Google Scholar
Woodroffe, S. A. (2009). Testing models of mid to late Holocene sea-level change, North Queensland, Australia. Quaternary Science Reviews, 28, 24742488.Google Scholar

References

Abernethy, B., Markham, A. J., Prosser, I. P., and Wansbrough, T. M. (2004). A sluggish recovery: the indelible marks of landuse change in the Loddon River catchment. In: Fourth Australian Stream Management Conference: Linking Rivers to Landscapes. Launceston, Tasmania, 1922.Google Scholar
Allen, J. R. (1965). A review of the origin and characteristics of recent alluvial sediments. Sedimentology, 5, 8911.Google Scholar
Ash, J. E. and Wasson, R.J. (1983). Vegetation and sand mobility in the Australian desert dunefield. Zeitschrift für Geomorphologie. 45, 725.Google Scholar
Beattie, J. A. (1970). Peculiar features of soil development in parna deposits in the Eastern Riverina, NSW. Soil Research, 8, 145156.Google Scholar
Blackburn, G. (1981). Particle-size analyses of Widgelli parna in south-east Australia. Australian Journal of Soil Research, 19, 355360.Google Scholar
Bowler, J. M. (1973). Clay dunes: their occurrence, formation and environmental significance. Earth-Science Reviews, 9, 315338.Google Scholar
Bowler, J. M. and Harford, L. B. (1966). Quaternary tectonics and the evolution of the riverine plain near Echuca, Victoria. Journal of the Geological Society of Australia, 13, 339354.Google Scholar
Bowler, J. M., Hope, G. S., Jennings, J. N. Singh, G., and Walker, D. (1976). Late Quaternary climates of Australia and New Guinea. Quaternary Research, 6, 359394.Google Scholar
Bowler, J. M, Kotsonis, A., and Lawrence, C. R. (2006). Environmental evolution of the Mallee region, Western Murray Basin. Proceedings of the Royal Society of Victoria, 118, 161210.Google Scholar
Braun, J., Burbidge, D. R., Gesto, F. N., et al. (2009). Constraints on the current rate of deformation and surface uplift of the Australian continent from a new seismic database and low-T thermochronological data. Australian Journal of Earth Sciences, 56, 99110.Google Scholar
Brooks, A. P., Shellberg, J. G., Knight, J., and Spencer, J. (2009). Alluvial gully erosion: an example from the Mitchell River fluvial megafan, Queensland, Australia. Earth Surface Processes and Landforms, 34, 19511969.Google Scholar
Brown, C. M. and Stevenson, A. E. (1991). Geology of the Murray Basin, southeastern Australia. Australian Government Publishing Service, Canberra.Google Scholar
Bull, W. B. (1977). The alluvial-fan environment. Progress in Physical Geography, 1, 222270.Google Scholar
Butler, B. E. (1950). Theory of prior streams as a causal factor of soil occurrence in the Riverine Plain of south-eastern Australia. Australian Journal of Agricultural Research, 1, 231252.Google Scholar
Butler, B. E., Blackburn, G., Bowler, J. M., et al. (1973). A Geomorphic Map of the Riverine Plain of South-Eastern Australia. Australian National University Press, Canberra.Google Scholar
Butler, B. E. and Hubble, G. D. (1978). The general distribution and character of soils in the Murray-Darling River system. Proceedings of the Royal Society of Victoria, 90, 149156.Google Scholar
Butler, B. E. and Hutton, J. T. (1956). Parna in the Riverine Plain of south-eastern Australia and the soils thereon. Crop and Pasture Science, 7, 536553.Google Scholar
Calf, G. E, Ife, D., Tickell, S., and Smith, L. W. (1986). Hydrogeology and isotope hydrology of Upper Tertiary and Quaternary aquifers in Northern Victoria. Australian Journal of Earth Sciences, 33, 1926.Google Scholar
Calvo, E., Pelejero, C., De Deckker, P., and Logan, G. (2007). Antarctic deglacial patterns in a 30 kyr record of sea surface temperature offshore South Australia. Geophysical Research Letters, 34, L130707.Google Scholar
Cattle, S. R., McTainsh, G. H., and Wagner, S. (2002). Aeolian dust contributions to soil of the Namoi Valley, northern NSW, Australia. Catena, 47, 245264.Google Scholar
Cattle, S. R., Greene, R. S. B., and McPherson, A. A. (2009). The role of climate and local regolith-landscape processes in determining the pedological characteristics of aeolian dust deposits across south-eastern Australia. Quaternary International, 209, 95106.Google Scholar
