Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T23:45:31.396Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 March 2019

Todd Timberlake
Affiliation:
Berry College, Georgia
Paul Wallace
Affiliation:
Agnes Scott College, Georgia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Finding our Place in the Solar System
The Scientific Story of the Copernican Revolution
, pp. 355 - 364
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aczel, A. D. (2003). Pendulum: Léon Foucault and the Triumph of Science. Atria Books, New York.Google Scholar
Airy, G. B. (1837). On the parallax of alpha Lyrae. Monthly Notices of the Royal Astronomical Society, 4:91.Google Scholar
Aiton, E. J. (1969). Kepler’s second law of planetary motion. Isis, 60(1):7590.Google Scholar
Aiton, E. J. (1987). Peurbach’s Theoricae novae planetarum: A translation with commentary. Osiris, 3:443.Google Scholar
Ariew, R. (1987). The phases of Venus before 1610. Studies in History and Philosophy of Science Part A, 18(1):8192.CrossRefGoogle Scholar
Aristotle (2009). The Basic Works of Aristotle, translated by R. Mckeon. Modern Library, New York.Google Scholar
Aristotle (n.d.). On the Heavens, translated by Stock, J. L.. Generic NL Freebook Publisher.Google Scholar
Armitage, A. (1951). Robert Hooke as an astronomer. Popular Astronomy, 59:287.Google Scholar
Armitage, A. (2004). Copernicus and Modern Astronomy. Dover Publications, New York.Google Scholar
Arthur, R. (2007). Beeckman, Descartes and the force of motion. Journal of the History of Philosophy, 45(1):128.Google Scholar
Bacon, F. and Rawley, W. (1983). Sylva Sylvarum, Or, A Naturall Historie in Ten Centuries. John Haviland, London.Google Scholar
Ball, W. W. R. (1893). An Essay on Newton’s Principia. Macmillan and Company, London.Google Scholar
Barker, P. (1999). Copernicus and the critics of Ptolemy. Journal for the History of Astronomy, 30(4):343358.Google Scholar
Barker, P. and Goldstein, B. R. (2001). Theological foundations of Kepler’s astronomy. Osiris, 16:88113.Google Scholar
Bartusiak, M. (2004). Archives of the Universe, 100 Discoveries that Transformed Our Understanding of the Cosmos. Vintage Books, New York.Google Scholar
Bessel, F.-W. (1838). On the parallax of 61 Cygni. Monthly Notices of the Royal Astronomical Society, 4:152161.Google Scholar
Blackwell, D. (1963). The discovery of stellar aberration. Quarterly Journal of the Royal Astronomical Society, 4:44.Google Scholar
Blackwell, R. J. (1966). Descartes’ laws of motion. Isis, 57(2):220234.Google Scholar
Blair, A. (1990). Tycho Brahe’s critique of Copernicus and the Copernican system. Journal of the History of Ideas, 51(3):355377.CrossRefGoogle Scholar
Blumenberg, H. (1987). The Genesis of the Copernican World. MIT Press, Cambridge, MA.Google Scholar
Bork, A. (1987). Newton and comets. American Journal of Physics, 55(12):10891095.Google Scholar
Bowen, A. C. (2002). Simplicius and the early history of Greek planetary theory. Perspectives on Science, 10(2):155167.Google Scholar
Bradley, J. (1727). An account of a new discovered motion of the fix’d stars. Philosophical Transactions, 35(399–406):637661.Google Scholar
Brehme, R. W. (1976). New look at the Ptolemaic system. American Journal of Physics, 44(6):506514.Google Scholar
Broughton, P. (1985). The first predicted return of comet Halley. Journal for the History of Astronomy, 16(2):123133.Google Scholar
Brown, H. I. (1985). Galileo on the telescope and the eye. Journal of the History of Ideas, 46(4):487501.CrossRefGoogle Scholar
Carman, C. C. (2015). The planetary increase of brightness during retrograde motion: An explanandum constructed ad explanantem. Studies in History and Philosophy of Science Part A, 54:90101.Google Scholar
Carman, C. C. and Evans, J. (2015). The two earths of Eratosthenes. Isis, 106(1):116.Google Scholar
Caspar, M. (1993). Kepler, translated by Hellman, C. D.. Dover Publications, New York.Google Scholar
Chalmers, A. (1985). Galileo’s telescopic observations of Venus and Mars. The British Journal for the Philosophy of Science, 36(2):175184.Google Scholar
