Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T12:03:01.819Z Has data issue: false hasContentIssue false

16 - Ultraviolet Radiation Effects under Climate Change

from Part III - The Future

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access

Summary

Solar radiation at the Earth’s surface contains ultraviolet (UV) radiation in the UVB (~295–315 nm) and UVA (315–400 nm) wavebands. Currently, atmospheric ozone removes shorter, more damaging UV radiation and reduces levels of UVB, but before the formation of the ozone layer, UV radiation levels would have been higher, while the recent ‘ozone hole’ increased UV radiation. UV radiation is strongly attenuated in water, but aquatic organisms can be damaged to extents that depend on the species and conditions. The targets of damage include proteins in the photosystems of photosynthesis, DNA and oxidative damage caused by the production of free radicals and reactive oxygen species. Defence against damage involves the production of new proteins, repair to the DNA and the production of antioxidants. UV stress interacts, positively and negatively, with other environmental changes such as rising temperature and CO2, ocean acidification and nutrient stress. Further research is needed to forecast responses to future environmental change.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, G. N., Kim, K. N., Cha, S. H. et al. (2007). Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H2O2-mediated DNA damage. European Food Research and Technology 226: 7179.CrossRefGoogle Scholar
Aitzetmüller, K., Strain, H. H., Svec, W. A. et al. (1969). Loroxanthin, a unique xanthophyll from Scenedesmus obliquus and Chlorella vulgaris. Phytochemistry 8: 17611770.CrossRefGoogle Scholar
Alboresi, A., Ballottari, M., Hienerwadel, R. et al. (2009). Antenna complexes protect Photosystem I from photoinhibition. BMC Plant Biology 9: 71.CrossRefGoogle ScholarPubMed
Asada, K. (1992). Ascorbate peroxidase – A hydrogen peroxide-scavenging enzyme in plants. Physiologia Plantarum 85: 231241.CrossRefGoogle Scholar
Asada, K. (1999). The water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50: 601639.CrossRefGoogle ScholarPubMed
Ayoub, L. M., Hallock, P., Coble, P. G. et al. (2012). MAA-like absorbing substances in Florida Keys phytoplankton vary with distance from shore and CDOM: Implications for coral reefs. Journal of Experimental Marine Biology and Ecology 420–421: 9198.CrossRefGoogle Scholar
Baroli, I. & Niyogi, K. K. (2000). Molecular genetics of xanthophylls-dependent photoprotection in green algae and plants. Philosophical Transactions of the Royal Society B 355: 13851394.CrossRefGoogle ScholarPubMed
Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A. et al. (2006). Climate-driven trends in contemporary ocean productivity. Nature 444: 752755.CrossRefGoogle ScholarPubMed
Bouchard, J. N., Roy, S. & Campbell, D. A. (2006). UVB effects on the photosystem II-D1 protein of phytoplankton and natural phytoplankton communities. Photochemistry and Photobiology 82: 936951.CrossRefGoogle ScholarPubMed
Bray, C. M. & West, C. E. (2005). DNA repair mechanisms in plants: Crucial sensors and effectors for the maintenance of genome integrity. New Phytologist 168: 511528.CrossRefGoogle ScholarPubMed
Buma, A. G. J., Boelen, P. & Jeffrey, W. H. (2003). UVR-induced DNA damage in aquatic organisms. In Helbling, E. W. & Zagarese, H. E. (eds.) UV Effects in Aquatic Organisms and Ecosystems. The Royal Society of Chemistry, Cambridge, pp. 291327.Google Scholar