Cayley, R. A., Skladzien, P. B., Williams, B., and Willman, C. E. (2008). Redesdale and part of Pyalong, 1:50,000 geological map report 128. Geological Survey of Victoria, Melbourne, Australia.Google Scholar
Chen, X. Y. (2001). The red clay mantle in the Wagga Wagga region, New South Wales: evaluation of an aeolian dust deposit (Yarabee Parna) using methods of soil landscape mapping. Australian Journal of Soil Research, 39, 6180.Google Scholar
Chen, X. Y., Spooner, N. A., Olley, J. M., and Questiaux, D. G. (2002). Addition of aeolian dusts to soils in southeastern Australia: red silty clay trapped in dunes bordering Murrumbidgee River in the Wagga Wagga region. Catena, 47, 127.Google Scholar
Cherry, D. P. and Wilkinson, H. E. (1994). Bendigo, and part of Mitiamo, 1:100,000 geological map report 99. Geological Survey of Victoria.Google Scholar
Clark, D., McPherson, A., and Collins, C. D. N. (2011). Australia’s Seismogenic Neotectonic Record: A Case for Heterogeneous Intraplate Deformation. Geoscience Australia Record 2011/11. Geoscience Australia, Canberra.Google Scholar
Clark, D., Van Dissen, R., Cupper, M., Collins, C., and Prendergast, A. (2007). Temporal clustering of surface ruptures on stable continental region faults: a case study from the Cadell Fault scarp, southeastern Australia. In: Proceedings of the Australian Earthquake Engineering Society Conference, 23–25 November 2007, Wollongong, Paper 17.Google Scholar
Cohen, T. J. and Nanson, G. C. (2007). Mind the gap: an absence of valley-fill deposits identifying the Holocene hypsithermal period of enhanced flow regime in southeastern Australia. The Holocene, 17, 411418.Google Scholar
Cupper, M. L., White, S., and Neilson, J. L. (2003). Quaternary: ice ages – environments of change. In Birch, W. D., ed., Geology of Victoria. Geological Society of Australia, Special Publication, 23, 337360.Google Scholar
De Caritat, P. Lech, M. E., Jaireth, S., Pyke, J., and Fisher, A. (2007). Riverina Region Geochemical Survey, Southern New South Wales and Northern Victoria. CRC LEME Open File Report 234.Google Scholar
Department of Environment and Primary Industries (2009–2010). 2009–2010 Victorian State Wide Rivers Lidar Project. Department of Environment and Primary Industries, Melbourne, Victoria, Australia.Google Scholar
Department of Primary Industries (2003). Radiometric Ternary (K, Th, U) Image (1:1,000,000). Department of Primary Industries, Melbourne, Victoria, Australia.Google Scholar
Dettinger, M. D. and Diaz, H. F. (2000). Global characteristics of stream flow seasonality and variability. Journal of Hydrometeorology, 1, 289310.Google Scholar
Dodson, J. R. and Mooney, S. D. (2002). An assessment of historic human impact on south-eastern Australian environmental systems, using late Holocene rates of environmental change. Australian Journal of Botany, 50, 455464.Google Scholar
Edwards, J., Slater, K. R., and McHaffie, I. W. (2001). Bendigo 1:250 000 map area geological report. Victorian Initiative for Minerals and Petroleum Report 72. Department of Natural Resources and Environment, Melbourne, Victoria, Australia.Google Scholar
Ellery, W. N., Ellery, K., Rogers, K. H., McCarthy, T. S., and Walker, B. H. (1993). Vegetation, hydrology and sedimentation processes as determinants of channel form and dynamics in the northeastern Okavango Delta, Botswana. African Journal of Ecology, 31, 1025.Google Scholar
Fried, A. W. (1993). Late Pleistocene river morphological change, southeastern Australia: the conundrum of sinuous channels during the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 101, 305316.Google Scholar
Garden, D., (2001). Catalyst or cataclysm? Gold mining and the environment. Victorian Historical Journal, 72, 2844.Google Scholar
Geoscience Australia (2011). SRTM-derived 1 Second Digital Elevation Models Version 1.0. Geoscience Australia, Commonwealth of Australia.Google Scholar
Gingele, F. X. and De Deckker, P. (2005). Clay mineral, geochemical and Sr–Nd isotopic fingerprinting of sediments in the Murray–Darling fluvial system, southeast Australia. Australian Journal of Earth Sciences, 52, 965974.Google Scholar
Haberlah, D. (2007). A call for Australian loess. Area, 39, 224229.Google Scholar
Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Warwick, G. L. (2010). Large distributive fluvial systems: characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167183.Google Scholar
