Book contents
- Frontmatter
- Contents
- PREFACE
- Introduction
- Generalized Steiner systems of type 3-(v, {4,6}, 1)
- Some remarks on D.R. Hughes' construction of M12 and its associated designs
- On k-sets of class [0,1,2,n]2 in PG(r,q)
- Covering graphs and symmetric designs
- Arcs and blocking sets
- Flat embeddings of near 2n-gons
- Codes, caps and linear spaces
- Geometries originating from certain distance-regular graphs
- Transitive automorphism groups of finite quasifields
- On k-sets of type (m,n) in projective planes of square order
- On k-sets of type (m,n) in a Steiner system S(2, l, v)
- Some translation planes of order 81
- A new partial geometry constructed from the Hoffman-Singleton graph
- Locally cotriangular graphs
- Coding theory of designs
- On shears in fixed-point-free affine groups
- On (k,n)-arcs and the falsity of the Lunelli-Sce conjecture
- Cubic surfaces whose points all lie on their 27 lines
- Existence results for translation nets
- Translation planes having PSL(2,w) or SL(3,w) as a collineation group
- Sequenceable groups: a survey
- Polar spaces embedded in a projective space
- On relations among the projective geometry codes
- Partition loops and affine geometries
- Regular cliques in graphs and special 1½ designs
- Bericht über Hecke Algebren und Coxeter Algebren eindlicher Geometrien
- On buildings and locally finite Tits geometries
- Moufang conditions for finite generalized quadrangles
- Embedding geometric lattices in a projective space
- Coverings of certain finite geometries
- On class-regular projective Hjelmslev planes
- On multiplicity-free permutation representations
- On a characterization of the Grassmann manifold representing the lines in a projective space
- Affine subplanes of projective planes
- Point stable designs
- Other talks
- Participants
Some translation planes of order 81
Published online by Cambridge University Press: 05 April 2013
- Frontmatter
- Contents
- PREFACE
- Introduction
- Generalized Steiner systems of type 3-(v, {4,6}, 1)
- Some remarks on D.R. Hughes' construction of M12 and its associated designs
- On k-sets of class [0,1,2,n]2 in PG(r,q)
- Covering graphs and symmetric designs
- Arcs and blocking sets
- Flat embeddings of near 2n-gons
- Codes, caps and linear spaces
- Geometries originating from certain distance-regular graphs
- Transitive automorphism groups of finite quasifields
- On k-sets of type (m,n) in projective planes of square order
- On k-sets of type (m,n) in a Steiner system S(2, l, v)
- Some translation planes of order 81
- A new partial geometry constructed from the Hoffman-Singleton graph
- Locally cotriangular graphs
- Coding theory of designs
- On shears in fixed-point-free affine groups
- On (k,n)-arcs and the falsity of the Lunelli-Sce conjecture
- Cubic surfaces whose points all lie on their 27 lines
- Existence results for translation nets
- Translation planes having PSL(2,w) or SL(3,w) as a collineation group
- Sequenceable groups: a survey
- Polar spaces embedded in a projective space
- On relations among the projective geometry codes
- Partition loops and affine geometries
- Regular cliques in graphs and special 1½ designs
- Bericht über Hecke Algebren und Coxeter Algebren eindlicher Geometrien
- On buildings and locally finite Tits geometries
- Moufang conditions for finite generalized quadrangles
- Embedding geometric lattices in a projective space
- Coverings of certain finite geometries
- On class-regular projective Hjelmslev planes
- On multiplicity-free permutation representations
- On a characterization of the Grassmann manifold representing the lines in a projective space
- Affine subplanes of projective planes
- Point stable designs
- Other talks
- Participants
Summary
THE PROBLEM: to find all translation planes A of order 81 which admit two collineations σ and τ of order 3 such that the fixed-point sets F(σ) and F(τ) are Baer subplanes (i.e. σ and τ are Baer 3-collineations) which properly overlap,
0 ≠ F(σ) ∩ F(τ) ≠ F(σ).
If A is a translation plane of characteristic p > 3, then it is known [2] that no such overlapping Baer p-collineations exist. However, the nearfield plane of order 9 does admit such collineations. The general problem then is the investigation of overlapping Baer 3-collineations in translation planes of order 32e, for e > 1.
THEOREM: There are (up to isomorphism) n planes of order 81 admitting such overlapping 3-collineations σ and τ, where 3 ≤ n ≤ 6. (Note: all examples but not necessarily all isomorphisms, are known.)
PROOF: Normalize extensively by hand; then compute all normalized cases by machine. In stage 1 of the computing, 96 × 812 cases were checked, resulting in approximately 5,000 successes. During stage 2, for each success in stage 1, approximately 100 cases were checked. Each of the approximately two dozen successes in stage 2 describes a plane of the given type, but there are many obvious isomorphisms, resulting in 3 to 6 isomorphism classes.
- Type
- Chapter
- Information
- Finite Geometries and DesignsProceedings of the Second Isle of Thorns Conference 1980, pp. 114 - 118Publisher: Cambridge University PressPrint publication year: 1981