Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T06:34:24.739Z Has data issue: false hasContentIssue false

13 - Metal and mineral transformations: a mycoremediation perspective

from IV - Fungal bioremediation

Published online by Cambridge University Press:  05 October 2013

M. Fomina
Affiliation:
Division of Environmental and Applied Biology Biological Sciences Institute School of Life Sciences University of Dundee Dundee DD1 4HN Scotland UK
G. M. Gadd
Affiliation:
School of Life Sciences University of Dundee Dundee DD1 4HN Scotland UK
G. D. Robson
Affiliation:
University of Manchester
Pieter van West
Affiliation:
University of Aberdeen
Geoffrey Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

In the periodic table, about 75% of the elements are classified as metals. While many metals are essential, e.g. K, Na, Ca, Mn, Mg, Fe, Cu, Zn, Co and Ni, many others have no apparent essential functions, e.g. Rb, Cs, Al, Cd, Ag, Au, Sr, U, Hg, Pb (Gadd, 1993). However, all can interact with fungi and most of them can exhibit toxicity above a certain threshold concentration, which will vary depending on the organism, metal species and environmental factors (Gadd & Griffiths, 1978; Gadd, 1993).

The redistribution of toxic metals in the biosphere as a result of human activity has become an important process in the biogeochemical cycling of these metals. The main source of metal pollution is industrialization including operational and former mining sites, foundries and smelters, untreated sewage sludge, and as diffuse sources, metal piping, traffic, combustion by-products from coal-burning power stations, and other atmospheric pollution. Arsenic, cadmium, chromium, copper, nickel, lead and mercury are the most common metal pollutants (Knox et al., 2000) with a selection of metal radionuclides also entering the environment from a number of sources (Gadd, 2005).

Unlike degradable organic contaminants, metals are not decomposed in the environment. They can, however, be buried (or otherwise contained), removed and recycled, or transformed into less toxic forms (Knox et al., 2000), these processes employing physical, chemical and biological methods singly or in combination.

