Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T22:56:19.307Z Has data issue: false hasContentIssue false

8 - Megafans of Southern and Central Europe

from Part II - Regional Studies

Published online by Cambridge University Press:  30 April 2023

Justin Wilkinson
Affiliation:
Texas State University, Jacobs JETS Contract, NASA Johnson Space Center
Yanni Gunnell
Affiliation:
Université Lumière Lyon 2
Get access

Summary

Fluvial megafans are uncommon in Europe but a few are recognisable in the Alps and Carpathians foreland zones. Along the southern Alps mountain front, megafans are present from Milan (central Po Plain) to the Venetian–Friulian Plain (Olona, Oglio, Adige, Brenta, Piave and Tagliamento rivers). These systems recorded a strong depositional phase during the Last Glacial Maximum (LGM, 29–19 ka BP), functioning as glacial outwash systems to the larger Alpine glaciers, largely followed by sediment starvation. These Alpine megafans are thus climate-controlled relics of the last glaciation. Megafans also occur on the Little Hungarian Plain (Danube River megafan near Bratislava and Rába River megafan, mainly fed from the Alps), and the Great Hungarian Plain (Maros, Szamos, and Drina megafans). The largest (Maros) consists of two lobes covering an area > 7,000 km². On the Danube, activity was continuous until recent time, whereas on the Maros and Szamos the main aggradational phase occurred during the Lateglacial. Compared to their Alpine counterparts, megafans on the Great Hungarian Plain are fed by larger catchments but these were not severely glaciated during the LGM. They recorded important depositional phases during the humid periods of the Lateglacial.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. (1840). Etudes sur les glaciers. Jent et Gassmann, Soleure.Google Scholar
Amorosi, A., Fontana, A., Antonioli, F., Primon, S., and Bondesan, A. (2008). Post-LGM sedimentation and Holocene shoreline evolution in the NW Adriatic coastal area. GeoActa, 7, 4167.Google Scholar
Bada, G. and Horváth, F. (2001). On the structure and tectonic evolution of the Pannonian basin and surrounding orogens. Acta Geologica Hungarica, 44, 301327.Google Scholar
Bačani, A., Šparica, M. and Velić, J. (1999). Quaternary deposits as hydrogeological system of Eastern Slavonia. Geologia Croatica, 52, 141152.Google Scholar
Baio, M., Bersezio, R. and Bini, A. (2004). Assetto geologico nel sottosuolo tra Melegnano e Piacenza. Il Quaternario – Italian Journal of Quaternary Sciences, 17, 355359.Google Scholar
Bersezio, R., Pavia, F., Baio, M., et al. (2004). Aquifer architecture of the quaternary alluvial succession of the southern Lambro basin (Lombardy, Italy). Il Quaternario – Italian Journal of Quaternary Sciences, 17, 361378.Google Scholar
Bersezio, R., Giudici, M., and Mele, M. (2007). Combining sedimentological and geophysical data for high-resolution 3-D mapping of fluvial architectural elements in the Quaternary Po plain (Italy). Sedimentary Geology, 202, 230248.CrossRefGoogle Scholar
Borsy, Z. (1990). Evolution of the alluvial fans of the Alföld. In Rachocki, A. H. and Church, M., eds., Alluvial Fans: A Field Approach. Wiley, Chichester, 229247.Google Scholar
Bondesan, M. (2001). Hydrography. In Castiglioni, G. B. and Pellegrini, G. B., eds., Illustrative Notes of the Geomorphological Map of Po Plain (Italy), Suppl. 4. Geografia Fisica Dinamica Quaternaria, 3344.Google Scholar
Carton, A., Bondesan, A., Fontana, A., et al. (2009). Geomorphological evolution and sediment transfer in the Piave River watershed (north-eastern Italy) since the LGM. Géomorphologie: relief, processus, environnement, 3, 3758.Google Scholar
Castiglioni, B. (1940). L’Italia nell’età quaternaria. In Dainelli, G., ed., Atlante fisico economico d’Italia, Milano, Consociazione Turistica Italiana, tav. 3.Google Scholar
Castiglioni, G. B. (1997). Geomorphological Map of Po Plain. Firenze, MURST–S.El.Ca, 3 sheets, scale 1:250,000.Google Scholar
