Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T17:24:50.376Z Has data issue: false hasContentIssue false

8 - Temperature: Still an Enigmatic Driver in the Evolution and Physiology of Algae

from Part II - Physiology of Photosynthetic Autotrophs in Present-Day Environments

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access

Summary

Unicellular phototrophs inhabit ecological niches ranging from extremely cold environments in polar or glacier regions to hot springs. This extremely broad spectrum of temperature tolerance is the consequence of specific adaptation responses acquired during evolution. The molecular mechanisms required to maintain high physiological activity under natural temperature conditions are not completely understood. Temperature adaptation in phototrophs is an important issue in algal biotechnology, as well as in climate prediction, because the algal response to an increased earth surface temperature strongly influences the global carbon budget. In this chapter, the mechanisms of temperature acclimation are summarised to identify potential targets for biotechnology or for improved climate prediction.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allakhverdiev, S. I., Los, D. A., Mohanty, P. et al. (2007). Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochimica Biophysica Acta BBA – Bioenergetics 1767: 13631371.CrossRefGoogle ScholarPubMed
Alric, J. & Johnson, X. (2017). Alternative electron transport pathways in photosynthesis: A confluence of regulation. Current Opinions in Plant Biology 37: 7886.CrossRefGoogle ScholarPubMed
Andersson, A., Haecky, P. & Hagström, Å. (1994). Effect of temperature and light on the growth of micro- nano- and pico-plankton: Impact on algal succession. Marine Biology 120: 511520.CrossRefGoogle Scholar
Asada, K. (2000). The water-water cycle as alternative photon and electron sinks. Philosophical Transactions of the Royal Society B 355: 14191431.CrossRefGoogle ScholarPubMed
Banse, K. (1976). Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size – a review. Journal of Phycology 12: 135140.Google Scholar
Beauchemin, M., Roy, S., Pelletier, S. et al. (2016). Characterization of two dinoflagellate cold shock domain proteins. Msphere 1: e00034–15. https://doi.org/10.1128/mSphere.00034–15.CrossRefGoogle ScholarPubMed
Bělehrádek, J. (1926). Influence of temperature on biological processes. Nature 118: 117118.CrossRefGoogle Scholar
Bieri, P., Leibundgut, M., Saurer, M. et al. (2017). The complete structure of the chloroplast 70S ribosome in complex with translation factor pY. EMBO Journal 36: 475486.CrossRefGoogle ScholarPubMed
Bligh, J. & Johnson, K. G. (1973). Glossary of terms for thermal physiology. Journal of Applied Physiology 35: 941961.CrossRefGoogle ScholarPubMed
Bozzato, D., Jakob, T. & Wilhelm, C. (2019). Effects of temperature and salinity on respiratory losses and the ratio of photosynthesis to respiration in representative Antarctic phytoplankton species. PLOS ONE 14: e0224101. https://doi.org/10.1371/journal.pone.0224101.CrossRefGoogle ScholarPubMed
Butterwick, C., Heaney, S. I. & Talling, J. F. (2005). Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology 50: 291300.CrossRefGoogle Scholar
Chandler, J. W., Lin, Y., Gainer, P. J. et al. (2016). Variable but persistent coexistence of Prochlorococcus ecotypes along temperature gradients in the ocean’s surface mixed layer. Environmental Microbiology Reports 8: 272284.CrossRefGoogle ScholarPubMed
Chaux, F., Peltier, G. & Johnson, X. (2015). A security network in PSI photoprotection: Regulation of photosynthetic control, NPQ and O2 photoreduction by cyclic electron flow. Frontiers in Plant Science 6: 875. https://doi.org/10.3389/fpls.2015.00875.CrossRefGoogle ScholarPubMed
