Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T08:20:54.548Z Has data issue: false hasContentIssue false

9 - Maternal diseases that affect fetal development

from Part II - Pregnancy, Labor, and Delivery Complications Causing Brain Injury

Published online by Cambridge University Press:  10 November 2010

Kimberlee A. Sorem
Affiliation:
University of California San Francisco, CA, USA
Maurice L. Druzin
Affiliation:
Stanford University Medical Center, Stanford, CA, USA
David K. Stevenson
Affiliation:
Stanford University School of Medicine, California
William E. Benitz
Affiliation:
Stanford University School of Medicine, California
Philip Sunshine
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Introduction

Fetal development is affected by intrinsic (genetic) and environmental (intrauterine) factors. Studies at the molecular level as well as at the epidemiologic level are helpful in determining possible etiologies of diseases that affect not only the developing fetus but also the growing and adult human organism. Complex diseases once thought to be mainly “adult” in onset, such as hypertension and cardiac disease, have recently been linked to low birth weight, suggesting an intriguing “adaptation” of the fetus to a hostile or suboptimal metabolic environment. Genetic diseases, present from conception, may not be apparent at birth, childhood, or even middle age. Although this chapter will focus on specific maternal diseases that are known to affect fetal growth and development, a vast array of genetic programming and metabolic factors are known to influence normal and abnormal fetal development.

Certain maternal systemic diseases affect multiple organ systems in the fetus. The most common endocrine disease in the female reproductive age group is diabetes mellitus: type 1, type 2, and gestational diabetes. From glucose-induced embryo toxicity to cardiac hypertrophy of the newborn, the hyperglycemia (and other metabolic derangements) of uncontrolled diabetes causes wide-ranging birth defects and multiple metabolic abnormalities in the newborn. Likewise, thyroid disease and other maternal endocrine disorders may have an untoward effect on the fetus. Neurological diseases of the mother may have an adverse effect on the development of the fetal nervous system.

Type
Chapter
Information
Fetal and Neonatal Brain Injury
Mechanisms, Management and the Risks of Practice
, pp. 191 - 211
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×