Harvey, A. (2011). Dryland alluvial fans. In Thomas, D. S. G., ed., Arid Zone Geomorphology: Process, Form and Change in Drylands. Wiley, Chichester, 333371.Google Scholar
Hesse, P. P. and McTainsh, G. H. (2003). Australian dust deposits: modern processes and the Quaternary record. Quaternary Science Reviews, 22, 20072035.Google Scholar
Hesse, P. P., Magee, J. W., and Van Der Kaars, S. (2004). Late Quaternary climates of the Australian arid zone: a review. Quaternary International, 118, 87102.Google Scholar
Hill, S. M. (1996). The differential weathering of granitic rocks in Victoria, Australia. AGSO Journal of Australian Geology and Geophysics, 16, 271276.Google Scholar
Hill, S. M. (1999). Mesozoic regolith and palaeolandscape features in southeastern Australia: significance for interpretations of denudation and highland evolution. Australian Journal of Earth Sciences, 46, 217232.Google Scholar
Hills, E. S. (1961). Morphotectonics and the geomorphological sciences with special reference to Australia. Quarterly Journal of the Geological Society, 117, 7790.Google Scholar
Jansson, M. B. (1988). A global survey of sediment yield. Geografiska Annaler. Series A, Physical Geography, 70, 8198.Google Scholar
Joyce, E. B., Webb, J. A., Dahlhaus, P. G., et al. (with material by the late Jenkin, J. J.) (2003). Geomorphology: the evolution of Victorian landscapes. In Birch, W. D., ed., Geology of Victoria. Geological Society of Australia, Special Publication, 23, 533561.Google Scholar
Kar, R., Chakraborty, T., Chakraborty, C., et al. (2014). Morpho-sedimentary characteristics of the Quaternary Matiali fan and associated river terraces, Jalpaiguri, India: Implications for climatic controls. Geomorphology, 227, 137152.Google Scholar
Kemp, J. and Rhodes, E. J. (2010). Episodic fluvial activity of inland rivers in southeastern Australia: Palaeochannel systems and terraces of the Lachlan River. Quaternary Science Reviews, 29, 732752.Google Scholar
Kershaw, A. P. and Nanson, G. C. (1993). The last full glacial cycle in the Australian region. Global and Planetary Change, 7, 19.Google Scholar
King, R. L. (1986). Explanatory notes on the Ballarat 1:250,000 geological map. Geological Survey of Victoria Report 75. Department of Industry and Resources, Melbourne, Victoria, Australia.Google Scholar
Kotsonis, A. and Joyce, E. B. (2003). The regolith of the Bendigo 1:100 000 map area. Victorian Initiative for Minerals and Petroleum Report 77. Department of Primary Industries, Melbourne, Victoria, Australia.Google Scholar
Langford-Smith, T. (1960). The dead river systems of the Murrumbidgee. Geographical Review, 50, 368389.Google Scholar
Lawrence, C. R. (1966). Cainozoic stratigraphy and structure of the Mallee Region, Victoria. Proceedings of the Royal Society of Victoria, 79, 517554.Google Scholar
Lawrence, C. R. (1975). Geology, Hydrodynamics and Hydrochemistry of the Southern Murray Basin. Geological Survey of Victoria Memoir, 30.Google Scholar
Lawrence, C. R., Macumber, P. G., Kenley, P. R., et al. (1976). Quaternary. In Douglas, J. G. and Ferguson, J. A., eds., Geology of Victoria. Geological Society of Australia (Victorian Division), Special Publication, 5, 275325.Google Scholar
Lawrence, S. and Davies, P. (2012). Learning about landscape: Archaeology of water management in colonial Victoria. Australian Archaeology, 74, 4754.Google Scholar
Macumber, P. G. (1969). Interrelationship between physiography, hydrology, sedimentation, and salinization of the Loddon River Plains, Australia. Journal of Hydrology, 7, 3957.Google Scholar
Macumber, P. G. (1991). Interaction between Groundwater and Surface Systems in Northern Victoria. Department of Conservation and Environment, Melbourne, Victoria, Australia.Google Scholar
Macumber, P. G. and Macumber, J. J. (2010). Groundwater flow in the Campaspe and Loddon Valleys of Northern Victoria: an enhanced role for the Shepparton Formation. Proceedings of the Royal Society of Victoria, 122, 4369.Google Scholar
Maroulis, J. C. and Nanson, G. C. (1996). Bedload transport of aggregated muddy alluvium from Cooper Creek, central Australia: a flume study. Sedimentology, 43, 771790.Google Scholar