Buma, A. G. J., Wright, S. W., van den Enden, R. et al. (2006). PAR acclimation and UVBR-induced DNA damage in Antarctic marine microalgae. Marine Ecology Progress Series 315: 3342.CrossRefGoogle Scholar
Buma, A. G. J., Visser, R. J., Van de Poll, W. et al. (2009). Wavelength-dependent xanthophyll cycle activity in marine microalgae exposed to natural ultraviolet radiation. European Journal of Phycology 44: 515524.CrossRefGoogle Scholar
Cabrerizo, M. J., Carrillo, P., Villafañe, V. E. et al. (2014). Current and predicted global change impacts of UVR, temperature and nutrient inputs on photosynthesis and respiration of key marine phytoplankton species. Journal of Experimental Marine Biology and Ecology 461: 371380.CrossRefGoogle Scholar
Carrillo, P., Medina-Sánchez, J. M., Villar-Argaiz, M. et al. (2017). Vulnerability of mixotrophic algae to nutrient pulses and UVR in an oligotrophic Southern and Northern Hemisphere lake. Scientific Reports 7: 6333.CrossRefGoogle Scholar
Chen, H., Guan, W., Zeng, G. et al. (2015). Alleviation of solar ultraviolet radiation (UVR)-induced photoinhibition in diatom Chaetoceros curvisetus by ocean acidification. Journal of the Marine Biological Association of the United Kingdom 95: 661667.CrossRefGoogle Scholar
Chen, S. & Gao, K. (2011). Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae). Hydrobiologia 675: 105117.CrossRefGoogle Scholar
Cruces, E., Rautenberger, R., Rojas-Lillo, Y. et al. (2017). Physiological acclimation of Lessonia spicata to diurnal changing PAR and UV radiation: Differential regulation among downregulation of photochemistry, ROS scavenging activity and phlorotannins as major photoprotective mechanisms. Photosynthesis Research 131: 145157.CrossRefGoogle ScholarPubMed
Delgado-Molina, J. A., Carrillo, P., Medina-Sánchez, J. M. et al. (2009). Interactive effects of phosphorus loads and ambient ultraviolet radiation on the algal community in a high-mountain lake. Journal of Plankton Research 31: 619634.CrossRefGoogle Scholar
Demming-Adams, B. & Adams, W. W. (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology 43: 599626.CrossRefGoogle Scholar
Deitrick, R. & Goldblatt, C. (2023) Effects of ozone levels on climate through Earth history. Climate of the Past 19: 12011218.CrossRefGoogle Scholar
Domingues, R. B., Guerra, C. C., Barbosa, A. B. et al. (2014). Effects of ultraviolet radiation and CO2 increase on winter phytoplankton assemblages in a temperate coastal lagoon. Journal of Plankton Research 36: 672684.CrossRefGoogle Scholar
Falkowski, P. G., Scholes, R. J., Boyle, E. et al. (2000). The global carbon cycle: A test of our knowledge of Earth as a system. Science 290: 291296.CrossRefGoogle ScholarPubMed
Farahin, A. W., Yusoff, F. M., Nagao, N. et al. (2016). Phenolic content and antioxidant activity of Tetraselmis tetrathele (West) Butcher 1959 cultured in annular photobioreactor. Journal of Environmental Biology 37: 631639.Google ScholarPubMed
Finkel, Z. V., Beardall, J., Flynn, K. J. et al. (2010). Phytoplankton in a changing world: Cell size and elemental stoichiometry. Journal of Plankton Research 32: 119137.CrossRefGoogle Scholar
Fiorda Giordanino, M. V., Strauch, S. M., Villafane, V. E. et al. (2011). Influence of temperature and UVR on photosynthesis and morphology of four species of cyanobacteria. Journal of Photochemistry and Photobiology B: Biology 103: 6877.CrossRefGoogle Scholar
Gao, K., Li, P., Watanabe, T. et al. (2008). Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis and DNA of Arthrospira (Spirulina) platensis (Cyanophyta). Journal of Phycology 44: 777786.CrossRefGoogle ScholarPubMed
