Book contents
- Frontmatter
- Contents
- Preface
- Introduction
- Generalized hexagons and BLT-sets
- Orthogonally divergent spreads of Hermitian curves
- Lifts of nuclei in finite projective spaces
- Large minimal blocking sets, strong representative systems, and partial unitals
- The complement of a geometric hyperplane in a generalized polygon is usually connected
- Locally co-Heawood graphs
- A theorem of Parmentier characterizing projective spaces by polarities
- Geometries with diagram (diagram omitted)
- Remarks on finite generalized hexagons and octagons with a point-transitive automorphism group
- Block-transitive t-designs, II: large t
- Generalized Fischer spaces
- Ovoids and windows in finite generalized hexagons
- Flag transitive L.C2 geometries
- On nonics, ovals and codes in Desarguesian planes of even order
- Orbits of arcs in projective spaces
- There exists no (76,21,2,7) strongly regular graph
- Group-arcs of prime power order on cubic curves
- Planar Singer groups with even order multiplier groups
- On a footnote of Tits concerning Dn-geometries
- The structure of the central units of a commutative semifield plane
- Partially sharp subsets of PΓL(n, q)
- Partial ovoids and generalized hexagons
- A census of known flag-transitive extended grids
- Root lattice constructions of ovoids
- Coxeter groups in Coxeter groups
- A local characterization of the graphs of alternating forms
- A local characterization of the graphs of alternating forms and the graphs of quadratic forms over GF(2)
- On some locally 3-transposition graphs
- Coherent configurations derived from quasiregular points in generalized quadrangles
- Veldkamp planes
- The Lyons group has no distance-transitive representation
- Intersection of arcs and normal rational curves in spaces of odd characteristic
- Flocks and partial flocks of the quadratic cone in PG(3, q)
- Some extended generalized hexagons
- Nuclei in finite non-Desarguesian projective planes
Lifts of nuclei in finite projective spaces
Published online by Cambridge University Press: 07 September 2010
- Frontmatter
- Contents
- Preface
- Introduction
- Generalized hexagons and BLT-sets
- Orthogonally divergent spreads of Hermitian curves
- Lifts of nuclei in finite projective spaces
- Large minimal blocking sets, strong representative systems, and partial unitals
- The complement of a geometric hyperplane in a generalized polygon is usually connected
- Locally co-Heawood graphs
- A theorem of Parmentier characterizing projective spaces by polarities
- Geometries with diagram (diagram omitted)
- Remarks on finite generalized hexagons and octagons with a point-transitive automorphism group
- Block-transitive t-designs, II: large t
- Generalized Fischer spaces
- Ovoids and windows in finite generalized hexagons
- Flag transitive L.C2 geometries
- On nonics, ovals and codes in Desarguesian planes of even order
- Orbits of arcs in projective spaces
- There exists no (76,21,2,7) strongly regular graph
- Group-arcs of prime power order on cubic curves
- Planar Singer groups with even order multiplier groups
- On a footnote of Tits concerning Dn-geometries
- The structure of the central units of a commutative semifield plane
- Partially sharp subsets of PΓL(n, q)
- Partial ovoids and generalized hexagons
- A census of known flag-transitive extended grids
- Root lattice constructions of ovoids
- Coxeter groups in Coxeter groups
- A local characterization of the graphs of alternating forms
- A local characterization of the graphs of alternating forms and the graphs of quadratic forms over GF(2)
- On some locally 3-transposition graphs
- Coherent configurations derived from quasiregular points in generalized quadrangles
- Veldkamp planes
- The Lyons group has no distance-transitive representation
- Intersection of arcs and normal rational curves in spaces of odd characteristic
- Flocks and partial flocks of the quadratic cone in PG(3, q)
- Some extended generalized hexagons
- Nuclei in finite non-Desarguesian projective planes
Summary
Abstract
We present a synthetical construction of the lifting process introduced in [1] and apply this process to obtain a new result on the structure of sets in the plane admitting the maximal number of nuclei.
Introduction
Let Bn be a set of qn−1 + qn−2 +…+ q + 1 points, not all on a hyperplane in the n-dimensional projective space PG(n, q) over the Galois field GF(q), n ≥ 2. A point not in Bn is called a nucleus of Bn if every line through it meets Bn (exactly once, of course). The set of all nuclei of Bn is denoted by N(Bn). The following two fundamental results are well known.
Result 1.1 (Segre-Korchmáros, [7]) If a, b, c are three non-collinear nuclei of Bn, then the points of Bn on the lines ab, bc, ca are collinear.
Result 1.2 (Blokhuis-Wilbrink, [3]) If Bn is an affine set (i.e. it is contained in the complement of a hyperplane), then |N(Bn)| ≤ q − 1.
The proofs of both the previous results have been given by the authors in the two dimensional case, but it is straightforward to see that they work in arbitrary dimensions. The original proof of Result 1.2 surprisingly does not use Result 1.1.
In the plane case, an elementary derivation of Result 1.2 from Result 1.1 has been obtained in [1] by using a process called “lifting”.
- Type
- Chapter
- Information
- Finite Geometries and Combinatorics , pp. 31 - 36Publisher: Cambridge University PressPrint publication year: 1993