Cvetkovska, M., Hüner, N. P. A. & Smith, D. R. (2017). Chilling out: The evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biology 40: 11691184.CrossRefGoogle Scholar
D’Amico, S., Collins, T., Marx, J.-C. et al. (2006). Psychrophilic microorganisms: Challenges for life. EMBO Reports. 7: 385389.CrossRefGoogle ScholarPubMed
Day, J. G., Benson, E. E., Harding, K. et al. (2005). Cryopreservation and conservation of microalgae: The development of a pan-European scientific and biotechnological resource (the COBRA project). Cryoletters 26: 231238.Google ScholarPubMed
Devos, N., Ingouff, M., Loppes, R. et al. (1998). Rubisco adaptation to low temperatures: A comparative study in psychrophilic and mesophilic unicellular algae. Journal of Phycology 34: 655660.CrossRefGoogle Scholar
Dolhi, J. M., Maxwell, D. P. & Morgan-Kiss, R. M. (2013). Review: The Antarctic Chlamydomonas raudensis: An emerging model for cold adaptation of photosynthesis. Extremophiles 17: 711722.CrossRefGoogle ScholarPubMed
Fanesi, A., Wagner, H. & Wilhelm, C. (2016). Temperature affects the partitioning of absorbed light energy in freshwater phytoplankton. Freshwater Biology 61: 13651378.CrossRefGoogle Scholar
Fanesi, A., Wagner, H. & Wilhelm, C. (2017). Phytoplankton growth rate modelling: Can spectroscopic cell chemotyping be superior to physiological predictors? Proceedings of the Royal Society of London B 284: 20161956. https://doi.org/10.1098/rspb.2016.1956.Google ScholarPubMed
Galmés., J., Capó-Bauçà, S., Niinmets, Ü. et al. (2019). Potential improvement of photosynthetic CO2 assimilation in crops with the natural variation in temperature response of Rubisco catalytic traits. Current Opinion in Plant Biology 49: 6067.CrossRefGoogle ScholarPubMed
Gao, G., Shi, Q., Xu, Z. et al. (2018). Global warming interacts with ocean acidification to alter PSII function and protection in the diatom Thalassiosira weissflogii. Environmental and Experimental Botany 147: 95103.CrossRefGoogle Scholar
Gierz, S. L., Forêt, S. & Leggat, W. (2017). Transcriptomic analysis of thermally stressed Symbiodinium reveals differential expression of stress and metabolism genes. Frontiers in Plant Science 8: 271. https://doi.org/10.3389/fpls.2017.00271.CrossRefGoogle ScholarPubMed
Gómez, I., Wulff, A., Roleda, M. Y. et al. (2009). Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Botanica Marina 52: 593608.CrossRefGoogle Scholar
Gong, L., Gao, M., Zang, X. et al. (2015). Peptidase: A novel member of a calmodulin-binding protein of Gracilaria lemaneiformis under heat shock. Journal of Applied Phycology 27: 563570.CrossRefGoogle Scholar
Goss, R. & Jakob, T. (2010). Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynthesis Research 106: 103122.CrossRefGoogle ScholarPubMed
Goss, R. & Lepetit, B. (2015). Biodiversity of NPQ. Journal of Plant Physiology 172: 1332. https://doi.org/10.1016/j.jplph.2014.03.004.CrossRefGoogle ScholarPubMed
Grouneva, I., Gollan, P. J., Kangasjärvi, S. et al. (2013). Phylogenetic viewpoints on regulation of light harvesting and electron transport in eukaryotic photosynthetic organisms. Planta 237: 399412.CrossRefGoogle ScholarPubMed
Han, J. W. & Kim, G. H. (2013). An ELIP-like gene in the freshwater green alga, Spirogyra varians (Zygnematales), is regulated by cold stress and CO2 influx. Journal of Applied Phycology 25: 12971307.CrossRefGoogle Scholar
Hemme, D., Veyel, D., Mühlhaus, T. et al. (2014). Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydomonas reinhardtii. Plant Cell 26: 42704297.CrossRefGoogle ScholarPubMed
Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research 50: 839886.Google Scholar