Gao, K., Wu, Y., Li, G. et al. (2007). Solar UV radiation drives CO2 fixation in marine phytoplankton: A double-edged sword. Plant Physiology 144: 5459.CrossRefGoogle ScholarPubMed
Gao, K. S., Ruan, Z., Villafañe, V. E. et al. (2009). Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnology and Oceanography 54: 18551862.CrossRefGoogle Scholar
Garcia-Pichel, F. (1994). A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnology and Oceanography 39: 17041717.CrossRefGoogle Scholar
Grotjohann, I., Jolley, C. & Fromme, P. (2004). Evolution of photosynthesis and oxygen evolution: Implications from the structural comparison of Photosystems I and II. Chemical Physics 6: 47434753.Google Scholar
Gruber, A., Roleda, M. Y., Bartsch, I. et al. (2011). Sporogenesis under UVR in Laminaria digitata (Phaeophyceae) reveals protection of photosensitive meiospores within soral tissue: physiological and anatomical evidence. Journal of Phycology 47: 603614.CrossRefGoogle ScholarPubMed
Grunewald, K., Hirschberg, J. & Hagen, C. (2001). Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. Journal of Biological Chemistry 276: 60236029.CrossRefGoogle ScholarPubMed
Häder, D.-P., Richter, P. R., Villafañe, V. E. et al. (2014a). Influence of light history on the photosynthetic and motility responses of Gymnodinium chlorophorum exposed to UVR and different temperatures. Journal of Photochemistry and Biology B: Biology 138: 273281.CrossRefGoogle ScholarPubMed
Häder, D.-P., Williamson, C. E., Wängberg, S.-A. et al. (2015). Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochemical and Photobiological Sciences 14: 108126.CrossRefGoogle ScholarPubMed
Häder, D. P., Villafañe, V. E. & Helbling, E. W. (2014b). Productivity of aquatic primary producers under global climate change. Photochemical and Photobiological Sciences 13: 13701392.CrossRefGoogle ScholarPubMed
Halac, S. R., Villafañe, V. E. & Helbling, E. W. (2010). Temperature benefits the photosynthetic performance of the diatoms Chaetoceros gracilis and Thalassiosira weissflogii when exposed to UVR. Journal of Photochemistry and Photobiology, B: Biology 101: 196205.CrossRefGoogle ScholarPubMed
Hanelt, D. (1996). Photoinhibition of photosynthesis in marine macroalgae. Scientia Marina 60: 243248.Google Scholar
Hanelt, D. & Roleda, M. Y. (2009). UVB radiation may ameliorate photoinhibition in specific shallow-water tropical marine macrophytes. Aquatic Botany 91: 612.CrossRefGoogle Scholar
Helbling, E. W., Villafañe, V. E. & Holm-Hansen, O. (1994). Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing. In Weiler, C. S. & Penhale, P. A. (eds.) Ultraviolet Radiation in Antarctica: Measurements and Biological Effects. American Geophysical Union, Washington, DC, pp. 207227.CrossRefGoogle Scholar
Helbling, E. W., Villafañe, V. E. & Barbieri, E. S. (2001). Sensitivity of winter phytoplankton communities from Andean lakes to ultraviolet-B radiation. Revista Chilena de Historia Natural 74: 273282.CrossRefGoogle Scholar
Helbling, E. W., Banaszak, A. T. & Villafañe, V. E. (2015a). Global change feed-back inhibits cyanobacterial photosynthesis. Scientific Reports 5: 14514. https://doi.org/10.1038/srep14514.CrossRefGoogle Scholar
Helbling, E. W., Banaszak, A. T. & Villafañe, V. E. (2015b). Differential responses of two phytoplankton communities from the Chubut river estuary (Patagonia, Argentina) to the combination of UVR and elevated temperature. Estuaries and Coasts 38: 11341146.CrossRefGoogle Scholar
Helbling, E. W., Villafañe, V. E., Ferrario, M. E. et al. (1992). Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Marine Ecology Progress Series 80: 89100.CrossRefGoogle Scholar