Type
Chapter
Information
Exploitation of Fungi , pp. 236 - 254
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andriaensen, K., Lelie, D., Laere, A., Vangrosveld, J. & Colpaert, J. V. (2003). A zinc-adapted fungus protects pines from zinc stress. New Phytologist, 161, 549–55.CrossRefGoogle Scholar
Banfield, J. P., Barker, W. W., Welch, S. A. & Taunton, A. (1999). Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences USA, 96, 3404–11.CrossRefGoogle ScholarPubMed
Blaylock, M. J. & Huang, J. W. (2000). Phytoextraction of metals. In Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment, eds. Raskin, I. & Ensley, B. D.. New York: John Wiley & Sons, Inc, pp. 53–70.Google Scholar
Brandl, H. (2001). Heterotrophic leaching. In Fungi in Bioremediation, ed. Gadd, G. M.. Cambridge: Cambridge University Press, pp. 383–423.CrossRefGoogle Scholar
Brown, M. T. & Wilkins, D. A. (1985). Zinc tolerance of mycorrhizal Betula. New Phytologist, 99, 101–6.CrossRefGoogle Scholar
Brown, S., Chaney, R., Hallfrisch, J., Ryan, J. A. & Berti, W. R. (2004). In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. Journal of Environmental Quality, 33, 522–31.CrossRefGoogle ScholarPubMed
Burford, E. P., Fomina, M., Gadd, G. M. (2003). Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine, 67, 1127–55.CrossRefGoogle Scholar
Burgstaller, W. & Schinner, F. (1993). Leaching of metals with fungi. Journal of Biotechnology, 27, 91–116.CrossRefGoogle Scholar
Castaldi, P., Santona, L. & Melis, P. (2005). Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 60, 365–71.CrossRefGoogle Scholar
Chen, X.-B., Wright, J. V., Conca, J. L. & Peurrung, L. M. (1997). Evaluation of heavy metal remediation using mineral apatite. Water, Air and Soil Pollution, 98, 57–78.CrossRefGoogle Scholar
Chen, B. D., Shen, H., Li, X. L., Feng, G. & Christie, P. (2004a). Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant and Soil, 261, 219–29.CrossRefGoogle Scholar
Chen, B. D., Liu, Y., Shen, H., Li, X. L. & Christie, P. (2004b). Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.). Mycorrhiza, 14, 347–54.CrossRefGoogle Scholar
Christie, P., Li, X. L. & Chen, B. D. (2004). Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, 261, 209–17.CrossRefGoogle Scholar
Coleman, N. J., Lee, W. E. and Slipper, I. J. (2005). Interactions of aqueous Cu2 +, Zn2 + and Pb2 + ions with crushed concrete fines. Journal of Hazardous Materials, 121, 203–13.CrossRefGoogle ScholarPubMed
Colpaert, J. V. & Assche, J. A. (1992). Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant and Soil, 143, 201–11.CrossRefGoogle Scholar
Colpaert, J. V., Muller, L. A. H., Lambaerts, M., Andriaensen, K. & Vangronsveld, J. (2004). Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytologist, 162, 549–59.CrossRefGoogle Scholar
Conca, J. L. (1997). Phosphate-induced metal stabilization (PIMS). Final Report to the US Environmental Protection Agency 68D60023, Res. Triangle Park, NC.
Cotter-Howells, J. D. & Caporn, S. (1996). Remediation of contaminated land by formation of heavy metal phosphates. Applied Geochemistry, 11, 335–42.CrossRefGoogle Scholar
Fomina, M., and Gadd, G. M. (2002). Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. Journal of Chemical Technology and Biotechnology, 78, 23–34.CrossRefGoogle Scholar
Fomina, M. A., Alexander, I. J., Hillier, S. & Gadd, G. M. (2004). Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiological Journal, 21, 351–66.CrossRefGoogle Scholar
Fomina, M., Burford, E. P. & Gadd, G. M. (2005a). Toxic metals and fungal communities. In The Fungal Community: Its Organization and Role in the Ecosystem, eds. Dighton, J., White, J. & Oudemans, P.. Boca Raton, FLA: CRC Press, Taylor & Francis Group, pp. 733–58.CrossRefGoogle Scholar
Fomina, M., Hillier, S., Charnock, J. M., Melville, K., Alexander, I. J. & Gadd, G. M. (2005b). Role of oxalic acid over-excretion in toxic metal mineral transformations by Beauveria caledonica. Applied and Environmental Microbiology, 71, 371–81.CrossRefGoogle Scholar
Fomina, M. A., Alexander, I. J., Colpaert, J. V. & Gadd, G. M. (2005c). Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biology and Biochemistry, 37, 851–66.CrossRefGoogle Scholar
Fomina, M., Charnock, J. M., Hillier, S., Alexander, I. J. & Gadd, G. M. (2006a). Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microbial Ecology, 52, 322–33.CrossRefGoogle Scholar
Fomina, M., Charnock, J., Bowen, A. D. & Gadd, G. M. (2006b). X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environmental Microbiology (in press).Google Scholar
Fourest, E., Serre, A. & Roux, J. C. (1996). Contribution of carboxylic groups to heavy metal binding sites in fungal cell walls. Toxicological and Environmental Chemistry, 54, 1–10.CrossRefGoogle Scholar
Gadd, G. M. (1990). Fungi and yeasts for metal binding. In Microbial Mineral Recovery, eds. Ehrlich, H. & Brierley, C. L.. New York: McGraw-Hill, pp. 249–75.Google Scholar
Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist, 124, 25–60.CrossRefGoogle Scholar
Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology, 41, 47–92.CrossRefGoogle ScholarPubMed