Huner, N. P. A., Öquist, G. & Sarhan, F. (1998). Energy balance and acclimation to light and cold. Trends in Plant Science 3: 224230.CrossRefGoogle Scholar
Kremer, C. T., Thomas, M. K. & Litchman, E. (2017). Temperature- and size-scaling of phytoplankton population growth rates: Reconciling the Eppley curve and the metabolic theory of ecology. Limnology and Oceanography 62: 16581670.CrossRefGoogle Scholar
Kotajima, T., Shiraiwa, Y. & Suzuki, I. (2014). Functional screening of a novel Delta 15 fatty acid desaturase from the coccolithophorid Emiliania huxleyi. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids 1841: 14511458.CrossRefGoogle Scholar
Legeret, B., Schulz-Raffelt, M., Nguyen, H. M. et al. (2016). Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. Plant, Cell and Environment 39: 834847.CrossRefGoogle ScholarPubMed
Lu, N., Ding, Y., Zang, X.-N. et al. (2013). Molecular cloning and expression analysis of glutathione peroxidase and glutathione reductase from Gracilaria lemaneiformisunder heat stress. Journal of Applied Phycology 25: 19251931.CrossRefGoogle Scholar
Maikova, A., Zalutskaya, Z., Lapina, T. et al. (2016). The HSP70 chaperone machines of Chlamydomonas are induced by cold stress. Journal of Plant Physiology 204: 8591.CrossRefGoogle ScholarPubMed
Margesin, R., Schinner, F., Marx, J.-C. et al. (2008). Psychrophiles: From Biodiversity to Biotechnology. Springer, Berlin.CrossRefGoogle Scholar
Mathur, S., Agrawal, D. & Jajoo, A. (2014). Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology 137: 116126.CrossRefGoogle ScholarPubMed
Mock, T., Krell, A., Glöckner, G. et al. (2006). Analysis of expressed sequence tags (ESTs) from the polar diatom Fragilariopsis cylindrus. Journal of Phycology 42: 7885.CrossRefGoogle Scholar
Molen, T. A., Rosso, D., Piercy, S. et al. (2006). Characterization of the alternative oxidase of Chlamydomonas reinhardtii in response to oxidative stress and a shift in nitrogen source. Physiologia Plantarum 127: 7486.CrossRefGoogle Scholar
Moreno, A. R. & Martiny, A. C. (2018). Ecological stoichiometry of ocean plankton. Annual Review of Marine Science 10: 4369.CrossRefGoogle ScholarPubMed
Mou, S., Xu, D., Ye, N. et al. (2012). Rapid estimation of lipid content in an Antarctic ice alga (Chlamydomonas sp.) using the lipophilic fluorescent dye BODIPY505/515. Journal of Applied Phycology 24: 11691176.CrossRefGoogle Scholar
Murata, N. & Los, D. A. (1997). Membrane fluidity and temperature perception. Plant Physiology 115: 875879.CrossRefGoogle ScholarPubMed
Neale, P. J. & Priscu, J. C. (1995). The photosynthetic apparatus of phytoplankton from a perennially ice-covered Antarctic lake: Acclimation to an extreme shade environment. Plant and Cell Physiology 36: 253263.CrossRefGoogle Scholar
Pearson, G. A., Lago-Leston, A., Canovas, F. et al. (2015). Metatranscriptomes reveal functional variation in diatom communities from the Antarctic Peninsula. ISME Journal 9: 22752289.CrossRefGoogle ScholarPubMed
Phadtare, S. (2004). Recent developments in bacterial cold-shock response. Current Issues in Molecular Biology 6: 125136.Google ScholarPubMed
Raven, J. A. & Kübler, J. E. (2002). New light on the scaling of metabolic rate with the size of algae. Journal of Phycology 38: 1116.CrossRefGoogle Scholar
Renaut, J., Hausman, J.-F. & Wisniewski, M. E. (2006). Proteomics and low-temperature studies: Bridging the gap between gene expression and metabolism. Physiologia Plantarum 126: 97109.CrossRefGoogle Scholar
Rochaix, J.-D. (2014). Regulation and dynamics of the light-harvesting system. Annual Review of Plant Biology 65: 287309.CrossRefGoogle ScholarPubMed