Helbling, E. W., Pérez, D. E., Medina, C. D. et al. (2010). Phytoplankton distribution and photosynthesis dynamics in the Chubut River estuary (Patagonia, Argentina) throughout tidal cycles. Limnology and Oceanography 55: 5565.CrossRefGoogle Scholar
Helbling, E. W., Buma, A. G. J., Boelen, P. et al. (2011). Increase in Rubisco activity and gene expression due to elevated temperature partially counteracts ultraviolet radiation-induced photoinhibition in the marine diatom Thalassiosira weissflogii. Limnology and Oceanography 56: 13301342.CrossRefGoogle Scholar
Helbling, E. W., Carrillo, P., Medina-Sánchez, J. M. et al. (2013). Interactive effects of vertical mixing, nutrients and ultraviolet radiation: In situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe. Biogeosciences 10: 10371050.CrossRefGoogle Scholar
Hessen, D. O. (2008). Solar radiation and the evolution of life. In Bjertness, E. (ed.) Solar Radiation and Human Health. The Norwegian Academy of Science and Letters, Oslo, pp. 123136.Google Scholar
Holm-Hansen, O. & Lubin, D. (1994). Solar ultraviolet radiation: Effects on rates of CO2 fixation in marine phytoplankton. In Tolbert, N. E. & Preiss, J. (eds.) Regulation of Atmospheric CO2 and O2 by Photosynthetic Carbon Metabolism. Oxford University Press, New York, pp. 5574.Google Scholar
Holzinger, A., Di Piazza, L., Lütz, C. et al. (2011). Sporogenic and vegetative tissues of Saccharina latissima (Laminariales, Phaeophyceae) exhibit distinctive sensitivity to experimentally enhanced ultraviolet radiation: Photosynthetically active radiation ratio. Phycological Research 59: 221235.CrossRefGoogle Scholar
IPCC (2013). Climate Change 2013. The Physical Science Basis Cambridge University Press, New York, NY, pp. 1535.Google Scholar
Jahns, P. & Holzwarth, A. R. (2012). The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta 1817: 182193.CrossRefGoogle ScholarPubMed
Kieber, D. J., Peake, B. M. & Scully, N. M. (2003). Reactive oxygen species in aquatic ecosystems. In Helbling, E. W. & Zagarese, H. E. (eds.) UV Effects in Aquatic Organisms and Ecosystems. RSC, Cambridge, pp. 251288.Google Scholar
Kitidis, V., Stubbins, A. P., Uher, G. et al. (2006). Variability of chromophoric organic matter in surface waters of the Atlantic Ocean. Deep Sea Research II 53: 16661684.CrossRefGoogle Scholar
Kulk, G., De Vries, P., Van de Poll, W. et al. (2012). Temperature-dependent growth and photophysiology of prokaryotic and eukaryotic oceanic picophytoplankton. Marine Ecology Progress Series 466: 4355.CrossRefGoogle Scholar
Kulk, G., De Vries, P., Van de Poll, W. et al. (2013). Temperature-dependent photoregulation in oceanic picophytoplankton during excessive irradiance exposure. In Dubinsky, Z. (ed.) Photosynthesis. InTech, London, pp. 209228. www.intechopen.com/books/photosynthesis/temperature-dependent-photoregulation-in-oceanic-picophytoplankton-during-excessive-irradiance-exposGoogle Scholar
Lesser, M. P. & Shick, J. M. (1989). Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida: Primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Marine Biology 102: 243255.CrossRefGoogle Scholar
Li, G. & Gao, K. (2013). Cell size-dependent effects of solar UV radiation on primary production in coastal waters of the South China Sea. Estuaries and Coasts 36: 728736.CrossRefGoogle Scholar
Li, G., Wu, Y. & Gao, K. (2009). Effects of Typhoon Kaemi on coastal phytoplankton assemblages in the South China Sea, with special reference to the effects of solar UV radiation. Journal of Geophysical Research 114: 04029. https://doi.org/10.1029/2008JG000896.CrossRefGoogle Scholar
