One of the most remarkable discoveries in nineteenth century Euclidean geometry is that there is one circle that contains nine significant points associated with a triangle. In 1765 Euler proved that the midpoints of the sides and the feet of the altitudes of a triangle lie on a single circle. In other words, the medial and orthic triangles share the same circumcircle. Furthermore, the center of the common circumcircle lies on the Euler line of the original triangle. More than fifty years later, in 1820, Charles-Julien Brianchon (1783–1864) and Jean-Victor Poncelet (1788–1867) proved that the midpoints of the segments joining the orthocenter to the vertices lie on the same circle. As a result, the circle became known as the “nine-point circle.” Later, Karl Wilhelm Feuerbach (1800–1834) proved that the ninepoint circle has the additional property that it is tangent to all four of the equicircles; for this reason Feuerbach's name is often associated with the nine-point circle.
The nine-point circle
Let us begin with a statement of the theorem.
Nine-point Circle Theorem. If ΔABC is a triangle, then the midpoints of the sides of ΔABC, the feet of the altitudes of ΔABC, and the midpoints of the segments joining the orthocenter of ΔABC to the three vertices of ΔABC all lie on a single circle.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.