McMahon, T. A. and Finlayson, B. L. (2003). Droughts and anti-droughts: the low flow hydrology of Australian rivers. Freshwater Biology, 48, 11471160.Google Scholar
McMahon, T. A., Finlayson, B. L., Haines, A., and Srikanthan, R. (1987). Runoff variability: a global perspective. In Solomon, S. I., Beran, M., and Hogg, W., eds., The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources. IAHS Publication, 168, 3–11.Google Scholar
Nanson, G. C., Cohen, T. J., Doyle, C. J., and Price, D. M. (2003). Alluvial evidence of major late-Quaternary climate and flow-regime changes on the coastal rivers of New South Wales, Australia. In Gregory, K. and Benito, G., eds., Palaeohydrology: Understanding Global Change. Wiley, Chichester, 233–258.Google Scholar
Nanson, G. C., Rust, B. R., and Taylor, G. (1986). Coexistent mud braids and anastomosing channels in an arid zone river: Cooper Creek, Central Australia. Geology, 14, 175178.Google Scholar
Nanson, R. A., Vakarelov, B. K., Ainsworth, R. B., Williams, F. M., and Price, D. M. (2013). Evolution of a Holocene, mixed-process, forced regressive shoreline: The Mitchell River delta, Queensland, Australia. Marine Geology, 339, 2243.Google Scholar
Olive, L. J., Olley, J. M., Murray, A. S., and Wallbrink, P. J. (1994). Spatial variation in suspended sediment transport in the Murrumbidgee River, New South Wales, Australia. In Olive, L. J., Loughran, R. J., and Kesby, J. A., eds., Variability in Stream Erosion and Sediment Transport. IAHS Publication, 224, 241–250.Google Scholar
Ollier, C. D. (1995). Tectonics and landscape evolution in southeast Australia. Geomorphology, 12, 3744.Google Scholar
Page, K. J., Kemp, J., and Nanson, G. C. (2009). Late Quaternary evolution of Riverine Plain paleochannels, southeastern Australia. Australian Journal of Earth Sciences, 56, S19S33.Google Scholar
Page, K. J. and Nanson, G. C. (1996). Stratigraphic architecture resulting from Late Quaternary evolution of the Riverine Plain, south‐eastern Australia. Sedimentology, 43, 927945.Google Scholar
Peel, M. C., Finlayson, B. L., and McMahon, T. A. (2007). Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences, 4, 439473.Google Scholar
Pels, S. (1971). River systems and climatic changes in southeastern Australia. In Mulvaney, D. J. and Golson, J., eds., Aboriginal Man and Environment in Australia. Australian National University Press, Canberra, 3846.Google Scholar
Petherick, L., Bostock, H., Cohen, T. J., et al. (2013). Climatic records over the past 30 ka from temperate Australia–a synthesis from the Oz-INTIMATE workgroup. Quaternary Science Reviews, 74, 5877.Google Scholar
Pietsch, T. J. (2006). Fluvial geomorphology and Late Quaternary geochronology of the Gwydir fan-plain. PhD thesis, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales, Australia.Google Scholar
Pietsch, T. J. and Nanson, G. C. (2011). Bankfull hydraulic geometry; the role of in-channel vegetation and downstream declining discharges in the anabranching and distributary channels of the Gwydir distributive fluvial system, southeastern Australia. Geomorphology, 129, 152165.Google Scholar
Pietsch, T. J., Nanson, G. C., and Olley, J. M. (2013). Late Quaternary changes in flow-regime on the Gwydir distributive fluvial system, southeastern Australia. Quaternary Science Reviews, 69, 168180.Google Scholar
Poff, N. L., Olden, J. D., Pepin, D. M., and Bledsoe, B. P. (2006). Placing global stream flow variability in geographic and geomorphic contexts. River Research and Applications, 22, 149166.Google Scholar
Price, R. C., Nicholls, I. A., and Gray, C. M. (2003). Cainozoic igneous activity. In Birch, W. D., ed., Geology of Victoria. Geological Society of Australia, Special Publication, 23, 361375.Google Scholar
Prosser, I. P., Rutherfurd, I. D., Olley, J. M., et al. (2001). Large-scale patterns of erosion and sediment transport in river networks, with examples from Australia. Marine and Freshwater Research, 52, 8199.Google Scholar
Riley, S. J. and Taylor, G. (1978). The geomorphology of the Upper Darling River System with special reference to the present fluvial system. Proceedings of the Royal Society of Victoria, 90, 89102.Google Scholar
Robson, T. C. and Webb, J. A. (2011). Late Neogene tectonics in northwestern Victoria: evidence from the Late Miocene-Pliocene Loxton Sand. Australian Journal of Earth Sciences, 58, 579586.Google Scholar