Gadd, G. M. (2000). Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Current Opinion in Biotechnology, 11, 271–9.CrossRefGoogle ScholarPubMed
Gadd, G. M. (2001). Metal transformations. In Fungi in Bioremediation, ed. Gadd, G. M.. Cambridge: Cambridge University Press, pp. 250–382.CrossRefGoogle Scholar
Gadd, G. M. (2004). Mycotransformation of organic and inorganic substrates. Mycologist, 18, 60–70.CrossRefGoogle Scholar
Gadd, G. M. (2005). Microorganisms in toxic metal polluted soils. In Microorganisms in Soils: Roles in Genesis and Functions, eds. Buscot, F. & Varma, A.. Berlin: Springer-Verlag, pp. 325–56.Google Scholar
Gadd, G. M. & Griffiths, A. J. (1978). Microorganisms and heavy metal toxicity. Microbial Ecology, 4, 303–17.CrossRefGoogle Scholar
Gadd, G. M., Fomina, M. & Burford, E. P. (2005). Fungal roles and function in rock, mineral and soil transformations. In Microorganisms in Earth Systems, eds. Gadd, G. M., Semple, K. T. & Lappin-Scott, H. M., Cambridge: Cambridge University Press, pp. 201–31.Google Scholar
Garrido, F., Illera, V. & Garcia-Gonzalez, M. T. (2005). Effect of the addition of gypsum- and lime-rich industrial by-products on Cd, Cu and Pb availability and leachability in metal-spiked acid soils. Applied Geochemistry, 20, 397–408.CrossRefGoogle Scholar
Garcia-Sanchez, A., Alastuey, A. & Querol, X. (1999). Heavy metal adsorption by different minerals: application to the remediation of polluted soils. Science of the Total Environment, 242, 179–88.CrossRefGoogle Scholar
Ghosh, M. & Singh, S. P. (2005). A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution, 133, 365–71.CrossRefGoogle ScholarPubMed
Gorbushina, A. A., Krumbein, W. E., Hamann, R., Panina, L., Soucharjevsky, S. & Wollenzien, U. (1993). On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiology Journal, 11, 205–21.CrossRefGoogle Scholar
Hartley-Whitaker, J., Cairney, J. W. G. & Meharg, A. A. (2000). Sensitivity to Cd and Zn of host and symbiont of ectomicorrhizal Pinus sylvestris L. (Scots pine) seedlings. Plant and Soil, 218, 31–42.CrossRefGoogle Scholar
Hoffland, E., Giesler, R., Jongmans, T. & Breemen, N. (2002). Increasing feldspar tunneling by fungi across a north Sweden podzol chronosequence. Ecosystems, 5, 11–22.CrossRefGoogle Scholar
Hu, Z. Q., Yang, X. H., Zhu, Y. G. & Zhang, Y. C. (2004). Remediation of Cu2 + contaminated soil with Na-bentonite. Rare Metal Materials and Engineering, 33, 92–5.Google Scholar
Jentschke, G. & Godbold, D. L. (2000). Metal toxicity and ectomycorrhizas. Physiologia Plantarum, 109, 107–16.CrossRefGoogle Scholar
Jones, M. D. & Hutchinson, T. C. (1988). Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. II. Uptake of nickel, calcium, magnesium, phosphorus and iron. New Phytologist, 108, 461–70.CrossRefGoogle Scholar
Khan, A. G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 355–64.CrossRefGoogle ScholarPubMed
Knox, A. S., Seaman, J. C., Mench, M. J. & Vangronsveld, J. (2000). Remediation of metal- and radionuclides-contaminated soils by in situ stabilization techniques. In Environmental Restoration of Metals-Contaminated Soil, ed. Iskandar, I. K.. Boca Raton, FLA: Lewis Publishers, pp. 21–61.CrossRefGoogle Scholar
Krämer, U. (2005). Phytoremediation: novel approaches to cleaning up polluted soils. Current Opinion in Biotechnology, 16, 133–41.CrossRefGoogle ScholarPubMed
Krupa, P. & Kozdroj, J. (2004). Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World Journal of Microbiology and Biotechnology, 20, 427–30.CrossRefGoogle Scholar
Kumar, R. & Kumar, A. V. (1999). Biodeterioration of Stone in Tropical Environments: An Overview. USA: The J. Paul Getty Trust.Google Scholar
Lesage, E., Meers, E., Vervaeke, P., Lamsal, S., Hopgood, M., Tack, F. & Verloo, M. (2005). Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. International Journal of Phytoremediation, 7, 143–52.CrossRefGoogle ScholarPubMed
Leyval, C. & Joner, E. J. (2001). Bioavailability of heavy metals in the mycorrhizosphere. In Trace Elements in the Rhizosphere, ed. Gobran, G. R., Wenzel, W. W. & Lombi, E.. Boca Raton, FLA: CRC Press, pp. 165–85.Google Scholar
Lima, I. M., Marshall, W. E. and Wartelle, I. Y. H. (2004). Hardware-based granular activated carbon for metals remediation. Journal of the American Water Works Association, 96, 95–102.CrossRefGoogle Scholar
Martino, E., Perotto, S., Parsons, R. & Gadd, G. M. (2003). Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry, 35, 133–41.CrossRefGoogle Scholar
Meers, E., Lesage, E., Lamsal, S., Hopgood, M., Vervaeke, P., Tack, F. & Verloo, M. (2005). Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil. International Journal of Phytoremediation, 7, 129–42.CrossRefGoogle Scholar
Meharg, A. A. (2003). The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycological Research, 107, 1253–65.CrossRefGoogle ScholarPubMed
Meharg, A. A. & Cairney, J. W. G. (2000). Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Advances in Ecological Research, 30, 69–112.CrossRefGoogle Scholar
Money, N. P. (2004). The fungal dining habit – a biomechanical perspective. Mycologist, 18, 71–6.CrossRefGoogle Scholar
