Book contents
- Frontmatter
- Contents
- PREFACE
- Introduction
- Generalized Steiner systems of type 3-(v, {4,6}, 1)
- Some remarks on D.R. Hughes' construction of M12 and its associated designs
- On k-sets of class [0,1,2,n]2 in PG(r,q)
- Covering graphs and symmetric designs
- Arcs and blocking sets
- Flat embeddings of near 2n-gons
- Codes, caps and linear spaces
- Geometries originating from certain distance-regular graphs
- Transitive automorphism groups of finite quasifields
- On k-sets of type (m,n) in projective planes of square order
- On k-sets of type (m,n) in a Steiner system S(2, l, v)
- Some translation planes of order 81
- A new partial geometry constructed from the Hoffman-Singleton graph
- Locally cotriangular graphs
- Coding theory of designs
- On shears in fixed-point-free affine groups
- On (k,n)-arcs and the falsity of the Lunelli-Sce conjecture
- Cubic surfaces whose points all lie on their 27 lines
- Existence results for translation nets
- Translation planes having PSL(2,w) or SL(3,w) as a collineation group
- Sequenceable groups: a survey
- Polar spaces embedded in a projective space
- On relations among the projective geometry codes
- Partition loops and affine geometries
- Regular cliques in graphs and special 1½ designs
- Bericht über Hecke Algebren und Coxeter Algebren eindlicher Geometrien
- On buildings and locally finite Tits geometries
- Moufang conditions for finite generalized quadrangles
- Embedding geometric lattices in a projective space
- Coverings of certain finite geometries
- On class-regular projective Hjelmslev planes
- On multiplicity-free permutation representations
- On a characterization of the Grassmann manifold representing the lines in a projective space
- Affine subplanes of projective planes
- Point stable designs
- Other talks
- Participants
A new partial geometry constructed from the Hoffman-Singleton graph
Published online by Cambridge University Press: 05 April 2013
- Frontmatter
- Contents
- PREFACE
- Introduction
- Generalized Steiner systems of type 3-(v, {4,6}, 1)
- Some remarks on D.R. Hughes' construction of M12 and its associated designs
- On k-sets of class [0,1,2,n]2 in PG(r,q)
- Covering graphs and symmetric designs
- Arcs and blocking sets
- Flat embeddings of near 2n-gons
- Codes, caps and linear spaces
- Geometries originating from certain distance-regular graphs
- Transitive automorphism groups of finite quasifields
- On k-sets of type (m,n) in projective planes of square order
- On k-sets of type (m,n) in a Steiner system S(2, l, v)
- Some translation planes of order 81
- A new partial geometry constructed from the Hoffman-Singleton graph
- Locally cotriangular graphs
- Coding theory of designs
- On shears in fixed-point-free affine groups
- On (k,n)-arcs and the falsity of the Lunelli-Sce conjecture
- Cubic surfaces whose points all lie on their 27 lines
- Existence results for translation nets
- Translation planes having PSL(2,w) or SL(3,w) as a collineation group
- Sequenceable groups: a survey
- Polar spaces embedded in a projective space
- On relations among the projective geometry codes
- Partition loops and affine geometries
- Regular cliques in graphs and special 1½ designs
- Bericht über Hecke Algebren und Coxeter Algebren eindlicher Geometrien
- On buildings and locally finite Tits geometries
- Moufang conditions for finite generalized quadrangles
- Embedding geometric lattices in a projective space
- Coverings of certain finite geometries
- On class-regular projective Hjelmslev planes
- On multiplicity-free permutation representations
- On a characterization of the Grassmann manifold representing the lines in a projective space
- Affine subplanes of projective planes
- Point stable designs
- Other talks
- Participants
Summary
We give the construction of a partial geometry with parameters s = 4, t = 17, σ = 2. We also obtain two new strongly regular graphs.
A (finite) partial geometry with parameters s, t and α is a 1 - (v, s + 1, t + 1) design (for which we speak of lines rather than blocks), satisfying the following two conditions.
(i) Any two distinct lines have at most one point in common;
(ii) for any non-incident point-line pair (x, L) the number of lines containing x and intersecting L equals α.
A partial geometry is called proper if 1 < α < min{s, t} (this means that the geometry is not equivalent to a combinatorial object for which another name is more common). Partial geometries were introduced by Bose [2], At that time no example of a proper one was known. In the meantime some construction methods for proper partial geometries have been found, see [15], [13], [10], [3], [5], [14], [7]. Only one of the known ones has α = 2, viz. the sporadic one of van Lint and Schrijver [10]. Here we construct a second proper partial geometry with α = 2, which is (up till now) sporadic too.
The point graph of a partial geometry is the graph whose vertices are the points, two vertices being adjacent whenever the two corresponding points lie on one line. We need to quote some results. The first one is well-known (see [2]) and easily verified.
- Type
- Chapter
- Information
- Finite Geometries and DesignsProceedings of the Second Isle of Thorns Conference 1980, pp. 119 - 127Publisher: Cambridge University PressPrint publication year: 1981
- 8
- Cited by