Li, G., Gao, K. & Gao, G. (2011). Differential impacts of solar UV radiation on photosynthetic carbon fixation from the coastal to offshore surface waters in the South China Sea. Photochemistry and Photobiology 87: 329334.CrossRefGoogle ScholarPubMed
Litchman, E., Neale, P. J. & Banaszak, A. T. (2002). Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: Photoprotection and repair. Limnology and Oceanography 47: 8694.CrossRefGoogle Scholar
Llabrés, M., Agustí, S., Fernández, M. et al. (2013). Impact of elevated UVB radiation on marine biota: A meta-analysis. Global Ecology and Biogeography 22: 131144.CrossRefGoogle Scholar
Lohr, M. & Wilhelm, C. (2001). Xanthophyll synthesis in diatoms: Quantifications of putative intermediate and comparison of pigment conversion kinetics with rate constants derive from a model. Planta 212: 382391.CrossRefGoogle ScholarPubMed
Malpartida, I., Jerez, C. G., Morales, M. M. et al. (2014). Synergistic effect of UV radiation and nutrient limitation on Chlorella fusca (Chlorophyta) cultures grown in outdoor cylindrical photobioreactor. Aquatic Biology 22: 141158.CrossRefGoogle Scholar
Mengelt, B. & Prézelin, B. B. (2005). UVA enhancement of carbon fixation and resilience to UV inhibition in the genus Pseudo-nitzschia may provide a competitive advantage in high UV surface waters. Marine Ecology Progress Series, 301: 8193.CrossRefGoogle Scholar
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405410.CrossRefGoogle ScholarPubMed
Mittler, R., Vanderauwera, S., Gollery, M. et al. (2004). Reactive oxygen gene network of plants. Trends in Plant Science 9: 490498.CrossRefGoogle ScholarPubMed
Mizuta, M. & Yasui, H. (2010). Significance of radical oxygen production in sorus development and zoospore germination in Saccharina japonica (Phaeophyceae). Botanica Marina 53: 409416.CrossRefGoogle Scholar
Müller, R., Desel, C., Steinhoff, F. S. et al. (2012). UV-radiation and elevated temperatures induce formation of reactive oxygen species in gametophytes of cold-temperate/Arctic kelps (Laminariales, Phaeophyceae). Phycological Research 60: 2736.CrossRefGoogle Scholar
Neale, P. J. & Thomas, B. C. (2016). Inhibition by ultraviolet and photosynthetically available radiation lowers model estimates of depth-integrated picophytoplankton photosynthesis: Global predictions for Prochlorococcus and Synechococcus. Global Change Biology 23: 293306.CrossRefGoogle ScholarPubMed
Neale, P. J., Helbling, E. W. & Zagarese, H. E. (2003). Modulation of UVR exposure and effects by vertical mixing and advection. In Helbling, E. W. & Zagarese, H. E. (eds.) UV Effects in Aquatic Organisms and Ecosystems. Royal Society of Chemistry, Cambridge, UK, pp. 108134.Google Scholar
Osburn, C. L., O’Sullivan, D. W. & Boyd, T. J. (2009). Increases in the longwave photobleaching of chromophoric dissolved organic matter in coastal waters. Limnology and Oceanography 54: 145159.CrossRefGoogle Scholar
Pakker, H., Martins, R. S. T., Boelen, P. et al. (2000). Effects of temperature on the photoreactivation of ultraviolet-B–induced DNA damage in Palmaria palmata (Rhodophyta). Journal of Phycology 36: 334341.CrossRefGoogle Scholar
Pescheck, F., Lohbeck, K. T., Roleda, M. Y. et al. (2014). UVB-induced DNA and photosystem II damage in two intertidal green macroalgae: Distinct survival strategies in UV-screening and non-screening Chlorophyta. Journal of Photochemistry and Biology B: Biology 132: 8593.CrossRefGoogle ScholarPubMed