Rothschild, L. J. (2008). The evolution of photosynthesis … again?. Philosophical Transactions of the Royal Society of London Series B Biological Sciences 363: 27872801.CrossRefGoogle ScholarPubMed
Ryan, C. N., Thomas, M. K. & Litchman, E. (2017). The effects of phosphorus and temperature on the competitive success of an invasive cyanobacterium. Aquatic Ecology 51: 463472.CrossRefGoogle Scholar
Schramm, A., Jakob, T. & Wilhelm, C. (2016). The impact of the optical properties and respiration of algal cells with truncated antennae on biomass production under simulated outdoor conditions. Current Biotechnology 5: 142153.CrossRefGoogle Scholar
Schroda, M., Hemme, D. & Mühlhaus, T. (2015). The Chlamydomonas heat stress response. Plant Journal 82: 466480.CrossRefGoogle ScholarPubMed
Shi, J., Chen, Y., Xu, Y. et al. (2017). Differential proteomic analysis by iTRAQ reveals the mechanism of Pyropia haitanensis responding to high temperature stress. Scientific Reports 7: 44734. https://doi.org/10.1038/srep44734.CrossRefGoogle ScholarPubMed
Shikanai, T. (2007). Cyclic electron transport around Photosystem I: Genetic approaches. Annual Review of Plant Biology 58: 199217.CrossRefGoogle ScholarPubMed
Shin, H., Hong, S.-J., Yoo, C. et al. (2016). Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae. Scientific Reports 6: 37770. https://doi.org/10.1038/srep37770.CrossRefGoogle ScholarPubMed
Smith, R., Anning, J., Clement, P. et al. (1988). Abundance and production of ice algae in resolute passage, Canadian Arctic. Marine Ecology Progress Series 48: 251263.CrossRefGoogle Scholar
Tansey, M. R. & Brock, T. D. (1972). The upper temperature limit for eukaryotic organisms. Proceedings of the National Academy of Sciences USA. 69: 24262428.CrossRefGoogle ScholarPubMed
Tilzer, M. M. & Dubinsky, Z. (1987). Effects of temperature and day length on the mass balance of Antarctic phytoplankton. Polar Biology 7: 3542.CrossRefGoogle Scholar
Wagner, H., Fanesi, A. & Wilhelm, C. (2016). Freshwater phytoplankton responses to global warming. Journal of Plant Physiology 203: 127134.CrossRefGoogle ScholarPubMed
Wagner, H., Jakob, T. & Wilhelm, C. (2006). Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytologist 169: 95108.CrossRefGoogle ScholarPubMed
Wilhelm, C. & Selmar, D. (2011). Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis. Journal of Plant Physiology 168:7987.CrossRefGoogle ScholarPubMed
Willette, S., Gill, S. S., Dungan, B. et al. (2018). Alterations in lipidome and metabolome profiles of Nannochloropsis salina in response to reduced culture temperature during sinusoidal temperature and light. Algal Research 32: 7992. https://doi.org/10.1016/j.algal.2018.03.001.CrossRefGoogle Scholar
Xiao, H., Chen, C., Xu, Y. et al. (2014). Cloning and expression analysis of the chloroplast fructose-1,6-bisphosphatase gene from Pyropia haitanensis. Acta Oceanologica Sinica 33: 92100. https://doi.org/10.1007/s13131–014–0455–0.CrossRefGoogle Scholar
Yang, J., Tang, H., Zhang, X. et al. (2018). High temperature and pH favor Microcystis aeruginosa to outcompete Scenedesmus obliquus. Environmental Science and Pollution Research 25: 47944802.CrossRefGoogle ScholarPubMed
Yu, C., Xu, K., Wang, W. et al. (2018). Detection of changes in DNA methylation patterns in Pyropia haitanensis under high-temperature stress using a methylation-sensitive amplified polymorphism assay. Journal of Applied Phycology 30: 20912100.CrossRefGoogle Scholar
Zheng, G., Tian, B., Zhang, F. et al. (2011). Plant adaptation to frequent alterations between high and low temperatures: Remodelling of membrane lipids and maintenance of unsaturation levels. Plant, Cell and Environment 34: 14311442.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×