Book contents
- Frontmatter
- Contents
- Preface
- List of abbreviations
- 1 Introduction to the Extreme Ultraviolet: first source discoveries
- 2 The first space observatories
- 3 Roentgen Satellit: the first EUV sky survey
- 4 The Extreme Ultraviolet Explorer and ALEXIS sky surveys
- 5 Spectroscopic instrumentation and analysis techniques
- 6 Spectroscopy of stellar sources
- 7 Structure and ionisation of the local interstellar medium
- 8 Spectroscopy of white dwarfs
- 9 Cataclysmic variables and related objects
- 10 Extragalactic photometry and spectroscopy
- 11 EUV astronomy in the 21st century
- Appendix. A merged catalogue of Extreme Ultraviolet sources
- References
- Index
1 - Introduction to the Extreme Ultraviolet: first source discoveries
Published online by Cambridge University Press: 07 August 2009
- Frontmatter
- Contents
- Preface
- List of abbreviations
- 1 Introduction to the Extreme Ultraviolet: first source discoveries
- 2 The first space observatories
- 3 Roentgen Satellit: the first EUV sky survey
- 4 The Extreme Ultraviolet Explorer and ALEXIS sky surveys
- 5 Spectroscopic instrumentation and analysis techniques
- 6 Spectroscopy of stellar sources
- 7 Structure and ionisation of the local interstellar medium
- 8 Spectroscopy of white dwarfs
- 9 Cataclysmic variables and related objects
- 10 Extragalactic photometry and spectroscopy
- 11 EUV astronomy in the 21st century
- Appendix. A merged catalogue of Extreme Ultraviolet sources
- References
- Index
Summary
Astrophysical significance of the EUV
The Extreme Ultraviolet (EUV) nominally spans the wavelength range from 100 to 1000 Å, although for practical purposes the edges are often somewhat indistinct as instrument band-passes extend shortward into the soft X-ray or longward into the far ultraviolet (far UV). Like X-ray emission, the production of EUV photons is primarily associated with the existence of hot gas in the Universe. Indeed, X-ray astronomy has long been established as a primary tool for studying a diverse range of astronomical objects from stars through to clusters of galaxies. An important question is what information can EUV observations provide that cannot be obtained from other wavebands? In broad terms, studying photons with energies between ultraviolet (UV) and X-ray ranges means examining gas with intermediate temperature. However, the situation is really more complex. For example, EUV studies of hot thin plasma in stars deal mainly with temperatures between a few times 105 and a few times 106 K, while hot blackbody-like objects such as white dwarfs are bright EUV sources at temperatures a factor of 10 below these. Perhaps the most significant contribution EUV observations can make to astrophysics in general is by providing access to the most important spectroscopic features of helium – the He I and He II ground state continua together with the He I and He II resonance lines.
- Type
- Chapter
- Information
- Extreme Ultraviolet Astronomy , pp. 1 - 16Publisher: Cambridge University PressPrint publication year: 2003