Chapman, A. (1990). Jeremiah Horrocks, the transit of Venus, and the ‘New Astronomy’ in early Seventeenth-Century England. Quarterly Journal of the Royal Astronomical Society, 31:333.Google Scholar
Christianson, J. R. (1973). Copernicus and the Lutherans. The Sixteenth Century Journal, 1–10.Google Scholar
Cohen, I. B. (1985). The Birth of a New Physics. WW Norton & Company, New York.Google Scholar
Conlin, M. F. (1999). The popular and scientific reception of the Foucault pendulum in the United States. Isis, 90(2):181204.CrossRefGoogle Scholar
Connor, J. A. (2004). Kepler’s Witch. Harper Collins, New York.Google Scholar
Copernicus, N. (1992). Nicholas Copernicus: On the Revolutions, translated by E. Rosen. Johns Hopkins Press, Baltimore, MD.Google Scholar
Crowe, M. J. (1990). Theories of the World from Antiquity to the Copernican Revolution. Dover Publications, New York.Google Scholar
Crowe, M. J. (2007). Mechanics from Aristotle to Einstein. Green Lion Press, Santa Fe, NM.Google Scholar
Cushing, J. T. (1982). Kepler’s laws and universal gravitation in Newton’s Principia. American Journal of Physics, 50(7):617628.Google Scholar
Danielson, D. and Graney, C. M. (2014). The case against Copernicus. Scientific American, 310(1):7277.Google Scholar
Danielson, D. R. (2001). The great Copernican cliché. American Journal of Physics, 69(10):10291035.Google Scholar
Danielson, D. R. (2006). The First Copernican: Georg Joachim Rheticus and the Rise of the Copernican Revolution. Walker Publishing, New York.Google Scholar
Descartes, R. (1998). Descartes: The World and Other Writings. Cambridge University Press, Cambridge, UK.Google Scholar
Devorkin, D. H. (1975). Michelson and the problem of stellar diameters. Journal for the History of Astronomy, 6(1):118.Google Scholar
Dijksterhuis, E. J. (1950). The Mechanization of the World Picture, translated by C. Dikshoorn. Princeton University Press, Princeton, NJ.Google Scholar
Donahue, W. H. (1981). The Dissolution of the Celestial Spheres. Arno Press, New York.Google Scholar
Drabkin, I. E. (1938). Notes on the laws of motion in Aristotle. The American Journal of Philology, 59(1):6084.Google Scholar
Drake, S. (1964). Galileo and the law of inertia. American Journal of Physics, 32(8):601608.CrossRefGoogle Scholar
Drake, S. (1973). Galileo’s experimental confirmation of horizontal inertia. Isis, 64(3):291305.Google Scholar
Drake, S. (1978). Galileo at Work: His Scientific Biography. Dover Publications, New York.Google Scholar
Drake, S. (1984). Galileo, Kepler, and phases of Venus. Journal for the History of Astronomy, 15(3):198208.Google Scholar
Drake, S. (1986). Galileo’s physical measurements. American Journal of Physics, 54(4):302306.Google Scholar
Dreyer, J. L. E. (1953). A History of Astronomy from Thales to Kepler. Dover Publications, New York.Google Scholar
Duhem, P. (1987). Medieval Cosmology: Theories of Infinity, Place, Time, Void, and the Plurality of Worlds, translated by Ariew, R.. University of Chicago Press, Chicago, IL.Google Scholar
Engvold, O. and Zirker, J. B. (2016). The parallel worlds of Christoph Scheiner and Galileo Galilei. Journal for the History of Astronomy, 47(3):332345.Google Scholar
Erlichson, H. (1991a). Motive force and centripetal force in Newton’s mechanics. American Journal of Physics, 59(9):842849.CrossRefGoogle Scholar
Erlichson, H. (1991b). Newton’s 1679/80 solution of the constant gravity problem. American Journal of Physics, 59(8):728733.Google Scholar
Evans, J. (1984). On the function and the probable origin of Ptolemy’s equant. American Journal of Physics, 52(12):10801089.Google Scholar
Evans, J. (1998). The History and Practice of Ancient Astronomy. Oxford University Press, Oxford, UK.Google Scholar
Ferguson, K. (2002). Tycho and Kepler: The Unlikely Partnership that Forever Changed Our Understanding of the Heavens. Walker Publishing, New York.Google Scholar
Fernie, J. (1975a). The historical search for stellar parallax, part I. Journal of the Royal Astronomical Society of Canada, 69:153.Google Scholar
Fernie, J. (1975b). The historical search for stellar parallax, part II. Journal of the Royal Astronomical Society of Canada, 69:222.Google Scholar
