Book contents
- Frontmatter
- Contents
- Preface
- Conference Participants
- Factorizations over finite fields
- Class number in totally imaginary extensions of totally real function fields
- Automorphism groups and permutation groups of affine-invariant codes
- A construction of bent functions
- Monodromy groups of classical families over finite fields
- Wan's bound for value sets of polynomials
- Comparative implementations of Berlekamp's and Niederreitor's polynomial factorization algorithms
- On the minimal polynomials for certain Gauss periods over finite fields
- Completely free elements
- Exponential sums over Galois rings and their applications
- Maximal sets of mutually orthogonal Latin squares
- Examples of small hybrid sums
- Cellular automata, substitutions and factorization of polynomials over finite fields
- A new class of two weight codes
- Construction of digital (t, m, s)-nets from linear codes
- A family of exceptional polynomials in characteristic three
- Estimates of character sums arising from finite upper half planes
- Carmichael-Carlitz polynomials and Fermat-Carlitz quotients
- Open problems and conjectures in finite fields
- Quasirandom points and global function fields
- Use characteristic sets to decode cyclic codes up to actual minimum distance
- Approximate constructions in finite fields
- Periodicity properties of kth order linear recurrences whose characteristic polynomial splits completely over a finite field, II
- Factoring cyclotomic polynomials over large finite fields
- Character sums and coding theory
- L-functions of algebraic varieties over finite fields: rationality, meromorphy and entireness
- Some congruences and identities for generalizations of Rédei functions
Use characteristic sets to decode cyclic codes up to actual minimum distance
Published online by Cambridge University Press: 29 September 2009
- Frontmatter
- Contents
- Preface
- Conference Participants
- Factorizations over finite fields
- Class number in totally imaginary extensions of totally real function fields
- Automorphism groups and permutation groups of affine-invariant codes
- A construction of bent functions
- Monodromy groups of classical families over finite fields
- Wan's bound for value sets of polynomials
- Comparative implementations of Berlekamp's and Niederreitor's polynomial factorization algorithms
- On the minimal polynomials for certain Gauss periods over finite fields
- Completely free elements
- Exponential sums over Galois rings and their applications
- Maximal sets of mutually orthogonal Latin squares
- Examples of small hybrid sums
- Cellular automata, substitutions and factorization of polynomials over finite fields
- A new class of two weight codes
- Construction of digital (t, m, s)-nets from linear codes
- A family of exceptional polynomials in characteristic three
- Estimates of character sums arising from finite upper half planes
- Carmichael-Carlitz polynomials and Fermat-Carlitz quotients
- Open problems and conjectures in finite fields
- Quasirandom points and global function fields
- Use characteristic sets to decode cyclic codes up to actual minimum distance
- Approximate constructions in finite fields
- Periodicity properties of kth order linear recurrences whose characteristic polynomial splits completely over a finite field, II
- Factoring cyclotomic polynomials over large finite fields
- Character sums and coding theory
- L-functions of algebraic varieties over finite fields: rationality, meromorphy and entireness
- Some congruences and identities for generalizations of Rédei functions
Summary
Abstract – A general algebraic method for decoding all cyclic codes up to their actual minimum distance d is presented. Full error-correcting capabilities t = [(d − 1)/2] of the codes are therefore achieved. In contrast to the decoding method recently suggested by Chen et. al., our method uses for the first time characteristic sets instead of Gröbner bases as the algebraic tool to solve the system of multivariate syndrome equations. The characteristic sets method is generally faster than the Gröbner bases method.
A new strategy called “Fill-Holes” method is also presented. It uses Gröbner bases or characteristic sets to find certain unknown syndromes and then combines the computational methods with the well-implemented BCH decoding algorithm.
Keywords – Coding theory, cyclic codes, decoding, ideal theory, Gröbner bases, characteristic sets.
INTRODUCTION
One important objective in coding theory has always been the construction of algebraic algorithms, that are capable of decoding all cyclic codes up to their actual minimum distance. Full error-correcting capabilities of the codes can only be achieved when such algorithms are available. For many years, algebraic decoding of cyclic codes has been constrained by the lower bound on the minimum distance of the codes. For example, the commonly used Berlekamp-Massey algorithm is known to be restricted within the BCH bound when it is used to decode all cyclic codes. Such restrictions can be traced to the fact that the algorithm requires syndromes to be contiguous in the Newton's identities.
- Type
- Chapter
- Information
- Finite Fields and ApplicationsProceedings of the Third International Conference, Glasgow, July 1995, pp. 297 - 312Publisher: Cambridge University PressPrint publication year: 1996
- 1
- Cited by