Clark, P., Dyke, A., Shakun, J., et al. (2009). The Last Glacial Maximum. Science, 325, 710714.Google Scholar
Cuffaro, M., Riguzzi, F., Scrocca, D., et al. (2010). On the geodynamics of the northern Adriatic plate. Rendiconti Lincei, 21 (Suppl. 1), 253279.Google Scholar
Carling, P., Jansen, J., and Meshkova, L. (2014). Multichannel rivers: their definition and classification. Earth Surface Processes and Landforms, 39, 2637.Google Scholar
de Charpentier, J. (1841). Essai sur les glaciers et sur le terrain erratique du bassin du Rhône. Lausanne, Ducloux.Google Scholar
Ehlers, J. and Gibbard, P., eds. (2004). Quaternary Glaciations Extent and Chronology, Part 1: Europe. Elsevier, Amsterdam.Google Scholar
Feruglio, E. (1925). La zona delle risorgive del basso Friuli tra Tagliamento e Torre. Annali Stazione Chimica Agraria Sperimentale serie III 1, Udine.Google Scholar
Feurdean, A., Perşoiu, A., Tanţău, I., et al. (2014). Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. Quaternary Science Reviews, 106, 206224.Google Scholar
Finckh, P., Kelts, K., and Lambert, A. (1984). Seismic stratigraphy and bedrock forms in perialpine lakes. Geological Society of America Bulletin, 95, 11181128.2.0.CO;2>CrossRefGoogle Scholar
Fontana, A. (2006). Evoluzione geomorfologica della bassa pianura friulana e sue relazioni con le dinamiche insediative antiche. Monografie Museo Friulano Storia Naturale, 47, Udine. Enclosed Geomorphological Map of the Low Friulian Plain scale 1:50,000.Google Scholar
Fontana, A., Mozzi, P., and Bondesan, A. (2008). Alluvial megafans in the Venetian–Friulian Plain (north-eastern Italy): evidence of sedimentary and erosive phases during Late Pleistocene and Holocene. Quaternary International, 189, 7190.Google Scholar
Fontana, A., Mozzi, P., and Bondesan, A. (2010). Late Pleistocene evolution of the Venetian-Friulian Plain. Rendiconti Lincei, 21 (Suppl. 1), 181196.Google Scholar
Fontana, A., Mozzi, P., and Marchetti, M. (2014). Alluvial fans and megafans along thesouthern side of the Alps. Sedimentary Geology, 301, 150171.CrossRefGoogle Scholar
Gábris, G. (1994). Pleistocene evolution of the Danube in the Carpathian Basin. Terra Nova, 6, 495501.Google Scholar
Gábris, G. and Nagy, B. (2005). Climate and tectonically controlled river style changes on the Sajó-Hernád alluvial fan (Hungary). In Harvey, A. M., Mather, A. E., and Stokes, M., eds., Alluvial Fans: Geomorphology, Sedimentology, Dynamics. Geological Society of London, Special Publication, 251, 6167.Google Scholar
Gábris, G. and Nádor, A. (2007). Long-term fluvial archives in Hungary: response of the Danube and Tisza rivers to tectonic movements and climatic changes during the Quaternary: a review and new synthesis. Quaternary Science Reviews, 26, 27582782.Google Scholar
Gábris, G., Horváth, E., Novothny, Á., and Ruszkiczay-Rüdiger, Z. (2012). Fluvial and aeolian landscape evolution in Hungary. The results of the last 20 years research. Netherlands Journal of Geosciences, 91, 111128.Google Scholar
Garzanti, E., Vezzoli, G., and Andò, S. (2011). Paleogeographic and paleodrainage changes during Pleistocene glaciations (Po Plain, Northern Italy). Earth-Science Reviews, 105, 2548.Google Scholar
Ghielmi, M., Minervini, M., Nini, C., et al. (2010). Sedimentary and tectonic evolution in the eastern Po–Plain and northern Adriatic Sea area from Messinian to Middle Pleistocene (Italy). Rendiconti Lincei, 21 (Suppl. 1), 131166.CrossRefGoogle Scholar
Gohain, K. and Parkash, B. (1990). Morphology of Kosi megafan. In Rachocki, A. H. and Church, E. M., eds., Alluvial Fans: A Field Approach, Wiley, Chichester, 151178.Google Scholar
Guzzetti, F., Marchetti, M., and Reichenbach, P. (1997). Large alluvial fans in the north–central Po Plain (Northern Italy). Geomorphology, 18, 119136.CrossRefGoogle Scholar