Field, J. V. (1988). Kepler’s Geometrical Cosmology. Athlone Press, London.Google Scholar
Finocchiaro, M. A. (1989). The Galileo Affair: A Documentary History. University of California Press, Berkeley, CA.Google Scholar
Fisher, J. (2010). Conjectures and reputations: The composition and reception of James Bradley’s paper on the aberration of light with some reference to a third unpublished version. The British Journal for the History of Science, 43(1):1948.Google Scholar
Frankel, H. R. (1978). The importance of Galileo’s nontelescopic observations concerning the size of the fixed stars. Isis, 69(1):7782.Google Scholar
Franklin, A. (1976). Principle of inertia in the middle ages. American Journal of Physics, 44(6):529545.Google Scholar
Galilei, G. (1957). Discoveries and Opinions of Galileo, translation and commentary by S. Drake. Anchor Books, New York.Google Scholar
Galilei, G. (2000). Two New Sciences, translated by Drake, S.. Wall and Emerson, Toronto, Canada.Google Scholar
Galilei, G. (2001). Dialogue Concerning the Two Chief World Systems, translated by Drake, S.. Modern Library, New York.Google Scholar
Galilei, G. and Scheiner, C. (2010). On Sunspots, translated by E. Reeves and A. Van Helden. University of Chicago Press, Chicago, IL.Google Scholar
Gilbert, W. (1958). De Magnete, translated by P. F. Mottelay. Dover Publications, New York.Google Scholar
Gingerich, O. (1971). Johannes Kepler and the Rudolphine Tables. Sky and Telescope, 42.Google Scholar
Gingerich, O. (1975). The origins of Kepler’s third law. Vistas in Astronomy, 18:595601.Google Scholar
Gingerich, O. (1977). Tycho Brahe and the Great Comet of 1577. Sky and Telescope, 54.Google Scholar
Gingerich, O. (1984). Phases of Venus in 1610. Journal for the History of Astronomy, 15(3):209.Google Scholar
Gingerich, O. (1997). The Eye of Heaven: Ptolemy, Copernicus, Kepler, volume 7 of Masters of Modern Physics. Springer, New York.Google Scholar
Gingerich, O. (2003). The Galileo sunspot controversy: Proof and persuasion. Journal for the History of Astronomy, 34(1):7778.Google Scholar
Gingerich, O. (2004). The Book Nobody Read: Chasing the Revolutions of Nicolaus Copernicus. Penguin Books, New York.Google Scholar
Gingerich, O. and Van Helden, A. (2011). How Galileo constructed the moons of Jupiter. Journal for the History of Astronomy, 42(2):259264.Google Scholar
Gingerich, O. and Voelkel, J. R. (1998). Tycho Brahe’s Copernican campaign. Journal for the History of Astronomy, 29(1):134.Google Scholar
Gleick, J. (2003). Isaac Newton. Pantheon Books, New York.Google Scholar
Goldstein, B. R. (1967). The Arabic version of Ptolemy’s Planetary hypotheses. Transactions of the American Philosophical Society, 57(4):355.Google Scholar
Goldstein, B. R. (1996a). Levi ben Gerson and the brightness of Mars. Journal for the History of Astronomy, 27(4):297300.Google Scholar
Goldstein, B. R. (1996b). The pre-telescopic treatment of the phases and apparent size of Venus. Journal for the History of Astronomy, 27(1):112.Google Scholar
Goldstein, B. R. (1997). Saving the phenomena: The background to Ptolemy’s planetary theory. Journal for the History of Astronomy, 28(1):112.Google Scholar
Goldstein, B. R. (2012). The Astronomy of Levi ben Gerson (1288–1344): A Critical Edition of Chapters 1–20 with Translation and Commentary, volume 11. Springer Science & Business Media.Google Scholar
Goldstein, B. R. and Barker, P. (1995). The role of Rothmann in the dissolution of the celestial spheres. The British Journal for the History of Science, 28(4):385403.Google Scholar
Goldstein, B. R. and Bowen, A. C. (1983). A new view of early Greek astronomy. Isis, 74(3):330340.Google Scholar
Granada, M. A. (2008). Kepler and Bruno on the infinity of the universe and of solar systems. Journal for the History of Astronomy, 39(4):469495.Google Scholar
Graney, C. M. (2008). But still, it moves: Tides, stellar parallax, and Galileo’s commitment to the Copernican theory. Physics in Perspective, 10(3):258268.Google Scholar
Graney, C. M. (2010a). Seeds of a Tychonic revolution: Telescopic observations of the stars by Galileo Galilei and Simon Marius. Physics in Perspective, 12(1):424.Google Scholar