Raven, J. A. (1991). Responses of aquatic photosynthetic organisms to increased solar UVB. Journal of Photochemistry and Biology B: Biology 9: 239244.CrossRefGoogle Scholar
Riebesell, U., Schulz, K. G., Bellerby, R. G. J. et al. (2007). Enhanced biological carbon consumption in a high CO2 ocean. Nature 450: 545548.CrossRefGoogle Scholar
Rodrigues, N. D. N., Staniforth, M. & Stavros, V. G. (2016). Photophysics of sunscreen molecules in the gas phase: A stepwise approach towards understanding and developing next-generation sunscreens. Proceeding of the Royal Society A 472: 20160677. http://dx.doi.org/10.1098/rspa.2016.0677.Google ScholarPubMed
Roleda, M. Y., van de Poll, W. H., Hanelt, D. et al. (2004a). PAR and UVBR effects on photosynthesis, viability, growth and DNA in different life stages of two coexisting Gigartinales: Implications for recruitment and zonation pattern. Marine Ecology Progress Series 281: 3750.CrossRefGoogle Scholar
Roleda, M. Y., Hanelt, D., Kräbs, G. et al. (2004b). Morphology, growth, photosynthesis and pigments in Laminaria ochroleuca (Laminariales, Phaeophyta) under ultraviolet radiation. Phycologia 43: 603613.CrossRefGoogle Scholar
Roleda, M. Y., Wiencke, C., Hanelt, D. et al. (2007). Sensitivity of the early life stages of macroalgae from the northern hemisphere to ultraviolet radiation. Photochemistry and Photobiology 83: 851862.CrossRefGoogle ScholarPubMed
Roleda, M. Y., Mohlin, M., Pattanaik, B. et al. (2008a). Photosynthetic response of Nodularia spumigena to UV and photosynthetically active radiation depends on nutrient (N, P) availability. FEMS Microbial Ecology 66: 230242.CrossRefGoogle ScholarPubMed
Roleda, M. Y., Zacher, K., Wulff, A. et al. (2008b). Susceptibility of spores of different ploidy levels from Antarctic Gigartina skottsbergii (Gigartinales, Rhodophyta) to ultraviolet radiation. Phycologia 47: 361370.CrossRefGoogle Scholar
Roleda, M. Y., Campana, G., Wiencke, C. et al. (2009). Sensitivity of Antarctic Urospora penicilliformis (Ulotrichales, Chlorophyta) to ultraviolet radiation is life stage dependent. Journal of Phycology 45: 600609.CrossRefGoogle ScholarPubMed
Rothschild, L. J. (1999). The influence of UV radiation on protistan evolution. Journal of Eukaryotic Microbiology 46: 548555.CrossRefGoogle ScholarPubMed
Roy, S. (2000). Strategies for the minimization of UV-induced damage. In De Mora, S. J., Demers, S. & Vernet, M. (eds.) The Effects of UV Radiation in the Marine Environment. Cambridge University Press, Cambridge, pp. 177205.CrossRefGoogle Scholar
Rozema, J., van de Staaij, J., Björn, L. O. et al. (1997). UV-B as an environmental factor in plant life: Stress and regulation. Trends in Ecology and Evolution 12: 2228.CrossRefGoogle ScholarPubMed
Safafar, H., van Wagenen, J., Møller, P. et al. (2015). Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Marine Drugs 13: 73397356.CrossRefGoogle Scholar
Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K. et al. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry 73: 3985.CrossRefGoogle ScholarPubMed
Santos, L., Pinto, A., Filipe, O. et al. (2016). Insights on the optical properties of estuarine DOM – Hydrological and biological influences. PLOS ONE 11. https://doi.org/10.1371/journal.pone.0154519.CrossRefGoogle ScholarPubMed
Scheller, H. V. & Haldrup, A. (2005). Photoinhibition of photosystem I. Planta 221: 58.CrossRefGoogle ScholarPubMed
Shigeoka, S., Ishikawa, T., Tamoi, M. et al. (2002). Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany 53: 13051319.CrossRefGoogle ScholarPubMed