Morley, G. F. & Gadd, G. M. (1995). Sorption of toxic metals by fungi and clay minerals. Mycological Research, 99, 1429–38.CrossRefGoogle Scholar
Olsson, P. A., Wallander, H. (1998). Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiology Ecology, 27, 195–205.CrossRefGoogle Scholar
Panfili, F. R., Manceau, A., Sarret, G., Spadini, L., Kirpichtchikova, T., Bert, V., Laboudigue, A., Marcus, M. A., Ahamdach, N. & Libert, M.-F. (2005). The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy, and principal components analysis. Geochimica et Cosmochimica Acta, 69, 2265–84.CrossRefGoogle Scholar
Paris, F., Bonnaud, P., Ranger, J. & Lapeyrie, F. (1995). In vitro weathering of phlogopite by ectomycorrhizal fungi I. Effect of K+ and Mg2 + deficiency on phyllosilicate evolution. Plant and Soil, 177, 191–201.CrossRefGoogle Scholar
Perotto, S. & Martino, E. (2001). Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation?Minerva Biotechnologica, 13, 55–63.Google Scholar
Prasad, M. N. V. & Freitas, H. M. (2003). Metal hyperaccumulation in plants – biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6, 285–321.CrossRefGoogle Scholar
Ryan, J. A., Zhang, P., Hesterberg, D., Chou, L. & Sayers, D. E. (2001). Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environmental Science and Technology, 35, 3798–803.CrossRefGoogle Scholar
Raskin, I., Smith, R. D. & Salt, D. E. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8, 221–6.CrossRefGoogle ScholarPubMed
Sarret, G., Manceau, A., Cuny, D., Haluwyn, C., Deruelle, S., Hazemann, J.-L., Soldo, Y., Eybert-Berard, L. & Menthonnex, J.-J. (1998). Mechanisms of lichen resistance to metallic pollution. Environmental Science and Technology, 32, 3325–30.CrossRefGoogle Scholar
Sarret, G., Manceau, A., Spadini, L., Roux, J. R., Hazemann, J. L., Soldo, Y., Eybert-Berard, L., Monthennex, J. J. (1999). Structural determination of Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy and solution chemistry. Journal of Synchrotron Radiation, 6, 414–16.CrossRefGoogle ScholarPubMed
Sarret, G., Saumitou-Laprade, P., Bert, V., Proux, O., Hazemann, J.-L., Traverse, A., Marcus, M. A. & Manceau, A. (2002). Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiology, 130, 1815–26.CrossRefGoogle ScholarPubMed
Sayer, J. A., Kierans, M. & Gadd, G. M. (1997). Solubilization of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiology Letters, 154, 29–35.CrossRefGoogle Scholar
Sayer, J. A., Cotter-Howells, J. D., Watson, C., Hillier, S. & Gadd, G. M. (1999). Lead mineral transformation by fungi. Current Biology, 9, 691–4.CrossRefGoogle ScholarPubMed
Sersen, F., Cik, G., Havranek, E. & Sykorova, M. (2005). Bio-remediation by natural zeolite on plants cultivated in a heavy metal-contaminated medium. Fresenius Environmental Bulletin, 14, 13–17.Google Scholar
Smith, S. E. & Read, D. J. (1997). Mycorrhizal Symbiosis. London, UK: Academic Press.Google Scholar
Sterflinger, K. (2000). Fungi as geologic agents. Geomicrobiology Journal, 17, 97–124.CrossRefGoogle Scholar
Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R. & Nowack, B. (2004). Extraction of heavy metals from soils using biodegradable chelating agents. Environmental Science and Technology, 38, 937–44.CrossRefGoogle ScholarPubMed
Terzano, R., Spagnuolo, M., Medici, L., Tateo, F. & Ruggiero, P. (2005). Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash. Environmental Science and Technology, 39, 6280–7.CrossRefGoogle ScholarPubMed
Tichelen, K. K., Colpaert, J. V. & Vangronsveld, J. (2001). Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytologist, 150, 203–13.CrossRefGoogle Scholar
Tobin, J. M. (2001). Fungal metal biosorption. In Fungi in Bioremediation, ed. Gadd, G. M.. Cambridge: Cambridge University Press, pp. 424–44.CrossRefGoogle Scholar
Turnau, K., Kottke, I. & Dexheimer, J. (1996). Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycological Research, 100, 16–22.CrossRefGoogle Scholar
Verrecchia, E. P. (2000). Fungi and sediments. In Microbial Sediments, eds. Riding, R. E. & Awramik, S. M.. Berlin: Springer Verlag, pp. 69–75.CrossRefGoogle Scholar
Watanabe, M. E. (1997). Phytoremediation on the brink of commercialization. Environmental Science and Technology, 31, 182–6.CrossRefGoogle Scholar
Wenzel, W. W., Lombi, E. & Adriano, D. C. (2004). Biogeochemical processes in the rhizosphere: role in phytoremediation of metal-polluted soils. In Heavy Metal Stress in Plants: From Biomolecules to Ecosystems, eds. Prasad, M. & Hagemeyer, J.. Berlin, Heidelberg, New York: Springer Verlag, pp. 273–303.CrossRefGoogle Scholar
Whitelaw, M. A., Harden, T. J. & Helyar, K. R. (1999). Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biology and Biochemistry, 31, 655–65.CrossRefGoogle Scholar
Wu, L. H., Luo, Y. M., Xing, X. R. & Christie, P. (2004). EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture, Ecosystems and Environment, 102, 307–18.CrossRefGoogle Scholar
Zhang, P. C., Ryan, J. A. & Bryndzia, L. T. (1997). Pyromorphite formation from goethite adsorbed lead. Environmental Science and Technology, 31, 2673–8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×