Graney, C. M. (2010b). The telescope against Copernicus: Star observations by Riccioli supporting a geocentric universe. Journal for the History of Astronomy, 41(4):453467.Google Scholar
Graney, C. M. (2011). Contra Galileo: Riccioli’s “Coriolis-force” argument on the Earth’s diurnal rotation. Physics in Perspective, 13(4):387400.Google Scholar
Graney, C. M. (2012a). Science rather than God: Riccioli’s review of the case for and against the Copernican hypothesis. Journal for the History of Astronomy, 43(2):215225.Google Scholar
Graney, C. M. (2012b). The work of the Best and Greatest Artist: a forgotten story of religion, science, and stars in the Copernican Revolution. Logos: A Journal of Catholic Thought and Culture, 15(4):97124.Google Scholar
Graney, C. M. (2015). Setting Aside All Authority: Giovanni Battista Riccioli and the Science Against Copernicus in the Age of Galileo. University of Notre Dame Press, Notre Dame, IN.Google Scholar
Graney, C. M. and Grayson, T. P. (2011). On the telescopic disks of stars: A review and analysis of stellar observations from the early seventeenth through the middle nineteenth centuries. Annals of Science, 68(3):351373.Google Scholar
Grant, E. (1964). Motion in the void and the principle of inertia in the middle ages. Isis, 55(3):265292.Google Scholar
Grant, E. (1971). Physical Science in the Middle Ages. Cambridge University Press, Cambridge, UK.Google Scholar
Grant, E. (1996). Planets, Stars, and Orbs: The Medieval Cosmos, 1200-1687. Cambridge University Press, Cambridge, UK.Google Scholar
Greenberg, J. L. (1996). Isaac Newton and the problem of the Earth’s shape. Archive for History of Exact Sciences, 49(4):371391.Google Scholar
Gualandi, A. and Bònoli, F. (2009). The search for stellar parallaxes and the discovery of the aberration of light: The observational proofs of the Earth’s revolution, Eustachio Manfredi, and the ‘Bologna case’. Journal for the History of Astronomy, 40(2):155172.Google Scholar
Guthke, K. (1990). The Last Frontier: Imagining Other Worlds, from the Copernican Revolution to Modern Science Fiction. Cornell University Press, Ithaca, NY.Google Scholar
Hall, A. R. (1981). From Galileo to Newton. Dover Publications, New York.Google Scholar
Hall, E. H. (1903). Do falling bodies move south? Physical Review (Series I), 17(3):179.Google Scholar
Hallyn, F. and Leslie, D. M. (1990). The Poetic Structure of the World: Copernicus and Kepler. Zone Books, New York.Google Scholar
Hannah, R. (2008). Time in Antiquity. Routledge, London.Google Scholar
Hanson, N. R. (1962). Leverrier: The zenith and nadir of Newtonian mechanics. Isis, 53(3):359378.Google Scholar
Harper, W. (2007). Newton’s methodology and Mercury’s perihelion before and after Einstein. Philosophy of Science, 74(5):932942.Google Scholar
Hecht, E. (2017). Kepler and the origins of pre-Newtonian mass. American Journal of Physics, 85(2):115123.Google Scholar
Heilbron, J. L. (2012). Galileo. Oxford University Press, Oxford, UK.Google Scholar
Henderson, T. (1840). On the parallax of alpha Centauri. Memoirs of the Royal Astronomical Society, 11:61.Google Scholar
Herivel, J. (1965). The Background to Newton’s Principia: A Study of Newton’s Dynamical Researches in the Years 1664–84. Oxford University Press, Oxford, UK.Google Scholar
Herschel, M. and Banks, J. (1782). On the parallax of the fixed stars. Philosophical Transactions of the Royal Society of London, 72:82111.Google Scholar
Herschel, W. (1802). Catalogue of 500 new nebulous stars, planetary nebula, and clusters of stars; with remarks on the construction of the heavens. Philosophical Transactions of the Royal Society of London, 92:477528.Google Scholar
Hetherington, N. S. (2006). Planetary Motions: A Historical Perspective. Greenwood Press, Westport, CT.Google Scholar
Hirshfeld, A. W. (2002). Parallax: The Race to Measure the Cosmos. Macmillan, London.Google Scholar
Holton, G. (1956). Johannes Kepler’s universe: Its physics and metaphysics. American Journal of Physics, 24(5):340351.Google Scholar
Hooke, R. (1674). An Attempt to Prove the Motion of the Earth from Observations. Printed by TR for John Martyn Printer to the Royal Society at the Bell in St. Pauls Church-yard, London.Google Scholar