Sicora, C., Máté, Z. & Vass, I. (2003). The interaction of visible and UV-B light during photodamage and repair of photosystem II. Photosynthesis Research 75: 127137.CrossRefGoogle ScholarPubMed
Smith, R. C., Prézelin, B. B., Baker, K. S. et al. (1992). Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255: 952959.CrossRefGoogle ScholarPubMed
Smyth, T. J. (2011). Penetration of UV irradiance into the global ocean. Journal of Geophysical Research 116: C11020. https://doi.org/11010.11029/12011JC007183.CrossRefGoogle Scholar
Sobrino, C. & Neale, P. J. (2007). Short-term and long-term effects of temperature on photosynthesis in the diatom Thalassiosira pseudonana under UVR exposures. Journal of Phycology 43: 426436.CrossRefGoogle Scholar
Sommaruga, R. (2001). The role of solar UV radiation in the ecology of alpine lakes. Journal of Photochemistry and Photobiology B: Biology 62: 3542.CrossRefGoogle ScholarPubMed
Stamenković, M. & Hanelt, D. (2013). Protection strategies of Cosmarium strains (Zygnematophyceae, Streptophyta) isolated from various geographic regions against excessive photosynthetically active radiation. Photochemistry and Photobiology 89: 900910.CrossRefGoogle ScholarPubMed
Stamenković, M. & Hanelt, D. (2017). Geographic distribution and ecophysiological adaptations of desmids (Zygnematophyceae, Streptophyta) in relation to PAR, UV radiation and temperature: A review. Hydrobiologia 787: 126.CrossRefGoogle Scholar
Szilárd, A., Sass, L., Deák, Z. et al. (2017). The sensitivity of photosystem II to damage by UV-B radiation depends on the oxidation state of the water-splitting complex. Biochimica et Biophysica Acta 1767: 876882.CrossRefGoogle Scholar
Takaichi, S. (2011). Carotenoids in algae: Distributions, biosyntheses and functions. Marine Drugs 9: 11011118.CrossRefGoogle ScholarPubMed
Thomas, N. V. & Kim, S. K. (2011). Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environmental Toxicology and Pharmacology 32: 325335.CrossRefGoogle ScholarPubMed
UNEP (2017). Environmental effects of ozone depletion and its interactions with climate change: Progress report 2016. Photochemical and Photobiological Sciences 16: 107145.CrossRefGoogle Scholar
van de Poll, W., Visser, R. J. & Buma, A. G. J. (2007). Acclimation to a dynamic irradiance regime changes excessive irradiance sensitivity of Emiliania huxleyi and Thalassiosira weissflogii. Limnology and Oceanography 52: 14301438.CrossRefGoogle Scholar
Van de Poll, W. H. & Buma, A. G. J. (2009). Does ultraviolet radiation affect the xanthophyll cycle in marine phytoplankton? Photochemical and Photobiological Sciences 8: 12951301.CrossRefGoogle ScholarPubMed
van de Poll, W. H., Eggert, A., Buma, A. G. J. et al. (2001). Effects of UV-B induced DNA damage and photoinhibition on growth of temperate marine red macrophytes: Habitat related differences in ultraviolet-B tolerance. Journal of Phycology 37: 3037.CrossRefGoogle Scholar
Van de Poll, W. H., Eggert, A., Buma, A. G. J. et al. (2002a). Temperature dependence of UV radiation effects in Arctic and temperate isolates of three red macrophytes. European Journal of Phycology 37: 5968.CrossRefGoogle Scholar
van de Poll, W. H., van Leeuwe, M. A., Roggeveld, J. et al. (2005). Nutrient limitation and high irradiance acclimation reduce PAR and UV-induced viability loss in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae). Journal of Phycology 41: 840850.CrossRefGoogle Scholar
van de Poll, W. H., Hanelt, D., Hoyer, K. et al. (2002b). Ultraviolet-B-induced cyclobutane-pyrimidine dimer formation and repair in Arctic marine macrophytes. Photochemistry and Photobiology 76: 493500.2.0.CO;2>CrossRefGoogle ScholarPubMed
