Published online by Cambridge University Press: 05 June 2012
Lines of vorticity
Most of this chapter concerns incompressible flow past solid obstacles, and the drag and lift forces which they experience, at values of the Reynolds Number which are too large compared with unity for the approximations employed in chapter 6, e.g. in the derivation of Stokes's law for the drag force on a solid sphere, to be valid. The effects to be discussed depend critically on the behaviour of boundary layers, and boundary layers, as we have seen, are layers within which the fluid is contaminated by vorticity. To understand these effects properly we need to understand how vorticity behaves, and that is why the chapter has ‘Vorticity’ as its heading.
The properties of free vortex lines, set in otherwise vorticity-free fluid, have already been described in §§4.13 and 4.14, but we can explore the subject of vorticity dynamics in a more general fashion now that we have the Navier–Stokes equation to use as a starting point. The first point to note is that because Ω is defined as the curl of another vector its divergence is necessarily zero everywhere; vorticity, like the electromagnetic fields E and B in free space and like the velocity u of an incompressible fluid, is what is called a solenoidal vector. This means that its spatial variation can be described by continuous field lines whose direction coincides everywhere with the local direction of Ω and whose density is proportional to the magnitude of Ω.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.