Hornsby, T. (1771). The quantity of the Sun’s parallax as deduced from the observations of the transit of Venus, on June 3, 1769. Philosophical Transactions, 61:574579.Google Scholar
Hoskin, M. (1966). Stellar distances: Galileo’s method and its subsequent history. Indian Journal of History of Science, 1:2229.Google Scholar
Hoskin, M. (1977). Newton, providence and the universe of stars. Journal for the History of Astronomy, 8(2):77101.Google Scholar
Howell, K. J. (2002). God’s Two Books: Copernican Cosmology and Biblical Interpretation in Early Modern Science. University of Notre Dame Press, Notre Dame, IN.Google Scholar
Inwood, S. (2005). The Forgotten Genius: The Biography of Robert Hooke, 1635–1703. MacAdam/Cage Publishing, San Francisco, CA.Google Scholar
Jacobsen, T. S. (1999). Planetary Systems from the Ancient Greeks to Kepler. University of Washington Press, Seattle, WA.Google Scholar
Jardine, N. (1984). The Birth of History and Philosophy of Science. Cambridge University Press, Cambridge, UK.Google Scholar
Johnson, F. R. (1936). The influence of Thomas Digges on the progress of modern astronomy in sixteenth-century England. Osiris, 1:390410.Google Scholar
Johnson, W. and Chandrasekar, S. (1990). Voltaire’s contribution to the spread of Newtonianism – ii. Élemens de la philosophie de Neuton: The elements of the philosophy of Sir Isaac Newton. International Journal of Mechanical Sciences, 32(6):521546.Google Scholar
Kelter, I. A. (1995). The refusal to accommodate: Jesuit exegetes and the Copernican system. The Sixteenth Century Journal, 273–283.Google Scholar
Kepler, J. (1965). Kepler’s Conversation with Galileo’s Sidereal Messenger, translated by E. Rosen. Johnson Reprint Corp., New York.Google Scholar
Kepler, J. (1981). Mysterium Cosmographicum: The Secret of the Universe, translated by A. M. Duncan. Abaris Books, New York.Google Scholar
Kepler, J. (1995). Epitome of Copernican Astrononomy and Harmonies of the Worlds, translated by C. G. Wallis. Prometheus Books, New York.Google Scholar
Kepler, J. (1997). The Harmony of the World, translated by Aiton, E. J., Duncan, A. M., and Field, J. V., volume 209. American Philosophical Society, Philadelphia, PA.Google Scholar
Kepler, J. (2003). Kepler’s Somnium: The Dream, or Posthumous Work on Lunar Astronomy, translated by E. Rosen. Dover Publications, Mineola, NY.Google Scholar
Kepler, J. (2015). Astronomia Nova, translated by W. H. Donahue. Green Lion Press, Santa Fe, NM.Google Scholar
Kline, M. (1972). Mathematical Thought From Ancient to Modern Times, volume 1. Oxford University Press, Oxford, UK.Google Scholar
Knorr, W. R. (1990). Plato and Eudoxus on the planetary motions. Journal for the History of Astronomy, 21(4):313329.Google Scholar
Kobe, D. H. (1998). Copernicus and Martin Luther: An encounter between science and religion. American Journal of Physics, 66(3):190196.Google Scholar
Koestler, A. (1968). The Sleepwalkers: A History of Man’s Changing Vision of the Universe. Penguin Books, Aylesbury, UK.Google Scholar
Koyré, A. (1955). A documentary history of the problem of fall from Kepler to Newton. Transactions of the American Philosophical Society, 45(4):329395.Google Scholar
Koyré, A. (1957). From the Closed World to the Infinite Universe. Johns Hopkins Press, Baltimore, MD.Google Scholar
Koyré, A. (1992). The Astronomical Revolution: Copernicus, Kepler, Borelli. Dover Publications, New York.Google Scholar
Kuhn, T. S. (1957). The Copernican Revolution: Planetary Astronomy in the Development of Western Thought, volume 16. Harvard University Press, Cambridge, MA.Google Scholar
Lattis, J. M. (2010). Between Copernicus and Galileo: Christoph Clavius and the Collapse of Ptolemaic Cosmology. University of Chicago Press, Chicago, IL.Google Scholar
Linton, C. M. (2004). From Eudoxus to Einstein: A History of Mathematical Astronomy. Cambridge University Press, Cambridge, UK.Google Scholar
Lohne, J. (1960). Hooke versus Newton. Centaurus, 7(1):652.Google Scholar
Lohne, J. A. (1967). The increasing corruption of Newton’s diagrams. History of Science, 6(1):6989.Google Scholar