van de Poll, W. H., Alderkamp, A.-C., Janknegt, P. J. et al. (2006). Photoacclimation modulates excessive photosynthetically active and ultraviolet radiation effects in a temperate and an Antarctic marine diatom. Limnology and Oceanography 51: 12391248.CrossRefGoogle Scholar
Vasilkov, A. P., Krotkov, N., Haffner, D., Fasnacht, Z., & Joiner, J. (2022) Estimates of hyperspectral surface and underwater UV planar and scalar irradiances from OMI measurements and radiative transfer computations. Remote Sensing 14: 2278. https://doi.org/10.3390/rs14092278CrossRefGoogle Scholar
Villafañe, V. E., Sundbäck, K., Figueroa, F. L. et al. (2003). Photosynthesis in the aquatic environment as affected by UVR. In Helbling, E. W. & Zagarese, H. E. (eds.) UV Effects in Aquatic Organisms and Ecosystems. Royal Society of Chemistry, Cambridge, UK, pp. 357397.Google Scholar
Villafañe, V. E., Buma, A. G. J., Boelen, P. et al. (2004). Solar UVR-induced DNA damage and inhibition of photosynthesis in phytoplankton from Andean lakes of Argentina. Archiv für Hydrobiologie 161: 245266.CrossRefGoogle Scholar
Villafañe, V. E., Valiñas, M. S., Cabrerizo, M. J. et al. (2015). Physio-ecological responses of Patagonian coastal marine phytoplankton in a scenario of global change: Role of acidification, nutrients and solar UVR. Marine Chemistry 177: 411420.CrossRefGoogle Scholar
Villafañe, V. E., Cabrerizo, M. J., Erzinger, G. S. et al. (2017). Photosynthesis and growth of temperate and sub-tropical estuarine phytoplankton in a scenario of nutrient enrichment under solar ultraviolet radiation exposure. Estuaries and Coasts 40: 842855.CrossRefGoogle Scholar
Vlcček, D., Ševčovičová, A., Sviežená, B., Gálová, E. et al. (2008). Chlamydomonas reinhardtii: A convenient model system for the study of DNA repair in photoautotrophic eukaryotes. Current Genetics 53: 122.CrossRefGoogle Scholar
Wada, N., Sakamoto, T. & Matsugo, S. (2015). Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants 4: 603646.CrossRefGoogle ScholarPubMed
Williamson, C. E. & Rose, K. C. (2010). When UV meets freshwater. Science 329: 637639.CrossRefGoogle Scholar
Williamson, C. E., Zepp, R. G., Lucas, R. M. et al. (2014). Solar ultraviolet radiation in a changing climate. Nature Climate Change 4: 434441.CrossRefGoogle Scholar
Wu, H., Abasova, L., Cheregi, O. et al. (2011). D1 protein turnover is involved in protection of Photosystem II against UV-B induced damage in the cyanobacterium Arthrospira (Spirulina) platensis. Journal of Photochemistry and Biology B: Biology 104: 320325.CrossRefGoogle ScholarPubMed
Wu, Y., Gao, K., Li, G. et al. (2010). Seasonal impacts of solar UV radiation on photosynthesis of phytoplankton assemblages in the coastal waters of the South China Sea. Photochemistry and Photobiology 86: 586592.CrossRefGoogle ScholarPubMed
Wulff, A., Wängberg, S.-Å., Sundbäck, K. et al. (2000). Effects of UVB radiation on a marine microphytobenthic community growing on a sand-substratum under different nutrient conditions. Limnology and Oceanography 45: 11441152.CrossRefGoogle Scholar
Xenopoulos, M. A., Frost, P. C. et al. (2002). Joint effects of UV radiation and phosphorus supply on algal growth rate and elemental composition. Ecology 83: 423435.CrossRefGoogle Scholar
Zheng, Y. & Gao, K. (2009). Impacts of solar UV radiation on the photosynthesis, growth, and UV-absorbing compounds in Gracilaria lemaneiformis (Rhodophyta) grown at different nitrate concentrations. Journal of Phycology 45: 314323.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×