Book contents
- Frontmatter
- Contents
- Preface
- 1 General introduction
- 2 Masas in B(H)
- 3 Finite von Neumann algebras
- 4 The basic construction
- 5 Projections and partial isometries
- 6 Normalisers, orthogonality and distances
- 7 The Pukánszky invariant
- 8 Operators in L∞[0, 1]⊗B(H)
- 9 Perturbations
- 10 General perturbations
- 11 Singular masas
- 12 Existence of special masas
- 13 Irreducible hyperfinite subfactors
- 14 Maximal injective subalgebras
- 15 Masas in non-separable factors
- 16 Singly generated II1 factors
- A The ultrapower and property Γ
- B Unbounded operators
- C The trace revisited
- Bibliography
- Index
- Index of symbols
B - Unbounded operators
Published online by Cambridge University Press: 03 May 2010
- Frontmatter
- Contents
- Preface
- 1 General introduction
- 2 Masas in B(H)
- 3 Finite von Neumann algebras
- 4 The basic construction
- 5 Projections and partial isometries
- 6 Normalisers, orthogonality and distances
- 7 The Pukánszky invariant
- 8 Operators in L∞[0, 1]⊗B(H)
- 9 Perturbations
- 10 General perturbations
- 11 Singular masas
- 12 Existence of special masas
- 13 Irreducible hyperfinite subfactors
- 14 Maximal injective subalgebras
- 15 Masas in non-separable factors
- 16 Singly generated II1 factors
- A The ultrapower and property Γ
- B Unbounded operators
- C The trace revisited
- Bibliography
- Index
- Index of symbols
Summary
Introduction
For the most part, these notes are concerned with the bounded operators which constitute the von Neumann algebras under consideration. However, results from the theory of unbounded operators have played a role in Chapter 9, and knowledge of this topic is essential for reading the literature in this area. Since we feel that this theory is less well known than its counterpart for bounded operators, we include here a brief exposition of the main theorems required in these notes. Most of what is needed may be found in [104, Section 5.6], and we follow their development to a considerable extent. However, we have specific goals for the theory and we do not offer a comprehensive treatment. The main objective is to understand the operators that arise as unbounded left multiplication operators on II1 factors.
Section B.2 contains the basic theory of closed and closable operators. In Section B.3, we develop as much of the functional calculus as we will need. We carry this out for positive operators, relating matters to the well known functional calculus for bounded positive operators. Along the way we establish the polar decomposition of a closed operator which appeared in Lemma 9.4.2. The important unbounded operators of II1 factor theory are those that arise from vectors in L2(N) and L1(N), and we lay out their theory in Sections B.4 and B.5 respectively.
- Type
- Chapter
- Information
- Finite von Neumann Algebras and Masas , pp. 342 - 372Publisher: Cambridge University PressPrint publication year: 2008