Losee, J. (1966). Drake, Galileo, and the law of inertia. American Journal of Physics, 34(5):430432.CrossRefGoogle Scholar
Love, D. (2015). Kepler and the Universe: How One Man Revolutionized Astronomy. Prometheus Books, Amherst, NY.Google Scholar
Malpangotto, M. (2016). The original motivation for Copernicus’s research: Albert of Brudzewo’s Commentariolum super Theoricas novas Georgii Purbachii. Archive for History of Exact Sciences, 70(4):361411.Google Scholar
Martens, R. (2000). Kepler’s Philosophy and the New Astronomy. Princeton University Press, Princeton, NJ.Google Scholar
Martin, D. R. (1984). Status of the Copernican theory before Kepler, Galileo, and Newton. American Journal of Physics, 52(11):982986.Google Scholar
Martins, R. d. A. (1998). Natural or violent motion: Galileo’s conjectures on the fall of heavy bodies. Dialoghi-Rivista di Studi Italici, 2(1/2):4567.Google Scholar
Mendell, H. (1998). Reflections on Eudoxus, Callippus and their curves: Hippopedes and Callippopedes. Centaurus, 40(3–4):177275.Google Scholar
Methuen, C. (1996). Maestlin’s teaching of Copernicus: The evidence of his university textbook and disputations. Isis, 87(2):230247.Google Scholar
Michelson, A. A. and Pease, F. G. (1921). Measurement of the diameter of Alpha-Orionis by the interferometer. Proceedings of the National Academy of Sciences, 7(5):143146.Google Scholar
Millevolte, A. (2014). The Copernican Revolution: Putting the Earth in Motion. Tuscobia Press.Google Scholar
Mills, A. and Turvey, P. (1979). Newton’s telescope, an examination of the reflecting telescope attributed to Sir Isaac Newton in the possession of the Royal Society. Notes and Records of the Royal Society of London, 33(2):133155.Google Scholar
Murschel, A. (1995). The structure and function of Ptolemy’s physical hypotheses of planetary motion. Journal for the History of Astronomy, 26(1):3361.Google Scholar
Nauenberg, M. (1994). Hooke, orbital motion, and Newton’s Principia. American Journal of Physics, 62(4):331350.Google Scholar
Nauenberg, M. (2005a). Hooke’s and Newton’s contributions to the early development of orbital dynamics and the theory of universal gravitation. Early Science and Medicine, 10(4):518528.Google Scholar
Nauenberg, M. (2005b). Robert Hooke’s seminal contribution to orbital dynamics. Physics in Perspective, 7(1):434.Google Scholar
Naylor, R. (2001). Galileo’s physics for a rotating Earth. Largo campo di filosofare, Eurosyposium Galileo, Capitulo, 3:337355.Google Scholar
Naylor, R. H. (1974). Galileo and the problem of free fall. The British Journal for the History of Science, 7(2):105134.Google Scholar
Naylor, R. H. (1980). Galileo’s theory of projectile motion. Isis, 71(4):550570.Google Scholar
Newton, I. (1999). The Principia, Mathematical Principles of Natural Philosophy, translated by I. B. Cohen and A. Whitman. University of California Press, Berkeley, CA.Google Scholar
Newton, I. and Cohen, I. (2004). A Treatise of the System of the World. Dover Publications, New York.Google Scholar
Newton, R. R. (1980). The sources of Eratosthenes measurement of the Earth. Quarterly Journal of the Royal Astronomical Society, 21:379.Google Scholar
Olmsted, J. W. (1942). The scientific expedition of Jean Richer to Cayenne (1672–1673). Isis, 34(2):117128.Google Scholar
Palmieri, P. (2001). Galileo and the discovery of the phases of Venus. Journal for the History of Astronomy, 32(2):109129.Google Scholar
Pancheri, L. U. (1978). Pierre Gassendi, a forgotten but important man in the history of physics. American Journal of Physics, 46(5):455463.Google Scholar
Patterson, L. D. (1949). Hooke’s gravitation theory and its influence on Newton. I: Hooke’s gravitation theory. Isis, 40(4):327341.Google Scholar
Patterson, L. D. (1950). Hooke’s gravitation theory and its influence on Newton. II: The insufficiency of the traditional estimate. Isis, 41(1):3245.Google Scholar
Pav, P. A. (1966). Gassendi’s statement of the principle of inertia. Isis, 57(1):2434.Google Scholar
Pedersen, O. (1983). Galileo and the council of Trent: the Galileo affair revisited. Journal for the History of Astronomy, 14(1):129.Google Scholar
