Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T08:37:31.047Z Has data issue: false hasContentIssue false

10 - RoF vs. R&F networks

from Part IV - FiWi access networks

Published online by Cambridge University Press:  05 January 2012

Martin Maier
Affiliation:
Université du Québec, Montréal
Navid Ghazisaidi
Affiliation:
Verizon
Get access

Summary

Radio-over-fiber (RoF) networks have been studied for many years as an approach to integrating optical fiber and wireless networks. In RoF networks, radio frequencies (RFs) are carried over optical fiber links between a central station and multiple low-cost remote antenna units (RAUs) in support of a variety of wireless applications. For instance, a distributed antenna system connected to the base station of a microcellular radio system via optical fibers was proposed in (Chu and Gans [1991]). To efficiently support time-varying traffic between the central station and its attached base stations, a centralized dynamic channel assignment method is applied at the central station of the proposed fiber optic microcellular radio system. To avoid having to equip each radio port in a fiber optic microcellular radio network with a laser and its associated circuit to control the laser parameters such as temperature, output power, and linearity, a cost-effective radio port architecture deploying remote modulation may be used (Wu et al. [1994]).

Apart from realizing low-cost microcellular radio networks, optical fibers can also be used to support a wide variety of other radio signals. RoF networks are attractive since they provide transparency against modulation techniques and are able to support various digital formats and wireless standards in a cost-effective manner. It was experimentally demonstrated in (Tang et al. [2004]) that RoF networks are well suited to simultaneously transmit wideband code division multiple access (WCDMA), IEEE 802.11a/g wireless local area network (WLAN), personal handyphone system (PHS), and global system for mobile communications (GSM) signals.

Type
Chapter
Information
FiWi Access Networks , pp. 117 - 126
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×