Rust, B. R. and Nanson, G. C. (1989). Bedload transport of mud as pedogenic aggregates in modern and ancient rivers. Sedimentology, 36, 291306.Google Scholar
Schumm, S. A. (1968). River adjustment to altered hydrologic regimen - Murrumbidgee River and paleochannels, Australia. Geological Survey Professional Paper, 598, 65 pp.Google Scholar
Shellberg, J. G., Brooks, A. P., Spencer, J., and Ward, D. (2012). The hydrogeomorphic influences on alluvial gully erosion along the Mitchell River fluvial megafan. Hydrological Processes, DOI: 10.1002/hyp.9240.Google Scholar
Singh, H., Parkash, B., and Gohain, K. (1993). Facies analysis of the Kosi megafan deposits. Sedimentary Geology, 85, 87113.Google Scholar
Sleeman, J. R. (1975). Micromorphology and mineralogy of a layered red-brown earth profile. Australian Journal of Soil Research, 13, 101117.Google Scholar
Tickell, S. J. and Humphrys, W. G. (1987). Groundwater resources and associated salinity problems of the Victorian part of the Riverine Plain. Geological Survey of Victoria. Report 84, Department of Industry Technology and Resources, Victoria, Melbourne, Australia.Google Scholar
Tomkins, K. M., Humphreys, G. S., Wilkinson, M. T., et al. (2007). Contemporary versus long-term denudation along a passive plate margin: the role of extreme events. Earth Surface Processes and Landforms, 32, 10131031.Google Scholar
Tooth, S. (1999). Downstream changes in floodplain character on the Northern Plains of arid central Australia. In Smith, N. D. and Rogers, J., eds., Fluvial Sedimentology VI. International Association of Sedimentologists, Special Publication, 28, 93112.Google Scholar
VandenBerg, A. H. M. (2009). Rock unit names in western Victoria. Seamless Geology Project Report 130, Geological Survey of Victoria, Melbourne, Australia.Google Scholar
VandenBerg, A. H. M., Willman, C. E., Maher, S., et al. (2000). The Tasman Fold Belt System in Victoria. Geological Survey of Victoria, Special Publication, 134154.Google Scholar
Wakelin-King, G. A. and Webb, J. A. (2007). Upper-flow-regime mud floodplains, lower-flow-regime sand channels: sediment transport and deposition in a drylands mud-aggregate river. Journal of Sedimentary Research, 77, 702712.Google Scholar
Webb, J. A., Gardner, T. W., Kapostasy, D., Bremar, K. A., and Fabel, D. (2011). Mountain building along a passive margin: late Neogene tectonism in southeastern Victoria, Australia. Geomorphology, 125, 253262.Google Scholar
Williams, M., Cook, E., van der Kaars, S., et al. (2009). Glacial and deglacial climatic patterns in Australia and surrounding regions from 35 000 to 10 000 years ago reconstructed from terrestrial and near-shore proxy data. Quaternary Science Reviews, 28, 23982419.Google Scholar
Willman, C. E., Bibby, L. M., Radojkovic, A. M., et al. (2002). Castlemaine 1:100 000 map area, Geological report 121. Geological Survey of Victoria, Melbourne, Australia.Google Scholar
Wray, W. A. L. (2009). Palaeochannels of the Namoi River Floodplain, New South Wales, Australia: the use of multispectral Landsat imagery to highlight a Late Quaternary change in fluvial regime. Australian Geographer, 40, 2949.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Regional Studies
  • Edited by Justin Wilkinson, Texas State University, Jacobs JETS Contract, NASA Johnson Space Center, Yanni Gunnell, Université Lumière Lyon 2
  • Book: Fluvial Megafans on Earth and Mars
  • Online publication: 30 April 2023
  • Chapter DOI: https://doi.org/10.1017/9781108525923.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Regional Studies
  • Edited by Justin Wilkinson, Texas State University, Jacobs JETS Contract, NASA Johnson Space Center, Yanni Gunnell, Université Lumière Lyon 2
  • Book: Fluvial Megafans on Earth and Mars
  • Online publication: 30 April 2023
  • Chapter DOI: https://doi.org/10.1017/9781108525923.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Regional Studies
  • Edited by Justin Wilkinson, Texas State University, Jacobs JETS Contract, NASA Johnson Space Center, Yanni Gunnell, Université Lumière Lyon 2
  • Book: Fluvial Megafans on Earth and Mars
  • Online publication: 30 April 2023
  • Chapter DOI: https://doi.org/10.1017/9781108525923.005
Available formats
×