Pederson, O. and Pihl, M. (1974). Early Physics and Astronomy: A Historical Introduction. Macdonald and Janes, London.Google Scholar
Plato (1888). The Timaeus of Plato, translated by Archer-Hind, R. D.. Macmillan, London.Google Scholar
Plato (1989). The Republic and Other Works, translated by Jowett, B.. Anchor Books, New York.Google Scholar
Plummer, H. (1940). Jeremiah Horrocks and his Opera posthuma. Notes and Records of the Royal Society of London, 3(1):3952.Google Scholar
Ptolemy, C. (1998). Ptolemy’s Almagest, translated by G. J. Toomer. Princeton University Press, Princeton, NJ.Google Scholar
Rawlins, D. (1987). Ancient heliocentrists, Ptolemy, and the equant. American Journal of Physics, 55(3):235239.Google Scholar
Rosen, E. (1939). Three Copernican Treatises: The Commentariolus of Copernicus; The Letter against Werner; The Narratio Prima of Rheticus (revised edn.). Dover Publications, New York.Google Scholar
Rosen, E. (1960). Calvin’s attitude toward Copernicus. Journal of the History of Ideas, 431–441.Google Scholar
Rosen, E. (1975a). Kepler and the Lutheran attitude towards Copernicanism in the context of the struggle between science and religion. Vistas in Astronomy, 18:317338.CrossRefGoogle Scholar
Rosen, E. (1975b). Was Copernicus’ Revolutions approved by the Pope? Journal of the History of Ideas, 36(3):531542.Google Scholar
Rosenfeld, L. (1965). Newton and the law of gravitation. Archive for History of Exact Sciences, 2(5):365386.Google Scholar
Russell, J. L. (1964). Kepler’s laws of planetary motion: 1609–1666. The British Journal for the History of Science, 2(1):124.Google Scholar
Saliba, G. (1995). A History of Arabic Astronomy: Planetary Theories During the Golden Age of Islam. NYU Press, New York.Google Scholar
Schaffer, S. (1981). Uranus and the establishment of Herschel’s astronomy. Journal for the History of Astronomy, 12(1):1126.Google Scholar
Schofield, C. (1981). The Tychonic and Semi-Tychonic World Systems. Arno Press, New York.Google Scholar
Seeger, R. J. (1965). Galileo, yesterday and today. American Journal of Physics, 33(9):680698.Google Scholar
Short, J. (1761). The observations of the internal contact of Venus with the sun’s limb, in the late transit, made in different places of Europe, compared with the time of the same contact observed at the Cape of Good Hope, and the parallax of the Sun from thence determined. Philosophical Transactions (1683–1775), 52:611628.Google Scholar
Siebert, H. (2005). The early search for stellar parallax: Galileo, Castelli, and Ramponi. Journal for the History of Astronomy, 36(3):251271.Google Scholar
Simpson, A. (1992). James Gregory and the reflecting telescope. Journal for the History of Astronomy, 23(2):7792.Google Scholar
Singham, M. (2007). The Copernican myths. Physics Today, 60(12):48.Google Scholar
Smith, R. W. (1989). The Cambridge network in action: The discovery of Neptune. Isis, 80(3):395422.Google Scholar
Sobel, D. (2011). A More Perfect Heaven: How Copernicus Revolutionized the Cosmos. Walker Publishing, New York.Google Scholar
Stephenson, B. (1994). Kepler’s Physical Astronomy. Princeton University Press, Princeton, NJ.Google Scholar
Swerdlow, N. (1972). Aristotelian planetary theory in the Renaissance: Giovanni Battista Amico’s homocentric spheres. Journal for the History of Astronomy, 3(1):3648.Google Scholar
Swerdlow, N. M. (2005). Ptolemy’s theories of the latitude of the planets in the Almagest, Handy Tables, and Planetary Hypotheses. In Buchwald, J. Z. and Franklin, A. (eds.), Wrong for the Right Reasons, pages 4171. Springer, Amsterdam.Google Scholar
Swerdlow, N. M. and Neugebauer, O. (2012). Mathematical Astronomy in Copernicus’ De Revolutionibus: In Two Parts, volume 10. Springer Science & Business Media, New York.Google Scholar
Taub, L. C. (1993). Ptolemy’s Universe: The Natural Philosophical and Ethical Foundations of Ptolemy’s Astronomy. Open Court, Chicago, IL.Google Scholar
Teets, D. A. (2003). Transits of Venus and the astronomical unit. Mathematics Magazine, 76(5):335348.Google Scholar
Terrall, M. (1992). Representing the Earth’s shape: the polemics surrounding Maupertuis’s expedition to Lapland. Isis, 83(2):218237.Google Scholar