Hippe, K., Fontana, A., Hajdas, I., and Ivy-Ochs, S. (2018). A high-resolution 14C chronology tracks pulses of aggradation of glaciofluvial sediment on the Cormor megafan between 45 and 20 ka BP. Radiocarbon, 60, 857874.Google Scholar
Horton, B. K. and DeCelles, P. G. (2001). Modern and ancient fluvial megafans in the central Andean foreland basin system, southern Bolivia. Basin Research, 13, 4363.Google Scholar
Howard, A. J., Macklin, M. G. Bailey, D. W., and Andreescu, A. (2004). Late-glacial and Holocene river development in the Teleorman Valley on the southern Romanian Plain. Journal of Quaternary Science, 19, 271280.CrossRefGoogle Scholar
Kasse, C., Bohncke, S., Vandenberghe, J., and Gábris, G. (2010). Fluvial style changes during the last glacial-interglacial transition in the middle Tisza valley (Hungary). Proceedings of the Geologists’ Association, 121, 180194.Google Scholar
Kindler, P., Guillevic, M., Baumgartner, M., et al. (2014). Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Climate of the Past, 10, 887902.Google Scholar
Kiss, T., Sümeghy, B., and Sipos, G. (2014). Late Quaternary paleodrainage reconstruction of the Maros River alluvial fan. Geomorphology, 204, 4960.Google Scholar
Kiss, T., Hernesz, P., Sümeghy, B., Györgyövics, K., and Sipos, G. (2015). The evolution of the Great Hungarian Plain fluvial system – fluvial processes in a subsiding area from the beginning of the Weichselian. Quaternary International, 388, 142155.CrossRefGoogle Scholar
Kühlemann, J., Rohling, E. J., Krumrei, I., et al. (2008). Regional synthesis of Mediterranean atmospheric circulation during the last glacial maximum. Science, 321, 13381340.Google Scholar
Lambeck, K., Roubya, H., Purcell, A., Sun, Y., and Malcolm, S. (2014). Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences, 111, 15,296–15,303.Google Scholar
Leckie, D. A. (1994). Canterbury Plains, New Zealand – implications for sequence stratigraphic models. American Association of Petroleum Geologists Bulletin, 78, 12401256.Google Scholar
Leckie, D. A. (2003). Modern environments of the Canterbury Plains and adjacent offshore areas, New Zealand – an analog for ancient conglomeratic depositional systems in nonmarine and coastal zone settings. Bulletin of Canadian Petroleum Geology, 51, 389425.Google Scholar
Lóczy, D., ed. (2015). Landscapes and Landforms of Hungary. Springer, Berlin.Google Scholar
Lowick, S. E., Preusser, F., Pini, R., and Ravazzi, C. (2010). Underestimation of fine grain quartz OSL dating towards the Eemian: comparison with palynostratigraphy from Azzano Decimo, northeastern Italy. Quaternary Geochronology, 5, 583590.Google Scholar
Magyar, I., Geary, D. H., and Müller, P. (1999). Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 147, 151167.CrossRefGoogle Scholar
Makaske, B., Lavoii, E., De Haas, T., Kleinhans, M. G., and Smith, D. G. (2017). Upstream control of river anastomosis by sediment overloading, upper Columbia River, British Columbia, Canada. Sedimentology, 64, 14881510.Google Scholar
Marchetti, M. (1996). Variazioni idrodinamiche dei corsi d’acqua della Pianura Padana centrale connesse con la deglaciazione. Il Quaternario – Italian Journal of Quaternary Sciences, 9, 465472.Google Scholar
Marchetti, M. (2001). Fluvial, fluvioglacial and lacustrine forms and deposits. In Castiglioni, G. B. and Pellegrini, G. B., eds., Illustrative Notes of the Geomorphological Map of the Po Plain, Geografia Fisica Dinamica Quaternaria (Suppl. 4), 73104.Google Scholar
Mațenco, L. (2017). Tectonics and exhumation of Romanian Carpathians: inferences from kinematic and thermochronological studies. In Rădoane, M. and Vespremeanu-Stroe, A., eds., Landform Dynamics and Evolution in Romania, Springer, Berlin, 1556.Google Scholar
Mezősi, G. (2016). Physical geography of the Great Hungarian Plain. In Mezősi, G., ed., The Physical Geography of Hungary, Geography of the Physical Environment. Springer, Berlin, 195229.Google Scholar