Thomson, T. (2011). History of the Royal Society: From Its Institution to the End of the Eighteenth Century. Cambridge University Press, Cambridge, UK.Google Scholar
Thoren, V. E. (1974). Kepler’s second law in England. The British Journal for the History of Science, 7(3):243256.Google Scholar
Thoren, V. E. (1990). The Lord of Uraniborg: A Biography of Tycho Brahe. Cambridge University Press, Cambridge, UK.Google Scholar
Thorndike, L. (1949). The Sphere of Sacrobosco and its commentators. University of Chicago Press, Chicago, IL.Google Scholar
Tiersten, M. S. and Soodak, H. (2000). Dropped objects and other motions relative to the noninertial earth. American Journal of Physics, 68(2):129142.Google Scholar
Timberlake, T. K. (2013). Seeing earth’s orbit in the stars: Parallax and aberration. The Physics Teacher, 51(8):478481.Google Scholar
Toulmin, S. and Goodfield, J. (1961). The Fabric of the Heavens: The Development of Astronomy and Dynamics. Harper & Row, New York.Google Scholar
Tredwell, K. and Barker, P. (2004). Copernicus’ first friends: Physical Copernicanism from 1543 to 1610. Filozofski vestnik, 25(2):143166.Google Scholar
Van Helden, A. (1974a). “annulo cingitur”: The solution of the problem of Saturn. Journal for the History of Astronomy, 5(3):155174.Google Scholar
Van Helden, A. (1974b). Saturn and his anses. Journal for the History of Astronomy, 5(2):105121.Google Scholar
Van Helden, A. (1974c). The telescope in the seventeenth century. Isis, 65(1):3858.Google Scholar
Van Helden, A. (1976). The importance of the transit of Mercury of 1631. Journal for the History of Astronomy, 7(1):110.Google Scholar
Voelkel, J. R. (2001). The Composition of Kepler’s Astronomia Nova. Princeton University Press, Princeton, NJ.Google Scholar
Weinstock, R. (1989). Long-buried dismantling of a centuries-old myth: Newton’s Principia and inverse-square orbits. American Journal of Physics, 57(9):846849.Google Scholar
Wesley, W. G. (1978). The accuracy of Tycho Brahe’s instruments. Journal for the History of Astronomy, 9(1):4253.Google Scholar
Westfall, R. S. (1967). Hooke and the law of universal gravitation: A reappraisal of a reappraisal. The British Journal for the History of Science, 3(3):245261.Google Scholar
Westfall, R. S. (1980). Never at Rest: A Biography of Isaac Newton. Cambridge University Press, Cambridge, UK.Google Scholar
Westman, R. S. (1975a). The Copernican Achievement. University of California Press, Berkeley, CA.Google Scholar
Westman, R. S. (1975b). The Melanchthon circle, Rheticus, and the Wittenberg interpretation of the Copernican theory. Isis, 66(2):165193.Google Scholar
Westman, R. S. (2011). The Copernican Question: Prognostication, Skepticism, and Celestial Order. University of California Press, Berkeley, CA.Google Scholar
Whiteside, D. T. (1964). Newton’s early thoughts on planetary motion: a fresh look. The British Journal for the History of Science, 2(2):117137.Google Scholar
Whiteside, D. T. (1970). Before the Principia: The maturing of Newton’s thoughts on dynamical astronomy, 1664–1684. Journal for the History of Astronomy, 1(1):519.Google Scholar
Williams, M. (1979). Flamsteed’s alleged measurement of annual parallax for the Pole Star. Journal for the History of Astronomy, 10(2):102116.Google Scholar
Williams, M. (1982). James Bradley and the eighteenth century ‘gap’ in attempts to measure annual stellar parallax. Notes and Records of the Royal Society of London, 37(1):83100.Google Scholar
Wilson, C. A. (1970). From Kepler’s laws, so-called, to universal gravitation: empirical factors. Archive for History of Exact Sciences, 6(2):89170.Google Scholar
Wootton, D. (2010). Galileo: Watcher of the Skies. Yale University Press.Google Scholar
Wootton, D. (2015). The Invention of Science: A New History of the Scientific Revolution. Harper Collins, New York.Google Scholar
Yavetz, I. (1998). On the homocentric spheres of Eudoxus. Archive for History of Exact Sciences, 52(3):221278.Google Scholar
Yoder, J. G. (2004). Unrolling Time: Christiaan Huygens and the Mathematization of Nature. Cambridge University Press, Cambridge, UK.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×