Miola, A., Bondesan, A., Corain, L., et al. (2006). Wetlands in the Venetian Po Plain (north–eastern Italy) during the Last Glacial Maximum: vegetation, hydrology, sedimentary environments. Review of Palaeobotany and Palynology, 141, 5381.Google Scholar
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., and Piccin, A. (2017). The Alpine LGM in the boreal ice-sheets game. Scientific Reports, 7, 18.Google Scholar
Mouchené, M., van der Beek, P., Mouthereau, F., and Carcaillet, J. (2017). Controls on Quaternary incision of the Northern Pyrenean foreland: chronological and geomorphological constraints from the Lannemezan megafan, SW France. Geomorphology, 281, 7893.Google Scholar
Mozzi, P., Bini, C., Zilocchi, L., Becattini, R., and Mariotti Lippi, M. (2003). Stratigraphy, palaeopedology and palynology of Late Pleistocene and Holocene deposits in the landward sector of the Lagoon of Venice (Italy), in relation to the ‘caranto’ level. Il Quaternario – Italian Journal Quaternary Science, 16, 193210.Google Scholar
Mozzi, P. (2005). Alluvial plain formation during the Late Quaternary between the southern Alpine margin and the Lagoon of Venice (northern Italy). Geografia Fisica e Dinamica Quaternaria, Suppl. 7, 219230.Google Scholar
Mozzi, P., Ferrarese, F., and Fontana, A. (2013). Integrating digital elevation models and stratigraphic data for the reconstruction of the post-LGM unconformity in the Brenta alluvial megafan (North-Eastern Italy). Alpine and Mediterranean Quaternary, 26, 4154.Google Scholar
Muttoni, G., Carcano, C., Garzanti, E., et al. (2003). Onset of major Pleistocene glaciations in the Alps. Geology, 31, 989992.CrossRefGoogle Scholar
Nádor, A., Thamó-Bozsó, E., Magyari, Á., and Babinszki, E. (2007). Fluvial responses to tectonics and climate change during the Late Weichselian in the eastern part of the Pannonian Basin (Hungary). Sedimentary Geology, 202, 174192.Google Scholar
Nádor, A., Sinha, R., Magyari, Á., et al. (2011). Late Quaternary (Weichselian) alluvial history and neotectonic control on fluvial landscape development in the southern Körös plain, Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 114.Google Scholar
Nagymarosy, A. and Hámor, G. (2012). Genesis and evolution of the Pannonian Basin. In Haas, J., ed., Geology of Hungary, Springer, Berlin, 149198.Google Scholar
NGRIP (North Greenland Ice Core Project) Members (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147151.CrossRefGoogle Scholar
Onaca, A., Urdea, P., Ardelean, A. C., Șerban, R., and Ardelean, F. (2017). Present-day periglacial processes in the Alpine zone. In Rădoane, M. and Vespremeanu-Stroe, A., eds., Landform Dynamics and Evolution in Romania. Springer, Berlin, 147176.Google Scholar
Ori, G. G. (1982). Braided to meandering channel patterns in humid-region alluvial fan deposits, River Reno, Po Plain (northern Italy). Sedimentary Geology, 31, 231248.Google Scholar
Papp-Váry, A., ed. (1999). Magyarország Atlas. Cartographia, Budapest.Google Scholar
Pécsi, M. (1996). Geomorphological Regions of Hungary. Geographical Research Institute, Hungarian Academy of Sciences, Budapest, 121 pp.Google Scholar
Perşoiu, I. and Rădoane, M. (2017a). River behavior during Pleniglacial-Late Glacial. In Rădoane, M. and Vespremeanu-Stroe, A., eds., Landform Dynamics and Evolution in Romania. Springer, Berlin, 443468.CrossRefGoogle Scholar
Perşoiu, I. and Rădoane, M. (2017b). Fluvial activity during the Holocene. Landform dynamics and evolution in Romania. In Rădoane, M. and Vespremeanu-Stroe, A., eds., Landform Dynamics and Evolution in Romania. Springer, Berlin, 469488.Google Scholar
Pini, R., Ravazzi, C., and Donegana, M. (2009). Pollen stratigraphy, vegetation and climate history of the last 215 ka in the Azzano Decimo core (plain of Friuli, north-eastern Italy). Quaternary Science Reviews, 28, 12681290.Google Scholar
Pinna, M. (1982). Climatologia. UTET, Torino, 442 pp.Google Scholar
Piovan, S., Mozzi, P., and Zecchin, M. (2012). The interplay between adjacent Adige and Po alluvial systems and deltas in the late Holocene (Northern Italy). Géomorphologie, 4, 427440.Google Scholar
Posea, G. (1997). Câmpia de vest a României (The Western Romanian plain). Editura Fundaţiei România de Mâine, Bucharest, 430 pp.Google Scholar
Rabus, B., Eineder, M., Roth, A., and Bamler, R. (2003). The shuttle radar topography mission – a new class of digital elevation models acquired by spaceborne radar. Photogrammetry and Remote Sensing, 57, 241262.Google Scholar
Rajčević, D. (1982). Osnovna geološka karta SFRJ 1:100,000. Tumač za list Šabac L34–112. Geol. Inst. Beograd. Savezni geološki zavod, Beograd, 56 pp.Google Scholar
Ravazzi, C., Deaddis, M., De Amicis, M., et al. (2012). The last 40 ka evolution of the Central Po Plain between the Adda and Serio rivers. Géomorphologie: Relief, Processus, Environnement, 2, 131154.Google Scholar
Paiero, G. and Monegato, G. (2003). The Pleistocene evolution of Arzino alluvial fan and western part of Tagliamento morainic amphitheatre (Friuli, NE Italy). Il Quaternario – Italian Journal of Quaternary Sciences, 16, 185193.Google Scholar
Rossato, S., Fontana, A. and Mozzi, P. (2015). Meta-analysis of a Holocene 14C database for the detection of palaeohydrological crisis in the Venetian-Friulian Plain (NE Italy). Catena, 130, 3445.Google Scholar
Rossato, S. and Mozzi, P. (2016). Inferring LGM sedimentary and climatic changes in the southern eastern Alps foreland through the analysis of a 14C ages database (Brenta megafan, Italy). Quaternary Science Reviews, 148, 115127.Google Scholar
Sávai, S., Molnár, D., and Sümegi, P. (2015). Late glacial river-bed changes on the Little Hungarian Plain, based on preliminary chronological, geological and paleontological data. Open Geoscience, 7, 572579.Google Scholar
Sebe, K., Csillag, G., Ruszkiczay-Rüdiger, Z., et al. (2011). Wind erosion under cold climate: a Pleistocene periglacial mega-yardang system in Central Europe (Western Pannonian Basin, Hungary). Geomorphology, 134, 470482.Google Scholar
Stella, A. (1895). Sui terreni quaternari della valle del Po in rapporto alla carta geologica italiana. Bollettino Regio Comitato Geologico Italiano, 51108.Google Scholar
Sümeghy, B. and Kiss, T. (2011). Discharge calculation of paleochannels on the alluvial fan of the Maros River, Hungary. Journal of Environmental Geography, 4, 1117.Google Scholar
Tarquini, S., Isola, I., Favalli, M., et al. (2007). TINITALY/01: a new Triangular Irregular Network of Italy. Annals of Geophysics, 50, 407425.Google Scholar
Timár, G., Sümegi, P., and Horváth, F. (2005). Late Quaternary dynamics of the Tisza River: evidence of climatic and tectonic controls. Tectonophysics, 410, 97110.Google Scholar
Toscani, G., Marchesini, A., Barbieri, C., et al. (2016). The Friulian-Venetian Basin I: architecture and sediment flux into a shared foreland basin. Italian Journal of Geosciences, 135, 444459.Google Scholar
van Husen, D. (1997). LGM and Late-glacial fluctuations in the Eastern Alps. Quaternary International, 38–39, 109118.Google Scholar
Vrhovčić, J., Mojićević, M., Andelković, J., et al. (1984). Osnovna geološka karta SFRJ 1:100,000. Tumač za list Bjeljina L34–111. Geological Institute of Belgrade, Belgrade, 56 pp.Google Scholar
Weissmann, G. S., Mount, J. F., and Fogg, G. E. (2002). Glacially driven cycles in accumulation space and sequence stratigraphy of a stream-dominated alluvial fan, San Joaquin Valley, California, U.S.A. Journal of Sedimentary Research, 72, 270281.Google Scholar
Weissmann, G. S., Bennett, G. L., and Lansdale, A. L. (2005). Factors controlling sequence development on Quaternary fluvial fans, San Joaquin Basin, California, USA. In Harvey, A. M., Mather, A. E., and Stokes, M., eds., Alluvial Fans: Geomorphology, Sedimentology, Dynamics. Geological Society of London, Special Publication, 251, 169–186.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×